core/num/
uint_macros.rs

1macro_rules! uint_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        SignedT = $SignedT:ident,
6
7        // These are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        MAX = $MaxV:literal,
14        rot = $rot:literal,
15        rot_op = $rot_op:literal,
16        rot_result = $rot_result:literal,
17        swap_op = $swap_op:literal,
18        swapped = $swapped:literal,
19        reversed = $reversed:literal,
20        le_bytes = $le_bytes:literal,
21        be_bytes = $be_bytes:literal,
22        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
23        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
24        bound_condition = $bound_condition:literal,
25    ) => {
26        /// The smallest value that can be represented by this integer type.
27        ///
28        /// # Examples
29        ///
30        /// Basic usage:
31        ///
32        /// ```
33        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
34        /// ```
35        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
36        pub const MIN: Self = 0;
37
38        /// The largest value that can be represented by this integer type
39        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
40        ///
41        /// # Examples
42        ///
43        /// Basic usage:
44        ///
45        /// ```
46        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
47        /// ```
48        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
49        pub const MAX: Self = !0;
50
51        /// The size of this integer type in bits.
52        ///
53        /// # Examples
54        ///
55        /// ```
56        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
57        /// ```
58        #[stable(feature = "int_bits_const", since = "1.53.0")]
59        pub const BITS: u32 = Self::MAX.count_ones();
60
61        /// Returns the number of ones in the binary representation of `self`.
62        ///
63        /// # Examples
64        ///
65        /// Basic usage:
66        ///
67        /// ```
68        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
69        /// assert_eq!(n.count_ones(), 3);
70        ///
71        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
72        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
73        ///
74        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
75        /// assert_eq!(zero.count_ones(), 0);
76        /// ```
77        #[stable(feature = "rust1", since = "1.0.0")]
78        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
79        #[doc(alias = "popcount")]
80        #[doc(alias = "popcnt")]
81        #[must_use = "this returns the result of the operation, \
82                      without modifying the original"]
83        #[inline(always)]
84        pub const fn count_ones(self) -> u32 {
85            return intrinsics::ctpop(self);
86        }
87
88        /// Returns the number of zeros in the binary representation of `self`.
89        ///
90        /// # Examples
91        ///
92        /// Basic usage:
93        ///
94        /// ```
95        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
96        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
97        ///
98        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
99        /// assert_eq!(max.count_zeros(), 0);
100        /// ```
101        #[stable(feature = "rust1", since = "1.0.0")]
102        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
103        #[must_use = "this returns the result of the operation, \
104                      without modifying the original"]
105        #[inline(always)]
106        pub const fn count_zeros(self) -> u32 {
107            (!self).count_ones()
108        }
109
110        /// Returns the number of leading zeros in the binary representation of `self`.
111        ///
112        /// Depending on what you're doing with the value, you might also be interested in the
113        /// [`ilog2`] function which returns a consistent number, even if the type widens.
114        ///
115        /// # Examples
116        ///
117        /// Basic usage:
118        ///
119        /// ```
120        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
121        /// assert_eq!(n.leading_zeros(), 2);
122        ///
123        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
124        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
125        ///
126        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
127        /// assert_eq!(max.leading_zeros(), 0);
128        /// ```
129        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
130        #[stable(feature = "rust1", since = "1.0.0")]
131        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
132        #[must_use = "this returns the result of the operation, \
133                      without modifying the original"]
134        #[inline(always)]
135        pub const fn leading_zeros(self) -> u32 {
136            return intrinsics::ctlz(self as $ActualT);
137        }
138
139        /// Returns the number of trailing zeros in the binary representation
140        /// of `self`.
141        ///
142        /// # Examples
143        ///
144        /// Basic usage:
145        ///
146        /// ```
147        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
148        /// assert_eq!(n.trailing_zeros(), 3);
149        ///
150        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
151        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
152        ///
153        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
154        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
155        /// ```
156        #[stable(feature = "rust1", since = "1.0.0")]
157        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
158        #[must_use = "this returns the result of the operation, \
159                      without modifying the original"]
160        #[inline(always)]
161        pub const fn trailing_zeros(self) -> u32 {
162            return intrinsics::cttz(self);
163        }
164
165        /// Returns the number of leading ones in the binary representation of `self`.
166        ///
167        /// # Examples
168        ///
169        /// Basic usage:
170        ///
171        /// ```
172        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
173        /// assert_eq!(n.leading_ones(), 2);
174        ///
175        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
176        /// assert_eq!(zero.leading_ones(), 0);
177        ///
178        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
179        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
180        /// ```
181        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
182        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
183        #[must_use = "this returns the result of the operation, \
184                      without modifying the original"]
185        #[inline(always)]
186        pub const fn leading_ones(self) -> u32 {
187            (!self).leading_zeros()
188        }
189
190        /// Returns the number of trailing ones in the binary representation
191        /// of `self`.
192        ///
193        /// # Examples
194        ///
195        /// Basic usage:
196        ///
197        /// ```
198        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
199        /// assert_eq!(n.trailing_ones(), 3);
200        ///
201        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
202        /// assert_eq!(zero.trailing_ones(), 0);
203        ///
204        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
205        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
206        /// ```
207        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
208        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
209        #[must_use = "this returns the result of the operation, \
210                      without modifying the original"]
211        #[inline(always)]
212        pub const fn trailing_ones(self) -> u32 {
213            (!self).trailing_zeros()
214        }
215
216        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
217        ///
218        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
219        /// the same.
220        ///
221        /// # Examples
222        ///
223        /// Basic usage:
224        ///
225        /// ```
226        /// #![feature(integer_sign_cast)]
227        ///
228        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
229        ///
230        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
231        /// ```
232        #[unstable(feature = "integer_sign_cast", issue = "125882")]
233        #[must_use = "this returns the result of the operation, \
234                      without modifying the original"]
235        #[inline(always)]
236        pub const fn cast_signed(self) -> $SignedT {
237            self as $SignedT
238        }
239
240        /// Shifts the bits to the left by a specified amount, `n`,
241        /// wrapping the truncated bits to the end of the resulting integer.
242        ///
243        /// Please note this isn't the same operation as the `<<` shifting operator!
244        ///
245        /// # Examples
246        ///
247        /// Basic usage:
248        ///
249        /// ```
250        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
251        #[doc = concat!("let m = ", $rot_result, ";")]
252        ///
253        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
254        /// ```
255        #[stable(feature = "rust1", since = "1.0.0")]
256        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
257        #[must_use = "this returns the result of the operation, \
258                      without modifying the original"]
259        #[inline(always)]
260        pub const fn rotate_left(self, n: u32) -> Self {
261            return intrinsics::rotate_left(self, n);
262        }
263
264        /// Shifts the bits to the right by a specified amount, `n`,
265        /// wrapping the truncated bits to the beginning of the resulting
266        /// integer.
267        ///
268        /// Please note this isn't the same operation as the `>>` shifting operator!
269        ///
270        /// # Examples
271        ///
272        /// Basic usage:
273        ///
274        /// ```
275        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
276        #[doc = concat!("let m = ", $rot_op, ";")]
277        ///
278        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
279        /// ```
280        #[stable(feature = "rust1", since = "1.0.0")]
281        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
282        #[must_use = "this returns the result of the operation, \
283                      without modifying the original"]
284        #[inline(always)]
285        pub const fn rotate_right(self, n: u32) -> Self {
286            return intrinsics::rotate_right(self, n);
287        }
288
289        /// Reverses the byte order of the integer.
290        ///
291        /// # Examples
292        ///
293        /// Basic usage:
294        ///
295        /// ```
296        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
297        /// let m = n.swap_bytes();
298        ///
299        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
300        /// ```
301        #[stable(feature = "rust1", since = "1.0.0")]
302        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
303        #[must_use = "this returns the result of the operation, \
304                      without modifying the original"]
305        #[inline(always)]
306        pub const fn swap_bytes(self) -> Self {
307            intrinsics::bswap(self as $ActualT) as Self
308        }
309
310        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
311        ///                 second least-significant bit becomes second most-significant bit, etc.
312        ///
313        /// # Examples
314        ///
315        /// Basic usage:
316        ///
317        /// ```
318        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
319        /// let m = n.reverse_bits();
320        ///
321        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
322        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
323        /// ```
324        #[stable(feature = "reverse_bits", since = "1.37.0")]
325        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
326        #[must_use = "this returns the result of the operation, \
327                      without modifying the original"]
328        #[inline(always)]
329        pub const fn reverse_bits(self) -> Self {
330            intrinsics::bitreverse(self as $ActualT) as Self
331        }
332
333        /// Converts an integer from big endian to the target's endianness.
334        ///
335        /// On big endian this is a no-op. On little endian the bytes are
336        /// swapped.
337        ///
338        /// # Examples
339        ///
340        /// Basic usage:
341        ///
342        /// ```
343        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
344        ///
345        /// if cfg!(target_endian = "big") {
346        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
347        /// } else {
348        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
349        /// }
350        /// ```
351        #[stable(feature = "rust1", since = "1.0.0")]
352        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
353        #[must_use]
354        #[inline(always)]
355        pub const fn from_be(x: Self) -> Self {
356            #[cfg(target_endian = "big")]
357            {
358                x
359            }
360            #[cfg(not(target_endian = "big"))]
361            {
362                x.swap_bytes()
363            }
364        }
365
366        /// Converts an integer from little endian to the target's endianness.
367        ///
368        /// On little endian this is a no-op. On big endian the bytes are
369        /// swapped.
370        ///
371        /// # Examples
372        ///
373        /// Basic usage:
374        ///
375        /// ```
376        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
377        ///
378        /// if cfg!(target_endian = "little") {
379        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
380        /// } else {
381        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
382        /// }
383        /// ```
384        #[stable(feature = "rust1", since = "1.0.0")]
385        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
386        #[must_use]
387        #[inline(always)]
388        pub const fn from_le(x: Self) -> Self {
389            #[cfg(target_endian = "little")]
390            {
391                x
392            }
393            #[cfg(not(target_endian = "little"))]
394            {
395                x.swap_bytes()
396            }
397        }
398
399        /// Converts `self` to big endian from the target's endianness.
400        ///
401        /// On big endian this is a no-op. On little endian the bytes are
402        /// swapped.
403        ///
404        /// # Examples
405        ///
406        /// Basic usage:
407        ///
408        /// ```
409        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
410        ///
411        /// if cfg!(target_endian = "big") {
412        ///     assert_eq!(n.to_be(), n)
413        /// } else {
414        ///     assert_eq!(n.to_be(), n.swap_bytes())
415        /// }
416        /// ```
417        #[stable(feature = "rust1", since = "1.0.0")]
418        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
419        #[must_use = "this returns the result of the operation, \
420                      without modifying the original"]
421        #[inline(always)]
422        pub const fn to_be(self) -> Self { // or not to be?
423            #[cfg(target_endian = "big")]
424            {
425                self
426            }
427            #[cfg(not(target_endian = "big"))]
428            {
429                self.swap_bytes()
430            }
431        }
432
433        /// Converts `self` to little endian from the target's endianness.
434        ///
435        /// On little endian this is a no-op. On big endian the bytes are
436        /// swapped.
437        ///
438        /// # Examples
439        ///
440        /// Basic usage:
441        ///
442        /// ```
443        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
444        ///
445        /// if cfg!(target_endian = "little") {
446        ///     assert_eq!(n.to_le(), n)
447        /// } else {
448        ///     assert_eq!(n.to_le(), n.swap_bytes())
449        /// }
450        /// ```
451        #[stable(feature = "rust1", since = "1.0.0")]
452        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
453        #[must_use = "this returns the result of the operation, \
454                      without modifying the original"]
455        #[inline(always)]
456        pub const fn to_le(self) -> Self {
457            #[cfg(target_endian = "little")]
458            {
459                self
460            }
461            #[cfg(not(target_endian = "little"))]
462            {
463                self.swap_bytes()
464            }
465        }
466
467        /// Checked integer addition. Computes `self + rhs`, returning `None`
468        /// if overflow occurred.
469        ///
470        /// # Examples
471        ///
472        /// Basic usage:
473        ///
474        /// ```
475        #[doc = concat!(
476            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
477            "Some(", stringify!($SelfT), "::MAX - 1));"
478        )]
479        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
480        /// ```
481        #[stable(feature = "rust1", since = "1.0.0")]
482        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
483        #[must_use = "this returns the result of the operation, \
484                      without modifying the original"]
485        #[inline]
486        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
487            // This used to use `overflowing_add`, but that means it ends up being
488            // a `wrapping_add`, losing some optimization opportunities. Notably,
489            // phrasing it this way helps `.checked_add(1)` optimize to a check
490            // against `MAX` and a `add nuw`.
491            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
492            // LLVM is happy to re-form the intrinsic later if useful.
493
494            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
495                None
496            } else {
497                // SAFETY: Just checked it doesn't overflow
498                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
499            }
500        }
501
502        /// Strict integer addition. Computes `self + rhs`, panicking
503        /// if overflow occurred.
504        ///
505        /// # Panics
506        ///
507        /// ## Overflow behavior
508        ///
509        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
510        ///
511        /// # Examples
512        ///
513        /// Basic usage:
514        ///
515        /// ```
516        /// #![feature(strict_overflow_ops)]
517        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
518        /// ```
519        ///
520        /// The following panics because of overflow:
521        ///
522        /// ```should_panic
523        /// #![feature(strict_overflow_ops)]
524        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
525        /// ```
526        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
527        #[must_use = "this returns the result of the operation, \
528                      without modifying the original"]
529        #[inline]
530        #[track_caller]
531        pub const fn strict_add(self, rhs: Self) -> Self {
532            let (a, b) = self.overflowing_add(rhs);
533            if b { overflow_panic::add() } else { a }
534         }
535
536        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
537        /// cannot occur.
538        ///
539        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
540        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
541        ///
542        /// If you're just trying to avoid the panic in debug mode, then **do not**
543        /// use this.  Instead, you're looking for [`wrapping_add`].
544        ///
545        /// # Safety
546        ///
547        /// This results in undefined behavior when
548        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
549        /// i.e. when [`checked_add`] would return `None`.
550        ///
551        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
552        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
553        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
554        #[stable(feature = "unchecked_math", since = "1.79.0")]
555        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
556        #[must_use = "this returns the result of the operation, \
557                      without modifying the original"]
558        #[inline(always)]
559        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
560        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
561            assert_unsafe_precondition!(
562                check_language_ub,
563                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
564                (
565                    lhs: $SelfT = self,
566                    rhs: $SelfT = rhs,
567                ) => !lhs.overflowing_add(rhs).1,
568            );
569
570            // SAFETY: this is guaranteed to be safe by the caller.
571            unsafe {
572                intrinsics::unchecked_add(self, rhs)
573            }
574        }
575
576        /// Checked addition with a signed integer. Computes `self + rhs`,
577        /// returning `None` if overflow occurred.
578        ///
579        /// # Examples
580        ///
581        /// Basic usage:
582        ///
583        /// ```
584        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
585        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
586        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
587        /// ```
588        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
589        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
590        #[must_use = "this returns the result of the operation, \
591                      without modifying the original"]
592        #[inline]
593        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
594            let (a, b) = self.overflowing_add_signed(rhs);
595            if intrinsics::unlikely(b) { None } else { Some(a) }
596        }
597
598        /// Strict addition with a signed integer. Computes `self + rhs`,
599        /// panicking if overflow occurred.
600        ///
601        /// # Panics
602        ///
603        /// ## Overflow behavior
604        ///
605        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
606        ///
607        /// # Examples
608        ///
609        /// Basic usage:
610        ///
611        /// ```
612        /// #![feature(strict_overflow_ops)]
613        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
614        /// ```
615        ///
616        /// The following panic because of overflow:
617        ///
618        /// ```should_panic
619        /// #![feature(strict_overflow_ops)]
620        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
621        /// ```
622        ///
623        /// ```should_panic
624        /// #![feature(strict_overflow_ops)]
625        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
626        /// ```
627        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
628        #[must_use = "this returns the result of the operation, \
629                      without modifying the original"]
630        #[inline]
631        #[track_caller]
632        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
633            let (a, b) = self.overflowing_add_signed(rhs);
634            if b { overflow_panic::add() } else { a }
635         }
636
637        /// Checked integer subtraction. Computes `self - rhs`, returning
638        /// `None` if overflow occurred.
639        ///
640        /// # Examples
641        ///
642        /// Basic usage:
643        ///
644        /// ```
645        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
646        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
647        /// ```
648        #[stable(feature = "rust1", since = "1.0.0")]
649        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
650        #[must_use = "this returns the result of the operation, \
651                      without modifying the original"]
652        #[inline]
653        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
654            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
655            // for *unsigned* subtraction and we just emit the manual check anyway.
656            // Thus, rather than using `overflowing_sub` that produces a wrapping
657            // subtraction, check it ourself so we can use an unchecked one.
658
659            if self < rhs {
660                None
661            } else {
662                // SAFETY: just checked this can't overflow
663                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
664            }
665        }
666
667        /// Strict integer subtraction. Computes `self - rhs`, panicking if
668        /// overflow occurred.
669        ///
670        /// # Panics
671        ///
672        /// ## Overflow behavior
673        ///
674        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
675        ///
676        /// # Examples
677        ///
678        /// Basic usage:
679        ///
680        /// ```
681        /// #![feature(strict_overflow_ops)]
682        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
683        /// ```
684        ///
685        /// The following panics because of overflow:
686        ///
687        /// ```should_panic
688        /// #![feature(strict_overflow_ops)]
689        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
690        /// ```
691        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
692        #[must_use = "this returns the result of the operation, \
693                      without modifying the original"]
694        #[inline]
695        #[track_caller]
696        pub const fn strict_sub(self, rhs: Self) -> Self {
697            let (a, b) = self.overflowing_sub(rhs);
698            if b { overflow_panic::sub() } else { a }
699         }
700
701        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
702        /// cannot occur.
703        ///
704        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
705        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
706        ///
707        /// If you're just trying to avoid the panic in debug mode, then **do not**
708        /// use this.  Instead, you're looking for [`wrapping_sub`].
709        ///
710        /// If you find yourself writing code like this:
711        ///
712        /// ```
713        /// # let foo = 30_u32;
714        /// # let bar = 20;
715        /// if foo >= bar {
716        ///     // SAFETY: just checked it will not overflow
717        ///     let diff = unsafe { foo.unchecked_sub(bar) };
718        ///     // ... use diff ...
719        /// }
720        /// ```
721        ///
722        /// Consider changing it to
723        ///
724        /// ```
725        /// # let foo = 30_u32;
726        /// # let bar = 20;
727        /// if let Some(diff) = foo.checked_sub(bar) {
728        ///     // ... use diff ...
729        /// }
730        /// ```
731        ///
732        /// As that does exactly the same thing -- including telling the optimizer
733        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
734        ///
735        /// # Safety
736        ///
737        /// This results in undefined behavior when
738        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
739        /// i.e. when [`checked_sub`] would return `None`.
740        ///
741        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
742        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
743        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
744        #[stable(feature = "unchecked_math", since = "1.79.0")]
745        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
746        #[must_use = "this returns the result of the operation, \
747                      without modifying the original"]
748        #[inline(always)]
749        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
750        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
751            assert_unsafe_precondition!(
752                check_language_ub,
753                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
754                (
755                    lhs: $SelfT = self,
756                    rhs: $SelfT = rhs,
757                ) => !lhs.overflowing_sub(rhs).1,
758            );
759
760            // SAFETY: this is guaranteed to be safe by the caller.
761            unsafe {
762                intrinsics::unchecked_sub(self, rhs)
763            }
764        }
765
766        /// Checked subtraction with a signed integer. Computes `self - rhs`,
767        /// returning `None` if overflow occurred.
768        ///
769        /// # Examples
770        ///
771        /// Basic usage:
772        ///
773        /// ```
774        /// #![feature(mixed_integer_ops_unsigned_sub)]
775        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
776        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
777        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
778        /// ```
779        #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
780        #[must_use = "this returns the result of the operation, \
781                      without modifying the original"]
782        #[inline]
783        pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
784            let (res, overflow) = self.overflowing_sub_signed(rhs);
785
786            if !overflow {
787                Some(res)
788            } else {
789                None
790            }
791        }
792
793        #[doc = concat!(
794            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
795            stringify!($SignedT), "`], returning `None` if overflow occurred."
796        )]
797        ///
798        /// # Examples
799        ///
800        /// Basic usage:
801        ///
802        /// ```
803        /// #![feature(unsigned_signed_diff)]
804        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
805        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
806        #[doc = concat!(
807            "assert_eq!(",
808            stringify!($SelfT),
809            "::MAX.checked_signed_diff(",
810            stringify!($SignedT),
811            "::MAX as ",
812            stringify!($SelfT),
813            "), None);"
814        )]
815        #[doc = concat!(
816            "assert_eq!((",
817            stringify!($SignedT),
818            "::MAX as ",
819            stringify!($SelfT),
820            ").checked_signed_diff(",
821            stringify!($SelfT),
822            "::MAX), Some(",
823            stringify!($SignedT),
824            "::MIN));"
825        )]
826        #[doc = concat!(
827            "assert_eq!((",
828            stringify!($SignedT),
829            "::MAX as ",
830            stringify!($SelfT),
831            " + 1).checked_signed_diff(0), None);"
832        )]
833        #[doc = concat!(
834            "assert_eq!(",
835            stringify!($SelfT),
836            "::MAX.checked_signed_diff(",
837            stringify!($SelfT),
838            "::MAX), Some(0));"
839        )]
840        /// ```
841        #[unstable(feature = "unsigned_signed_diff", issue = "126041")]
842        #[inline]
843        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
844            let res = self.wrapping_sub(rhs) as $SignedT;
845            let overflow = (self >= rhs) == (res < 0);
846
847            if !overflow {
848                Some(res)
849            } else {
850                None
851            }
852        }
853
854        /// Checked integer multiplication. Computes `self * rhs`, returning
855        /// `None` if overflow occurred.
856        ///
857        /// # Examples
858        ///
859        /// Basic usage:
860        ///
861        /// ```
862        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
863        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
864        /// ```
865        #[stable(feature = "rust1", since = "1.0.0")]
866        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
867        #[must_use = "this returns the result of the operation, \
868                      without modifying the original"]
869        #[inline]
870        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
871            let (a, b) = self.overflowing_mul(rhs);
872            if intrinsics::unlikely(b) { None } else { Some(a) }
873        }
874
875        /// Strict integer multiplication. Computes `self * rhs`, panicking if
876        /// overflow occurred.
877        ///
878        /// # Panics
879        ///
880        /// ## Overflow behavior
881        ///
882        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
883        ///
884        /// # Examples
885        ///
886        /// Basic usage:
887        ///
888        /// ```
889        /// #![feature(strict_overflow_ops)]
890        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
891        /// ```
892        ///
893        /// The following panics because of overflow:
894        ///
895        /// ``` should_panic
896        /// #![feature(strict_overflow_ops)]
897        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
898        /// ```
899        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
900        #[must_use = "this returns the result of the operation, \
901                      without modifying the original"]
902        #[inline]
903        #[track_caller]
904        pub const fn strict_mul(self, rhs: Self) -> Self {
905            let (a, b) = self.overflowing_mul(rhs);
906            if b { overflow_panic::mul() } else { a }
907         }
908
909        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
910        /// cannot occur.
911        ///
912        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
913        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
914        ///
915        /// If you're just trying to avoid the panic in debug mode, then **do not**
916        /// use this.  Instead, you're looking for [`wrapping_mul`].
917        ///
918        /// # Safety
919        ///
920        /// This results in undefined behavior when
921        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
922        /// i.e. when [`checked_mul`] would return `None`.
923        ///
924        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
925        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
926        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
927        #[stable(feature = "unchecked_math", since = "1.79.0")]
928        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
929        #[must_use = "this returns the result of the operation, \
930                      without modifying the original"]
931        #[inline(always)]
932        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
933        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
934            assert_unsafe_precondition!(
935                check_language_ub,
936                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
937                (
938                    lhs: $SelfT = self,
939                    rhs: $SelfT = rhs,
940                ) => !lhs.overflowing_mul(rhs).1,
941            );
942
943            // SAFETY: this is guaranteed to be safe by the caller.
944            unsafe {
945                intrinsics::unchecked_mul(self, rhs)
946            }
947        }
948
949        /// Checked integer division. Computes `self / rhs`, returning `None`
950        /// if `rhs == 0`.
951        ///
952        /// # Examples
953        ///
954        /// Basic usage:
955        ///
956        /// ```
957        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
958        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
959        /// ```
960        #[stable(feature = "rust1", since = "1.0.0")]
961        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
962        #[must_use = "this returns the result of the operation, \
963                      without modifying the original"]
964        #[inline]
965        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
966            if intrinsics::unlikely(rhs == 0) {
967                None
968            } else {
969                // SAFETY: div by zero has been checked above and unsigned types have no other
970                // failure modes for division
971                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
972            }
973        }
974
975        /// Strict integer division. Computes `self / rhs`.
976        ///
977        /// Strict division on unsigned types is just normal division. There's no
978        /// way overflow could ever happen. This function exists so that all
979        /// operations are accounted for in the strict operations.
980        ///
981        /// # Panics
982        ///
983        /// This function will panic if `rhs` is zero.
984        ///
985        /// # Examples
986        ///
987        /// Basic usage:
988        ///
989        /// ```
990        /// #![feature(strict_overflow_ops)]
991        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
992        /// ```
993        ///
994        /// The following panics because of division by zero:
995        ///
996        /// ```should_panic
997        /// #![feature(strict_overflow_ops)]
998        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
999        /// ```
1000        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1001        #[must_use = "this returns the result of the operation, \
1002                      without modifying the original"]
1003        #[inline(always)]
1004        #[track_caller]
1005        pub const fn strict_div(self, rhs: Self) -> Self {
1006            self / rhs
1007        }
1008
1009        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
1010        /// if `rhs == 0`.
1011        ///
1012        /// # Examples
1013        ///
1014        /// Basic usage:
1015        ///
1016        /// ```
1017        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
1018        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
1019        /// ```
1020        #[stable(feature = "euclidean_division", since = "1.38.0")]
1021        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1022        #[must_use = "this returns the result of the operation, \
1023                      without modifying the original"]
1024        #[inline]
1025        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
1026            if intrinsics::unlikely(rhs == 0) {
1027                None
1028            } else {
1029                Some(self.div_euclid(rhs))
1030            }
1031        }
1032
1033        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
1034        ///
1035        /// Strict division on unsigned types is just normal division. There's no
1036        /// way overflow could ever happen. This function exists so that all
1037        /// operations are accounted for in the strict operations. Since, for the
1038        /// positive integers, all common definitions of division are equal, this
1039        /// is exactly equal to `self.strict_div(rhs)`.
1040        ///
1041        /// # Panics
1042        ///
1043        /// This function will panic if `rhs` is zero.
1044        ///
1045        /// # Examples
1046        ///
1047        /// Basic usage:
1048        ///
1049        /// ```
1050        /// #![feature(strict_overflow_ops)]
1051        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
1052        /// ```
1053        /// The following panics because of division by zero:
1054        ///
1055        /// ```should_panic
1056        /// #![feature(strict_overflow_ops)]
1057        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1058        /// ```
1059        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1060        #[must_use = "this returns the result of the operation, \
1061                      without modifying the original"]
1062        #[inline(always)]
1063        #[track_caller]
1064        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1065            self / rhs
1066        }
1067
1068        /// Checked integer remainder. Computes `self % rhs`, returning `None`
1069        /// if `rhs == 0`.
1070        ///
1071        /// # Examples
1072        ///
1073        /// Basic usage:
1074        ///
1075        /// ```
1076        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1077        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1078        /// ```
1079        #[stable(feature = "wrapping", since = "1.7.0")]
1080        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1081        #[must_use = "this returns the result of the operation, \
1082                      without modifying the original"]
1083        #[inline]
1084        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1085            if intrinsics::unlikely(rhs == 0) {
1086                None
1087            } else {
1088                // SAFETY: div by zero has been checked above and unsigned types have no other
1089                // failure modes for division
1090                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1091            }
1092        }
1093
1094        /// Strict integer remainder. Computes `self % rhs`.
1095        ///
1096        /// Strict remainder calculation on unsigned types is just the regular
1097        /// remainder calculation. There's no way overflow could ever happen.
1098        /// This function exists so that all operations are accounted for in the
1099        /// strict operations.
1100        ///
1101        /// # Panics
1102        ///
1103        /// This function will panic if `rhs` is zero.
1104        ///
1105        /// # Examples
1106        ///
1107        /// Basic usage:
1108        ///
1109        /// ```
1110        /// #![feature(strict_overflow_ops)]
1111        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
1112        /// ```
1113        ///
1114        /// The following panics because of division by zero:
1115        ///
1116        /// ```should_panic
1117        /// #![feature(strict_overflow_ops)]
1118        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1119        /// ```
1120        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1121        #[must_use = "this returns the result of the operation, \
1122                      without modifying the original"]
1123        #[inline(always)]
1124        #[track_caller]
1125        pub const fn strict_rem(self, rhs: Self) -> Self {
1126            self % rhs
1127        }
1128
1129        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
1130        /// if `rhs == 0`.
1131        ///
1132        /// # Examples
1133        ///
1134        /// Basic usage:
1135        ///
1136        /// ```
1137        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1138        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1139        /// ```
1140        #[stable(feature = "euclidean_division", since = "1.38.0")]
1141        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1142        #[must_use = "this returns the result of the operation, \
1143                      without modifying the original"]
1144        #[inline]
1145        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1146            if intrinsics::unlikely(rhs == 0) {
1147                None
1148            } else {
1149                Some(self.rem_euclid(rhs))
1150            }
1151        }
1152
1153        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
1154        ///
1155        /// Strict modulo calculation on unsigned types is just the regular
1156        /// remainder calculation. There's no way overflow could ever happen.
1157        /// This function exists so that all operations are accounted for in the
1158        /// strict operations. Since, for the positive integers, all common
1159        /// definitions of division are equal, this is exactly equal to
1160        /// `self.strict_rem(rhs)`.
1161        ///
1162        /// # Panics
1163        ///
1164        /// This function will panic if `rhs` is zero.
1165        ///
1166        /// # Examples
1167        ///
1168        /// Basic usage:
1169        ///
1170        /// ```
1171        /// #![feature(strict_overflow_ops)]
1172        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
1173        /// ```
1174        ///
1175        /// The following panics because of division by zero:
1176        ///
1177        /// ```should_panic
1178        /// #![feature(strict_overflow_ops)]
1179        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1180        /// ```
1181        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1182        #[must_use = "this returns the result of the operation, \
1183                      without modifying the original"]
1184        #[inline(always)]
1185        #[track_caller]
1186        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1187            self % rhs
1188        }
1189
1190        /// Same value as `self | other`, but UB if any bit position is set in both inputs.
1191        ///
1192        /// This is a situational micro-optimization for places where you'd rather
1193        /// use addition on some platforms and bitwise or on other platforms, based
1194        /// on exactly which instructions combine better with whatever else you're
1195        /// doing.  Note that there's no reason to bother using this for places
1196        /// where it's clear from the operations involved that they can't overlap.
1197        /// For example, if you're combining `u16`s into a `u32` with
1198        /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
1199        /// know those sides of the `|` are disjoint without needing help.
1200        ///
1201        /// # Examples
1202        ///
1203        /// ```
1204        /// #![feature(disjoint_bitor)]
1205        ///
1206        /// // SAFETY: `1` and `4` have no bits in common.
1207        /// unsafe {
1208        #[doc = concat!("    assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
1209        /// }
1210        /// ```
1211        ///
1212        /// # Safety
1213        ///
1214        /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
1215        ///
1216        /// Equivalently, requires that `(self | other) == (self + other)`.
1217        #[unstable(feature = "disjoint_bitor", issue = "135758")]
1218        #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
1219        #[inline]
1220        pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
1221            assert_unsafe_precondition!(
1222                check_language_ub,
1223                concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
1224                (
1225                    lhs: $SelfT = self,
1226                    rhs: $SelfT = other,
1227                ) => (lhs & rhs) == 0,
1228            );
1229
1230            // SAFETY: Same precondition
1231            unsafe { intrinsics::disjoint_bitor(self, other) }
1232        }
1233
1234        /// Returns the logarithm of the number with respect to an arbitrary base,
1235        /// rounded down.
1236        ///
1237        /// This method might not be optimized owing to implementation details;
1238        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
1239        /// can produce results more efficiently for base 10.
1240        ///
1241        /// # Panics
1242        ///
1243        /// This function will panic if `self` is zero, or if `base` is less than 2.
1244        ///
1245        /// # Examples
1246        ///
1247        /// ```
1248        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
1249        /// ```
1250        #[stable(feature = "int_log", since = "1.67.0")]
1251        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1252        #[must_use = "this returns the result of the operation, \
1253                      without modifying the original"]
1254        #[inline]
1255        #[track_caller]
1256        pub const fn ilog(self, base: Self) -> u32 {
1257            assert!(base >= 2, "base of integer logarithm must be at least 2");
1258            if let Some(log) = self.checked_ilog(base) {
1259                log
1260            } else {
1261                int_log10::panic_for_nonpositive_argument()
1262            }
1263        }
1264
1265        /// Returns the base 2 logarithm of the number, rounded down.
1266        ///
1267        /// # Panics
1268        ///
1269        /// This function will panic if `self` is zero.
1270        ///
1271        /// # Examples
1272        ///
1273        /// ```
1274        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
1275        /// ```
1276        #[stable(feature = "int_log", since = "1.67.0")]
1277        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1278        #[must_use = "this returns the result of the operation, \
1279                      without modifying the original"]
1280        #[inline]
1281        #[track_caller]
1282        pub const fn ilog2(self) -> u32 {
1283            if let Some(log) = self.checked_ilog2() {
1284                log
1285            } else {
1286                int_log10::panic_for_nonpositive_argument()
1287            }
1288        }
1289
1290        /// Returns the base 10 logarithm of the number, rounded down.
1291        ///
1292        /// # Panics
1293        ///
1294        /// This function will panic if `self` is zero.
1295        ///
1296        /// # Example
1297        ///
1298        /// ```
1299        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
1300        /// ```
1301        #[stable(feature = "int_log", since = "1.67.0")]
1302        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1303        #[must_use = "this returns the result of the operation, \
1304                      without modifying the original"]
1305        #[inline]
1306        #[track_caller]
1307        pub const fn ilog10(self) -> u32 {
1308            if let Some(log) = self.checked_ilog10() {
1309                log
1310            } else {
1311                int_log10::panic_for_nonpositive_argument()
1312            }
1313        }
1314
1315        /// Returns the logarithm of the number with respect to an arbitrary base,
1316        /// rounded down.
1317        ///
1318        /// Returns `None` if the number is zero, or if the base is not at least 2.
1319        ///
1320        /// This method might not be optimized owing to implementation details;
1321        /// `checked_ilog2` can produce results more efficiently for base 2, and
1322        /// `checked_ilog10` can produce results more efficiently for base 10.
1323        ///
1324        /// # Examples
1325        ///
1326        /// ```
1327        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
1328        /// ```
1329        #[stable(feature = "int_log", since = "1.67.0")]
1330        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1331        #[must_use = "this returns the result of the operation, \
1332                      without modifying the original"]
1333        #[inline]
1334        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
1335            if self <= 0 || base <= 1 {
1336                None
1337            } else if self < base {
1338                Some(0)
1339            } else {
1340                // Since base >= self, n >= 1
1341                let mut n = 1;
1342                let mut r = base;
1343
1344                // Optimization for 128 bit wide integers.
1345                if Self::BITS == 128 {
1346                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
1347                    //
1348                    // log(base,self) = log(2,self) / log(2,base)
1349                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
1350                    //
1351                    // hence
1352                    //
1353                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
1354                    n = self.ilog2() / (base.ilog2() + 1);
1355                    r = base.pow(n);
1356                }
1357
1358                while r <= self / base {
1359                    n += 1;
1360                    r *= base;
1361                }
1362                Some(n)
1363            }
1364        }
1365
1366        /// Returns the base 2 logarithm of the number, rounded down.
1367        ///
1368        /// Returns `None` if the number is zero.
1369        ///
1370        /// # Examples
1371        ///
1372        /// ```
1373        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
1374        /// ```
1375        #[stable(feature = "int_log", since = "1.67.0")]
1376        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1377        #[must_use = "this returns the result of the operation, \
1378                      without modifying the original"]
1379        #[inline]
1380        pub const fn checked_ilog2(self) -> Option<u32> {
1381            match NonZero::new(self) {
1382                Some(x) => Some(x.ilog2()),
1383                None => None,
1384            }
1385        }
1386
1387        /// Returns the base 10 logarithm of the number, rounded down.
1388        ///
1389        /// Returns `None` if the number is zero.
1390        ///
1391        /// # Examples
1392        ///
1393        /// ```
1394        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
1395        /// ```
1396        #[stable(feature = "int_log", since = "1.67.0")]
1397        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1398        #[must_use = "this returns the result of the operation, \
1399                      without modifying the original"]
1400        #[inline]
1401        pub const fn checked_ilog10(self) -> Option<u32> {
1402            match NonZero::new(self) {
1403                Some(x) => Some(x.ilog10()),
1404                None => None,
1405            }
1406        }
1407
1408        /// Checked negation. Computes `-self`, returning `None` unless `self ==
1409        /// 0`.
1410        ///
1411        /// Note that negating any positive integer will overflow.
1412        ///
1413        /// # Examples
1414        ///
1415        /// Basic usage:
1416        ///
1417        /// ```
1418        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
1419        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
1420        /// ```
1421        #[stable(feature = "wrapping", since = "1.7.0")]
1422        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1423        #[must_use = "this returns the result of the operation, \
1424                      without modifying the original"]
1425        #[inline]
1426        pub const fn checked_neg(self) -> Option<Self> {
1427            let (a, b) = self.overflowing_neg();
1428            if intrinsics::unlikely(b) { None } else { Some(a) }
1429        }
1430
1431        /// Strict negation. Computes `-self`, panicking unless `self ==
1432        /// 0`.
1433        ///
1434        /// Note that negating any positive integer will overflow.
1435        ///
1436        /// # Panics
1437        ///
1438        /// ## Overflow behavior
1439        ///
1440        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1441        ///
1442        /// # Examples
1443        ///
1444        /// Basic usage:
1445        ///
1446        /// ```
1447        /// #![feature(strict_overflow_ops)]
1448        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
1449        /// ```
1450        ///
1451        /// The following panics because of overflow:
1452        ///
1453        /// ```should_panic
1454        /// #![feature(strict_overflow_ops)]
1455        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
1456        ///
1457        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1458        #[must_use = "this returns the result of the operation, \
1459                      without modifying the original"]
1460        #[inline]
1461        #[track_caller]
1462        pub const fn strict_neg(self) -> Self {
1463            let (a, b) = self.overflowing_neg();
1464            if b { overflow_panic::neg() } else { a }
1465        }
1466
1467        /// Checked shift left. Computes `self << rhs`, returning `None`
1468        /// if `rhs` is larger than or equal to the number of bits in `self`.
1469        ///
1470        /// # Examples
1471        ///
1472        /// Basic usage:
1473        ///
1474        /// ```
1475        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1476        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
1477        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1478        /// ```
1479        #[stable(feature = "wrapping", since = "1.7.0")]
1480        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1481        #[must_use = "this returns the result of the operation, \
1482                      without modifying the original"]
1483        #[inline]
1484        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1485            // Not using overflowing_shl as that's a wrapping shift
1486            if rhs < Self::BITS {
1487                // SAFETY: just checked the RHS is in-range
1488                Some(unsafe { self.unchecked_shl(rhs) })
1489            } else {
1490                None
1491            }
1492        }
1493
1494        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1495        /// than or equal to the number of bits in `self`.
1496        ///
1497        /// # Panics
1498        ///
1499        /// ## Overflow behavior
1500        ///
1501        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1502        ///
1503        /// # Examples
1504        ///
1505        /// Basic usage:
1506        ///
1507        /// ```
1508        /// #![feature(strict_overflow_ops)]
1509        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1510        /// ```
1511        ///
1512        /// The following panics because of overflow:
1513        ///
1514        /// ```should_panic
1515        /// #![feature(strict_overflow_ops)]
1516        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
1517        /// ```
1518        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1519        #[must_use = "this returns the result of the operation, \
1520                      without modifying the original"]
1521        #[inline]
1522        #[track_caller]
1523        pub const fn strict_shl(self, rhs: u32) -> Self {
1524            let (a, b) = self.overflowing_shl(rhs);
1525            if b { overflow_panic::shl() } else { a }
1526        }
1527
1528        /// Unchecked shift left. Computes `self << rhs`, assuming that
1529        /// `rhs` is less than the number of bits in `self`.
1530        ///
1531        /// # Safety
1532        ///
1533        /// This results in undefined behavior if `rhs` is larger than
1534        /// or equal to the number of bits in `self`,
1535        /// i.e. when [`checked_shl`] would return `None`.
1536        ///
1537        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1538        #[unstable(
1539            feature = "unchecked_shifts",
1540            reason = "niche optimization path",
1541            issue = "85122",
1542        )]
1543        #[must_use = "this returns the result of the operation, \
1544                      without modifying the original"]
1545        #[inline(always)]
1546        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1547        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1548            assert_unsafe_precondition!(
1549                check_language_ub,
1550                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1551                (
1552                    rhs: u32 = rhs,
1553                ) => rhs < <$ActualT>::BITS,
1554            );
1555
1556            // SAFETY: this is guaranteed to be safe by the caller.
1557            unsafe {
1558                intrinsics::unchecked_shl(self, rhs)
1559            }
1560        }
1561
1562        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1563        ///
1564        /// If `rhs` is larger or equal to the number of bits in `self`,
1565        /// the entire value is shifted out, and `0` is returned.
1566        ///
1567        /// # Examples
1568        ///
1569        /// Basic usage:
1570        /// ```
1571        /// #![feature(unbounded_shifts)]
1572        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1573        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1574        /// ```
1575        #[unstable(feature = "unbounded_shifts", issue = "129375")]
1576        #[must_use = "this returns the result of the operation, \
1577                      without modifying the original"]
1578        #[inline]
1579        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1580            if rhs < Self::BITS {
1581                // SAFETY:
1582                // rhs is just checked to be in-range above
1583                unsafe { self.unchecked_shl(rhs) }
1584            } else {
1585                0
1586            }
1587        }
1588
1589        /// Checked shift right. Computes `self >> rhs`, returning `None`
1590        /// if `rhs` is larger than or equal to the number of bits in `self`.
1591        ///
1592        /// # Examples
1593        ///
1594        /// Basic usage:
1595        ///
1596        /// ```
1597        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1598        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
1599        /// ```
1600        #[stable(feature = "wrapping", since = "1.7.0")]
1601        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1602        #[must_use = "this returns the result of the operation, \
1603                      without modifying the original"]
1604        #[inline]
1605        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1606            // Not using overflowing_shr as that's a wrapping shift
1607            if rhs < Self::BITS {
1608                // SAFETY: just checked the RHS is in-range
1609                Some(unsafe { self.unchecked_shr(rhs) })
1610            } else {
1611                None
1612            }
1613        }
1614
1615        /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1616        /// larger than or equal to the number of bits in `self`.
1617        ///
1618        /// # Panics
1619        ///
1620        /// ## Overflow behavior
1621        ///
1622        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1623        ///
1624        /// # Examples
1625        ///
1626        /// Basic usage:
1627        ///
1628        /// ```
1629        /// #![feature(strict_overflow_ops)]
1630        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1631        /// ```
1632        ///
1633        /// The following panics because of overflow:
1634        ///
1635        /// ```should_panic
1636        /// #![feature(strict_overflow_ops)]
1637        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
1638        /// ```
1639        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1640        #[must_use = "this returns the result of the operation, \
1641                      without modifying the original"]
1642        #[inline]
1643        #[track_caller]
1644        pub const fn strict_shr(self, rhs: u32) -> Self {
1645            let (a, b) = self.overflowing_shr(rhs);
1646            if b { overflow_panic::shr() } else { a }
1647        }
1648
1649        /// Unchecked shift right. Computes `self >> rhs`, assuming that
1650        /// `rhs` is less than the number of bits in `self`.
1651        ///
1652        /// # Safety
1653        ///
1654        /// This results in undefined behavior if `rhs` is larger than
1655        /// or equal to the number of bits in `self`,
1656        /// i.e. when [`checked_shr`] would return `None`.
1657        ///
1658        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1659        #[unstable(
1660            feature = "unchecked_shifts",
1661            reason = "niche optimization path",
1662            issue = "85122",
1663        )]
1664        #[must_use = "this returns the result of the operation, \
1665                      without modifying the original"]
1666        #[inline(always)]
1667        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1668        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1669            assert_unsafe_precondition!(
1670                check_language_ub,
1671                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1672                (
1673                    rhs: u32 = rhs,
1674                ) => rhs < <$ActualT>::BITS,
1675            );
1676
1677            // SAFETY: this is guaranteed to be safe by the caller.
1678            unsafe {
1679                intrinsics::unchecked_shr(self, rhs)
1680            }
1681        }
1682
1683        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1684        ///
1685        /// If `rhs` is larger or equal to the number of bits in `self`,
1686        /// the entire value is shifted out, and `0` is returned.
1687        ///
1688        /// # Examples
1689        ///
1690        /// Basic usage:
1691        /// ```
1692        /// #![feature(unbounded_shifts)]
1693        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1694        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1695        /// ```
1696        #[unstable(feature = "unbounded_shifts", issue = "129375")]
1697        #[must_use = "this returns the result of the operation, \
1698                      without modifying the original"]
1699        #[inline]
1700        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1701            if rhs < Self::BITS {
1702                // SAFETY:
1703                // rhs is just checked to be in-range above
1704                unsafe { self.unchecked_shr(rhs) }
1705            } else {
1706                0
1707            }
1708        }
1709
1710        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1711        /// overflow occurred.
1712        ///
1713        /// # Examples
1714        ///
1715        /// Basic usage:
1716        ///
1717        /// ```
1718        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
1719        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1720        /// ```
1721        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1722        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1723        #[must_use = "this returns the result of the operation, \
1724                      without modifying the original"]
1725        #[inline]
1726        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1727            if exp == 0 {
1728                return Some(1);
1729            }
1730            let mut base = self;
1731            let mut acc: Self = 1;
1732
1733            loop {
1734                if (exp & 1) == 1 {
1735                    acc = try_opt!(acc.checked_mul(base));
1736                    // since exp!=0, finally the exp must be 1.
1737                    if exp == 1 {
1738                        return Some(acc);
1739                    }
1740                }
1741                exp /= 2;
1742                base = try_opt!(base.checked_mul(base));
1743            }
1744        }
1745
1746        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1747        /// overflow occurred.
1748        ///
1749        /// # Panics
1750        ///
1751        /// ## Overflow behavior
1752        ///
1753        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1754        ///
1755        /// # Examples
1756        ///
1757        /// Basic usage:
1758        ///
1759        /// ```
1760        /// #![feature(strict_overflow_ops)]
1761        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
1762        /// ```
1763        ///
1764        /// The following panics because of overflow:
1765        ///
1766        /// ```should_panic
1767        /// #![feature(strict_overflow_ops)]
1768        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1769        /// ```
1770        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
1771        #[must_use = "this returns the result of the operation, \
1772                      without modifying the original"]
1773        #[inline]
1774        #[track_caller]
1775        pub const fn strict_pow(self, mut exp: u32) -> Self {
1776            if exp == 0 {
1777                return 1;
1778            }
1779            let mut base = self;
1780            let mut acc: Self = 1;
1781
1782            loop {
1783                if (exp & 1) == 1 {
1784                    acc = acc.strict_mul(base);
1785                    // since exp!=0, finally the exp must be 1.
1786                    if exp == 1 {
1787                        return acc;
1788                    }
1789                }
1790                exp /= 2;
1791                base = base.strict_mul(base);
1792            }
1793        }
1794
1795        /// Saturating integer addition. Computes `self + rhs`, saturating at
1796        /// the numeric bounds instead of overflowing.
1797        ///
1798        /// # Examples
1799        ///
1800        /// Basic usage:
1801        ///
1802        /// ```
1803        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1804        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
1805        /// ```
1806        #[stable(feature = "rust1", since = "1.0.0")]
1807        #[must_use = "this returns the result of the operation, \
1808                      without modifying the original"]
1809        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1810        #[inline(always)]
1811        pub const fn saturating_add(self, rhs: Self) -> Self {
1812            intrinsics::saturating_add(self, rhs)
1813        }
1814
1815        /// Saturating addition with a signed integer. Computes `self + rhs`,
1816        /// saturating at the numeric bounds instead of overflowing.
1817        ///
1818        /// # Examples
1819        ///
1820        /// Basic usage:
1821        ///
1822        /// ```
1823        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
1824        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
1825        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
1826        /// ```
1827        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1828        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1829        #[must_use = "this returns the result of the operation, \
1830                      without modifying the original"]
1831        #[inline]
1832        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
1833            let (res, overflow) = self.overflowing_add(rhs as Self);
1834            if overflow == (rhs < 0) {
1835                res
1836            } else if overflow {
1837                Self::MAX
1838            } else {
1839                0
1840            }
1841        }
1842
1843        /// Saturating integer subtraction. Computes `self - rhs`, saturating
1844        /// at the numeric bounds instead of overflowing.
1845        ///
1846        /// # Examples
1847        ///
1848        /// Basic usage:
1849        ///
1850        /// ```
1851        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
1852        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
1853        /// ```
1854        #[stable(feature = "rust1", since = "1.0.0")]
1855        #[must_use = "this returns the result of the operation, \
1856                      without modifying the original"]
1857        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1858        #[inline(always)]
1859        pub const fn saturating_sub(self, rhs: Self) -> Self {
1860            intrinsics::saturating_sub(self, rhs)
1861        }
1862
1863        /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
1864        /// the numeric bounds instead of overflowing.
1865        ///
1866        /// # Examples
1867        ///
1868        /// Basic usage:
1869        ///
1870        /// ```
1871        /// #![feature(mixed_integer_ops_unsigned_sub)]
1872        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
1873        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
1874        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
1875        /// ```
1876        #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
1877        #[must_use = "this returns the result of the operation, \
1878                      without modifying the original"]
1879        #[inline]
1880        pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
1881            let (res, overflow) = self.overflowing_sub_signed(rhs);
1882
1883            if !overflow {
1884                res
1885            } else if rhs < 0 {
1886                Self::MAX
1887            } else {
1888                0
1889            }
1890        }
1891
1892        /// Saturating integer multiplication. Computes `self * rhs`,
1893        /// saturating at the numeric bounds instead of overflowing.
1894        ///
1895        /// # Examples
1896        ///
1897        /// Basic usage:
1898        ///
1899        /// ```
1900        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
1901        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
1902        /// ```
1903        #[stable(feature = "wrapping", since = "1.7.0")]
1904        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1905        #[must_use = "this returns the result of the operation, \
1906                      without modifying the original"]
1907        #[inline]
1908        pub const fn saturating_mul(self, rhs: Self) -> Self {
1909            match self.checked_mul(rhs) {
1910                Some(x) => x,
1911                None => Self::MAX,
1912            }
1913        }
1914
1915        /// Saturating integer division. Computes `self / rhs`, saturating at the
1916        /// numeric bounds instead of overflowing.
1917        ///
1918        /// # Panics
1919        ///
1920        /// This function will panic if `rhs` is zero.
1921        ///
1922        /// # Examples
1923        ///
1924        /// Basic usage:
1925        ///
1926        /// ```
1927        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
1928        ///
1929        /// ```
1930        #[stable(feature = "saturating_div", since = "1.58.0")]
1931        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
1932        #[must_use = "this returns the result of the operation, \
1933                      without modifying the original"]
1934        #[inline]
1935        #[track_caller]
1936        pub const fn saturating_div(self, rhs: Self) -> Self {
1937            // on unsigned types, there is no overflow in integer division
1938            self.wrapping_div(rhs)
1939        }
1940
1941        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
1942        /// saturating at the numeric bounds instead of overflowing.
1943        ///
1944        /// # Examples
1945        ///
1946        /// Basic usage:
1947        ///
1948        /// ```
1949        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
1950        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
1951        /// ```
1952        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1953        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1954        #[must_use = "this returns the result of the operation, \
1955                      without modifying the original"]
1956        #[inline]
1957        pub const fn saturating_pow(self, exp: u32) -> Self {
1958            match self.checked_pow(exp) {
1959                Some(x) => x,
1960                None => Self::MAX,
1961            }
1962        }
1963
1964        /// Wrapping (modular) addition. Computes `self + rhs`,
1965        /// wrapping around at the boundary of the type.
1966        ///
1967        /// # Examples
1968        ///
1969        /// Basic usage:
1970        ///
1971        /// ```
1972        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
1973        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
1974        /// ```
1975        #[stable(feature = "rust1", since = "1.0.0")]
1976        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
1977        #[must_use = "this returns the result of the operation, \
1978                      without modifying the original"]
1979        #[inline(always)]
1980        pub const fn wrapping_add(self, rhs: Self) -> Self {
1981            intrinsics::wrapping_add(self, rhs)
1982        }
1983
1984        /// Wrapping (modular) addition with a signed integer. Computes
1985        /// `self + rhs`, wrapping around at the boundary of the type.
1986        ///
1987        /// # Examples
1988        ///
1989        /// Basic usage:
1990        ///
1991        /// ```
1992        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
1993        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
1994        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
1995        /// ```
1996        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1997        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1998        #[must_use = "this returns the result of the operation, \
1999                      without modifying the original"]
2000        #[inline]
2001        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
2002            self.wrapping_add(rhs as Self)
2003        }
2004
2005        /// Wrapping (modular) subtraction. Computes `self - rhs`,
2006        /// wrapping around at the boundary of the type.
2007        ///
2008        /// # Examples
2009        ///
2010        /// Basic usage:
2011        ///
2012        /// ```
2013        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
2014        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
2015        /// ```
2016        #[stable(feature = "rust1", since = "1.0.0")]
2017        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2018        #[must_use = "this returns the result of the operation, \
2019                      without modifying the original"]
2020        #[inline(always)]
2021        pub const fn wrapping_sub(self, rhs: Self) -> Self {
2022            intrinsics::wrapping_sub(self, rhs)
2023        }
2024
2025        /// Wrapping (modular) subtraction with a signed integer. Computes
2026        /// `self - rhs`, wrapping around at the boundary of the type.
2027        ///
2028        /// # Examples
2029        ///
2030        /// Basic usage:
2031        ///
2032        /// ```
2033        /// #![feature(mixed_integer_ops_unsigned_sub)]
2034        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
2035        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
2036        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
2037        /// ```
2038        #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
2039        #[must_use = "this returns the result of the operation, \
2040                      without modifying the original"]
2041        #[inline]
2042        pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
2043            self.wrapping_sub(rhs as Self)
2044        }
2045
2046        /// Wrapping (modular) multiplication. Computes `self *
2047        /// rhs`, wrapping around at the boundary of the type.
2048        ///
2049        /// # Examples
2050        ///
2051        /// Basic usage:
2052        ///
2053        /// Please note that this example is shared between integer types.
2054        /// Which explains why `u8` is used here.
2055        ///
2056        /// ```
2057        /// assert_eq!(10u8.wrapping_mul(12), 120);
2058        /// assert_eq!(25u8.wrapping_mul(12), 44);
2059        /// ```
2060        #[stable(feature = "rust1", since = "1.0.0")]
2061        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2062        #[must_use = "this returns the result of the operation, \
2063                      without modifying the original"]
2064        #[inline(always)]
2065        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2066            intrinsics::wrapping_mul(self, rhs)
2067        }
2068
2069        /// Wrapping (modular) division. Computes `self / rhs`.
2070        ///
2071        /// Wrapped division on unsigned types is just normal division. There's
2072        /// no way wrapping could ever happen. This function exists so that all
2073        /// operations are accounted for in the wrapping operations.
2074        ///
2075        /// # Panics
2076        ///
2077        /// This function will panic if `rhs` is zero.
2078        ///
2079        /// # Examples
2080        ///
2081        /// Basic usage:
2082        ///
2083        /// ```
2084        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2085        /// ```
2086        #[stable(feature = "num_wrapping", since = "1.2.0")]
2087        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2088        #[must_use = "this returns the result of the operation, \
2089                      without modifying the original"]
2090        #[inline(always)]
2091        #[track_caller]
2092        pub const fn wrapping_div(self, rhs: Self) -> Self {
2093            self / rhs
2094        }
2095
2096        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
2097        ///
2098        /// Wrapped division on unsigned types is just normal division. There's
2099        /// no way wrapping could ever happen. This function exists so that all
2100        /// operations are accounted for in the wrapping operations. Since, for
2101        /// the positive integers, all common definitions of division are equal,
2102        /// this is exactly equal to `self.wrapping_div(rhs)`.
2103        ///
2104        /// # Panics
2105        ///
2106        /// This function will panic if `rhs` is zero.
2107        ///
2108        /// # Examples
2109        ///
2110        /// Basic usage:
2111        ///
2112        /// ```
2113        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2114        /// ```
2115        #[stable(feature = "euclidean_division", since = "1.38.0")]
2116        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2117        #[must_use = "this returns the result of the operation, \
2118                      without modifying the original"]
2119        #[inline(always)]
2120        #[track_caller]
2121        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2122            self / rhs
2123        }
2124
2125        /// Wrapping (modular) remainder. Computes `self % rhs`.
2126        ///
2127        /// Wrapped remainder calculation on unsigned types is just the regular
2128        /// remainder calculation. There's no way wrapping could ever happen.
2129        /// This function exists so that all operations are accounted for in the
2130        /// wrapping operations.
2131        ///
2132        /// # Panics
2133        ///
2134        /// This function will panic if `rhs` is zero.
2135        ///
2136        /// # Examples
2137        ///
2138        /// Basic usage:
2139        ///
2140        /// ```
2141        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2142        /// ```
2143        #[stable(feature = "num_wrapping", since = "1.2.0")]
2144        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2145        #[must_use = "this returns the result of the operation, \
2146                      without modifying the original"]
2147        #[inline(always)]
2148        #[track_caller]
2149        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2150            self % rhs
2151        }
2152
2153        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
2154        ///
2155        /// Wrapped modulo calculation on unsigned types is just the regular
2156        /// remainder calculation. There's no way wrapping could ever happen.
2157        /// This function exists so that all operations are accounted for in the
2158        /// wrapping operations. Since, for the positive integers, all common
2159        /// definitions of division are equal, this is exactly equal to
2160        /// `self.wrapping_rem(rhs)`.
2161        ///
2162        /// # Panics
2163        ///
2164        /// This function will panic if `rhs` is zero.
2165        ///
2166        /// # Examples
2167        ///
2168        /// Basic usage:
2169        ///
2170        /// ```
2171        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2172        /// ```
2173        #[stable(feature = "euclidean_division", since = "1.38.0")]
2174        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2175        #[must_use = "this returns the result of the operation, \
2176                      without modifying the original"]
2177        #[inline(always)]
2178        #[track_caller]
2179        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2180            self % rhs
2181        }
2182
2183        /// Wrapping (modular) negation. Computes `-self`,
2184        /// wrapping around at the boundary of the type.
2185        ///
2186        /// Since unsigned types do not have negative equivalents
2187        /// all applications of this function will wrap (except for `-0`).
2188        /// For values smaller than the corresponding signed type's maximum
2189        /// the result is the same as casting the corresponding signed value.
2190        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
2191        /// `MAX` is the corresponding signed type's maximum.
2192        ///
2193        /// # Examples
2194        ///
2195        /// Basic usage:
2196        ///
2197        /// ```
2198        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
2199        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
2200        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
2201        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
2202        /// ```
2203        #[stable(feature = "num_wrapping", since = "1.2.0")]
2204        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2205        #[must_use = "this returns the result of the operation, \
2206                      without modifying the original"]
2207        #[inline(always)]
2208        pub const fn wrapping_neg(self) -> Self {
2209            (0 as $SelfT).wrapping_sub(self)
2210        }
2211
2212        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
2213        /// where `mask` removes any high-order bits of `rhs` that
2214        /// would cause the shift to exceed the bitwidth of the type.
2215        ///
2216        /// Note that this is *not* the same as a rotate-left; the
2217        /// RHS of a wrapping shift-left is restricted to the range
2218        /// of the type, rather than the bits shifted out of the LHS
2219        /// being returned to the other end. The primitive integer
2220        /// types all implement a [`rotate_left`](Self::rotate_left) function,
2221        /// which may be what you want instead.
2222        ///
2223        /// # Examples
2224        ///
2225        /// Basic usage:
2226        ///
2227        /// ```
2228        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
2229        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
2230        /// ```
2231        #[stable(feature = "num_wrapping", since = "1.2.0")]
2232        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2233        #[must_use = "this returns the result of the operation, \
2234                      without modifying the original"]
2235        #[inline(always)]
2236        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2237            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2238            // out of bounds
2239            unsafe {
2240                self.unchecked_shl(rhs & (Self::BITS - 1))
2241            }
2242        }
2243
2244        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
2245        /// where `mask` removes any high-order bits of `rhs` that
2246        /// would cause the shift to exceed the bitwidth of the type.
2247        ///
2248        /// Note that this is *not* the same as a rotate-right; the
2249        /// RHS of a wrapping shift-right is restricted to the range
2250        /// of the type, rather than the bits shifted out of the LHS
2251        /// being returned to the other end. The primitive integer
2252        /// types all implement a [`rotate_right`](Self::rotate_right) function,
2253        /// which may be what you want instead.
2254        ///
2255        /// # Examples
2256        ///
2257        /// Basic usage:
2258        ///
2259        /// ```
2260        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
2261        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
2262        /// ```
2263        #[stable(feature = "num_wrapping", since = "1.2.0")]
2264        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2265        #[must_use = "this returns the result of the operation, \
2266                      without modifying the original"]
2267        #[inline(always)]
2268        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2269            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2270            // out of bounds
2271            unsafe {
2272                self.unchecked_shr(rhs & (Self::BITS - 1))
2273            }
2274        }
2275
2276        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2277        /// wrapping around at the boundary of the type.
2278        ///
2279        /// # Examples
2280        ///
2281        /// Basic usage:
2282        ///
2283        /// ```
2284        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
2285        /// assert_eq!(3u8.wrapping_pow(6), 217);
2286        /// ```
2287        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2288        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2289        #[must_use = "this returns the result of the operation, \
2290                      without modifying the original"]
2291        #[inline]
2292        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2293            if exp == 0 {
2294                return 1;
2295            }
2296            let mut base = self;
2297            let mut acc: Self = 1;
2298
2299            if intrinsics::is_val_statically_known(exp) {
2300                while exp > 1 {
2301                    if (exp & 1) == 1 {
2302                        acc = acc.wrapping_mul(base);
2303                    }
2304                    exp /= 2;
2305                    base = base.wrapping_mul(base);
2306                }
2307
2308                // since exp!=0, finally the exp must be 1.
2309                // Deal with the final bit of the exponent separately, since
2310                // squaring the base afterwards is not necessary.
2311                acc.wrapping_mul(base)
2312            } else {
2313                // This is faster than the above when the exponent is not known
2314                // at compile time. We can't use the same code for the constant
2315                // exponent case because LLVM is currently unable to unroll
2316                // this loop.
2317                loop {
2318                    if (exp & 1) == 1 {
2319                        acc = acc.wrapping_mul(base);
2320                        // since exp!=0, finally the exp must be 1.
2321                        if exp == 1 {
2322                            return acc;
2323                        }
2324                    }
2325                    exp /= 2;
2326                    base = base.wrapping_mul(base);
2327                }
2328            }
2329        }
2330
2331        /// Calculates `self` + `rhs`.
2332        ///
2333        /// Returns a tuple of the addition along with a boolean indicating
2334        /// whether an arithmetic overflow would occur. If an overflow would
2335        /// have occurred then the wrapped value is returned.
2336        ///
2337        /// # Examples
2338        ///
2339        /// Basic usage:
2340        ///
2341        /// ```
2342        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2343        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
2344        /// ```
2345        #[stable(feature = "wrapping", since = "1.7.0")]
2346        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2347        #[must_use = "this returns the result of the operation, \
2348                      without modifying the original"]
2349        #[inline(always)]
2350        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2351            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2352            (a as Self, b)
2353        }
2354
2355        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
2356        /// the sum and the output carry.
2357        ///
2358        /// Performs "ternary addition" of two integer operands and a carry-in
2359        /// bit, and returns an output integer and a carry-out bit. This allows
2360        /// chaining together multiple additions to create a wider addition, and
2361        /// can be useful for bignum addition.
2362        ///
2363        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
2364        ///
2365        /// If the input carry is false, this method is equivalent to
2366        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
2367        /// equal to the overflow flag. Note that although carry and overflow
2368        /// flags are similar for unsigned integers, they are different for
2369        /// signed integers.
2370        ///
2371        /// # Examples
2372        ///
2373        /// ```
2374        /// #![feature(bigint_helper_methods)]
2375        ///
2376        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2377        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2378        /// // ---------
2379        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
2380        ///
2381        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
2382        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2383        /// let carry0 = false;
2384        ///
2385        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2386        /// assert_eq!(carry1, true);
2387        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
2388        /// assert_eq!(carry2, false);
2389        ///
2390        /// assert_eq!((sum1, sum0), (9, 6));
2391        /// ```
2392        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2393        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2394        #[must_use = "this returns the result of the operation, \
2395                      without modifying the original"]
2396        #[inline]
2397        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2398            // note: longer-term this should be done via an intrinsic, but this has been shown
2399            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2400            let (a, c1) = self.overflowing_add(rhs);
2401            let (b, c2) = a.overflowing_add(carry as $SelfT);
2402            // Ideally LLVM would know this is disjoint without us telling them,
2403            // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
2404            // SAFETY: Only one of `c1` and `c2` can be set.
2405            // For c1 to be set we need to have overflowed, but if we did then
2406            // `a` is at most `MAX-1`, which means that `c2` cannot possibly
2407            // overflow because it's adding at most `1` (since it came from `bool`)
2408            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2409        }
2410
2411        /// Calculates `self` + `rhs` with a signed `rhs`.
2412        ///
2413        /// Returns a tuple of the addition along with a boolean indicating
2414        /// whether an arithmetic overflow would occur. If an overflow would
2415        /// have occurred then the wrapped value is returned.
2416        ///
2417        /// # Examples
2418        ///
2419        /// Basic usage:
2420        ///
2421        /// ```
2422        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
2423        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
2424        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
2425        /// ```
2426        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2427        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2428        #[must_use = "this returns the result of the operation, \
2429                      without modifying the original"]
2430        #[inline]
2431        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
2432            let (res, overflowed) = self.overflowing_add(rhs as Self);
2433            (res, overflowed ^ (rhs < 0))
2434        }
2435
2436        /// Calculates `self` - `rhs`.
2437        ///
2438        /// Returns a tuple of the subtraction along with a boolean indicating
2439        /// whether an arithmetic overflow would occur. If an overflow would
2440        /// have occurred then the wrapped value is returned.
2441        ///
2442        /// # Examples
2443        ///
2444        /// Basic usage:
2445        ///
2446        /// ```
2447        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2448        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2449        /// ```
2450        #[stable(feature = "wrapping", since = "1.7.0")]
2451        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2452        #[must_use = "this returns the result of the operation, \
2453                      without modifying the original"]
2454        #[inline(always)]
2455        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2456            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2457            (a as Self, b)
2458        }
2459
2460        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
2461        /// containing the difference and the output borrow.
2462        ///
2463        /// Performs "ternary subtraction" by subtracting both an integer
2464        /// operand and a borrow-in bit from `self`, and returns an output
2465        /// integer and a borrow-out bit. This allows chaining together multiple
2466        /// subtractions to create a wider subtraction, and can be useful for
2467        /// bignum subtraction.
2468        ///
2469        /// # Examples
2470        ///
2471        /// ```
2472        /// #![feature(bigint_helper_methods)]
2473        ///
2474        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
2475        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2476        /// // ---------
2477        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2478        ///
2479        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
2480        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2481        /// let borrow0 = false;
2482        ///
2483        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2484        /// assert_eq!(borrow1, true);
2485        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
2486        /// assert_eq!(borrow2, false);
2487        ///
2488        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
2489        /// ```
2490        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2491        #[must_use = "this returns the result of the operation, \
2492                      without modifying the original"]
2493        #[inline]
2494        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2495            // note: longer-term this should be done via an intrinsic, but this has been shown
2496            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2497            let (a, b) = self.overflowing_sub(rhs);
2498            let (c, d) = a.overflowing_sub(borrow as $SelfT);
2499            (c, b | d)
2500        }
2501
2502        /// Calculates `self` - `rhs` with a signed `rhs`
2503        ///
2504        /// Returns a tuple of the subtraction along with a boolean indicating
2505        /// whether an arithmetic overflow would occur. If an overflow would
2506        /// have occurred then the wrapped value is returned.
2507        ///
2508        /// # Examples
2509        ///
2510        /// Basic usage:
2511        ///
2512        /// ```
2513        /// #![feature(mixed_integer_ops_unsigned_sub)]
2514        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
2515        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
2516        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
2517        /// ```
2518        #[unstable(feature = "mixed_integer_ops_unsigned_sub", issue = "126043")]
2519        #[must_use = "this returns the result of the operation, \
2520                      without modifying the original"]
2521        #[inline]
2522        pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
2523            let (res, overflow) = self.overflowing_sub(rhs as Self);
2524
2525            (res, overflow ^ (rhs < 0))
2526        }
2527
2528        /// Computes the absolute difference between `self` and `other`.
2529        ///
2530        /// # Examples
2531        ///
2532        /// Basic usage:
2533        ///
2534        /// ```
2535        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
2536        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
2537        /// ```
2538        #[stable(feature = "int_abs_diff", since = "1.60.0")]
2539        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
2540        #[must_use = "this returns the result of the operation, \
2541                      without modifying the original"]
2542        #[inline]
2543        pub const fn abs_diff(self, other: Self) -> Self {
2544            if mem::size_of::<Self>() == 1 {
2545                // Trick LLVM into generating the psadbw instruction when SSE2
2546                // is available and this function is autovectorized for u8's.
2547                (self as i32).wrapping_sub(other as i32).abs() as Self
2548            } else {
2549                if self < other {
2550                    other - self
2551                } else {
2552                    self - other
2553                }
2554            }
2555        }
2556
2557        /// Calculates the multiplication of `self` and `rhs`.
2558        ///
2559        /// Returns a tuple of the multiplication along with a boolean
2560        /// indicating whether an arithmetic overflow would occur. If an
2561        /// overflow would have occurred then the wrapped value is returned.
2562        ///
2563        /// # Examples
2564        ///
2565        /// Basic usage:
2566        ///
2567        /// Please note that this example is shared between integer types.
2568        /// Which explains why `u32` is used here.
2569        ///
2570        /// ```
2571        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
2572        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
2573        /// ```
2574        #[stable(feature = "wrapping", since = "1.7.0")]
2575        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2576        #[must_use = "this returns the result of the operation, \
2577                          without modifying the original"]
2578        #[inline(always)]
2579        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2580            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2581            (a as Self, b)
2582        }
2583
2584        /// Calculates the complete product `self * rhs` without the possibility to overflow.
2585        ///
2586        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2587        /// of the result as two separate values, in that order.
2588        ///
2589        /// If you also need to add a carry to the wide result, then you want
2590        /// [`Self::carrying_mul`] instead.
2591        ///
2592        /// # Examples
2593        ///
2594        /// Basic usage:
2595        ///
2596        /// Please note that this example is shared between integer types.
2597        /// Which explains why `u32` is used here.
2598        ///
2599        /// ```
2600        /// #![feature(bigint_helper_methods)]
2601        /// assert_eq!(5u32.widening_mul(2), (10, 0));
2602        /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
2603        /// ```
2604        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2605        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2606        #[must_use = "this returns the result of the operation, \
2607                      without modifying the original"]
2608        #[inline]
2609        pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
2610            Self::carrying_mul_add(self, rhs, 0, 0)
2611        }
2612
2613        /// Calculates the "full multiplication" `self * rhs + carry`
2614        /// without the possibility to overflow.
2615        ///
2616        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2617        /// of the result as two separate values, in that order.
2618        ///
2619        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2620        /// additional amount of overflow. This allows for chaining together multiple
2621        /// multiplications to create "big integers" which represent larger values.
2622        ///
2623        /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2624        ///
2625        /// # Examples
2626        ///
2627        /// Basic usage:
2628        ///
2629        /// Please note that this example is shared between integer types.
2630        /// Which explains why `u32` is used here.
2631        ///
2632        /// ```
2633        /// #![feature(bigint_helper_methods)]
2634        /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
2635        /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
2636        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
2637        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
2638        #[doc = concat!("assert_eq!(",
2639            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2640            "(0, ", stringify!($SelfT), "::MAX));"
2641        )]
2642        /// ```
2643        ///
2644        /// This is the core operation needed for scalar multiplication when
2645        /// implementing it for wider-than-native types.
2646        ///
2647        /// ```
2648        /// #![feature(bigint_helper_methods)]
2649        /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
2650        ///     let mut carry = 0;
2651        ///     for d in little_endian_digits.iter_mut() {
2652        ///         (*d, carry) = d.carrying_mul(multiplicand, carry);
2653        ///     }
2654        ///     if carry != 0 {
2655        ///         little_endian_digits.push(carry);
2656        ///     }
2657        /// }
2658        ///
2659        /// let mut v = vec![10, 20];
2660        /// scalar_mul_eq(&mut v, 3);
2661        /// assert_eq!(v, [30, 60]);
2662        ///
2663        /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
2664        /// let mut v = vec![0x4321, 0x8765];
2665        /// scalar_mul_eq(&mut v, 0xFEED);
2666        /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
2667        /// ```
2668        ///
2669        /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
2670        /// except that it gives the value of the overflow instead of just whether one happened:
2671        ///
2672        /// ```
2673        /// #![feature(bigint_helper_methods)]
2674        /// let r = u8::carrying_mul(7, 13, 0);
2675        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
2676        /// let r = u8::carrying_mul(13, 42, 0);
2677        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
2678        /// ```
2679        ///
2680        /// The value of the first field in the returned tuple matches what you'd get
2681        /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
2682        /// [`wrapping_add`](Self::wrapping_add) methods:
2683        ///
2684        /// ```
2685        /// #![feature(bigint_helper_methods)]
2686        /// assert_eq!(
2687        ///     789_u16.carrying_mul(456, 123).0,
2688        ///     789_u16.wrapping_mul(456).wrapping_add(123),
2689        /// );
2690        /// ```
2691        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2692        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2693        #[must_use = "this returns the result of the operation, \
2694                      without modifying the original"]
2695        #[inline]
2696        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
2697            Self::carrying_mul_add(self, rhs, carry, 0)
2698        }
2699
2700        /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2701        /// without the possibility to overflow.
2702        ///
2703        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2704        /// of the result as two separate values, in that order.
2705        ///
2706        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2707        /// additional amount of overflow. This allows for chaining together multiple
2708        /// multiplications to create "big integers" which represent larger values.
2709        ///
2710        /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2711        /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2712        ///
2713        /// # Examples
2714        ///
2715        /// Basic usage:
2716        ///
2717        /// Please note that this example is shared between integer types,
2718        /// which explains why `u32` is used here.
2719        ///
2720        /// ```
2721        /// #![feature(bigint_helper_methods)]
2722        /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
2723        /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
2724        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
2725        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
2726        #[doc = concat!("assert_eq!(",
2727            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2728            "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
2729        )]
2730        /// ```
2731        ///
2732        /// This is the core per-digit operation for "grade school" O(n²) multiplication.
2733        ///
2734        /// Please note that this example is shared between integer types,
2735        /// using `u8` for simplicity of the demonstration.
2736        ///
2737        /// ```
2738        /// #![feature(bigint_helper_methods)]
2739        ///
2740        /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
2741        ///     let mut out = [0; N];
2742        ///     for j in 0..N {
2743        ///         let mut carry = 0;
2744        ///         for i in 0..(N - j) {
2745        ///             (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
2746        ///         }
2747        ///     }
2748        ///     out
2749        /// }
2750        ///
2751        /// // -1 * -1 == 1
2752        /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
2753        ///
2754        /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);
2755        /// assert_eq!(
2756        ///     quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
2757        ///     u32::to_le_bytes(0xCFFC982D)
2758        /// );
2759        /// ```
2760        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2761        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2762        #[must_use = "this returns the result of the operation, \
2763                      without modifying the original"]
2764        #[inline]
2765        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
2766            intrinsics::carrying_mul_add(self, rhs, carry, add)
2767        }
2768
2769        /// Calculates the divisor when `self` is divided by `rhs`.
2770        ///
2771        /// Returns a tuple of the divisor along with a boolean indicating
2772        /// whether an arithmetic overflow would occur. Note that for unsigned
2773        /// integers overflow never occurs, so the second value is always
2774        /// `false`.
2775        ///
2776        /// # Panics
2777        ///
2778        /// This function will panic if `rhs` is zero.
2779        ///
2780        /// # Examples
2781        ///
2782        /// Basic usage:
2783        ///
2784        /// ```
2785        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2786        /// ```
2787        #[inline(always)]
2788        #[stable(feature = "wrapping", since = "1.7.0")]
2789        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2790        #[must_use = "this returns the result of the operation, \
2791                      without modifying the original"]
2792        #[track_caller]
2793        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2794            (self / rhs, false)
2795        }
2796
2797        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2798        ///
2799        /// Returns a tuple of the divisor along with a boolean indicating
2800        /// whether an arithmetic overflow would occur. Note that for unsigned
2801        /// integers overflow never occurs, so the second value is always
2802        /// `false`.
2803        /// Since, for the positive integers, all common
2804        /// definitions of division are equal, this
2805        /// is exactly equal to `self.overflowing_div(rhs)`.
2806        ///
2807        /// # Panics
2808        ///
2809        /// This function will panic if `rhs` is zero.
2810        ///
2811        /// # Examples
2812        ///
2813        /// Basic usage:
2814        ///
2815        /// ```
2816        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2817        /// ```
2818        #[inline(always)]
2819        #[stable(feature = "euclidean_division", since = "1.38.0")]
2820        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2821        #[must_use = "this returns the result of the operation, \
2822                      without modifying the original"]
2823        #[track_caller]
2824        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2825            (self / rhs, false)
2826        }
2827
2828        /// Calculates the remainder when `self` is divided by `rhs`.
2829        ///
2830        /// Returns a tuple of the remainder after dividing along with a boolean
2831        /// indicating whether an arithmetic overflow would occur. Note that for
2832        /// unsigned integers overflow never occurs, so the second value is
2833        /// always `false`.
2834        ///
2835        /// # Panics
2836        ///
2837        /// This function will panic if `rhs` is zero.
2838        ///
2839        /// # Examples
2840        ///
2841        /// Basic usage:
2842        ///
2843        /// ```
2844        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2845        /// ```
2846        #[inline(always)]
2847        #[stable(feature = "wrapping", since = "1.7.0")]
2848        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2849        #[must_use = "this returns the result of the operation, \
2850                      without modifying the original"]
2851        #[track_caller]
2852        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2853            (self % rhs, false)
2854        }
2855
2856        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
2857        ///
2858        /// Returns a tuple of the modulo after dividing along with a boolean
2859        /// indicating whether an arithmetic overflow would occur. Note that for
2860        /// unsigned integers overflow never occurs, so the second value is
2861        /// always `false`.
2862        /// Since, for the positive integers, all common
2863        /// definitions of division are equal, this operation
2864        /// is exactly equal to `self.overflowing_rem(rhs)`.
2865        ///
2866        /// # Panics
2867        ///
2868        /// This function will panic if `rhs` is zero.
2869        ///
2870        /// # Examples
2871        ///
2872        /// Basic usage:
2873        ///
2874        /// ```
2875        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2876        /// ```
2877        #[inline(always)]
2878        #[stable(feature = "euclidean_division", since = "1.38.0")]
2879        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2880        #[must_use = "this returns the result of the operation, \
2881                      without modifying the original"]
2882        #[track_caller]
2883        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2884            (self % rhs, false)
2885        }
2886
2887        /// Negates self in an overflowing fashion.
2888        ///
2889        /// Returns `!self + 1` using wrapping operations to return the value
2890        /// that represents the negation of this unsigned value. Note that for
2891        /// positive unsigned values overflow always occurs, but negating 0 does
2892        /// not overflow.
2893        ///
2894        /// # Examples
2895        ///
2896        /// Basic usage:
2897        ///
2898        /// ```
2899        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
2900        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
2901        /// ```
2902        #[inline(always)]
2903        #[stable(feature = "wrapping", since = "1.7.0")]
2904        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2905        #[must_use = "this returns the result of the operation, \
2906                      without modifying the original"]
2907        pub const fn overflowing_neg(self) -> (Self, bool) {
2908            ((!self).wrapping_add(1), self != 0)
2909        }
2910
2911        /// Shifts self left by `rhs` bits.
2912        ///
2913        /// Returns a tuple of the shifted version of self along with a boolean
2914        /// indicating whether the shift value was larger than or equal to the
2915        /// number of bits. If the shift value is too large, then value is
2916        /// masked (N-1) where N is the number of bits, and this value is then
2917        /// used to perform the shift.
2918        ///
2919        /// # Examples
2920        ///
2921        /// Basic usage:
2922        ///
2923        /// ```
2924        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
2925        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
2926        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2927        /// ```
2928        #[stable(feature = "wrapping", since = "1.7.0")]
2929        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2930        #[must_use = "this returns the result of the operation, \
2931                      without modifying the original"]
2932        #[inline(always)]
2933        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2934            (self.wrapping_shl(rhs), rhs >= Self::BITS)
2935        }
2936
2937        /// Shifts self right by `rhs` bits.
2938        ///
2939        /// Returns a tuple of the shifted version of self along with a boolean
2940        /// indicating whether the shift value was larger than or equal to the
2941        /// number of bits. If the shift value is too large, then value is
2942        /// masked (N-1) where N is the number of bits, and this value is then
2943        /// used to perform the shift.
2944        ///
2945        /// # Examples
2946        ///
2947        /// Basic usage:
2948        ///
2949        /// ```
2950        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2951        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
2952        /// ```
2953        #[stable(feature = "wrapping", since = "1.7.0")]
2954        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2955        #[must_use = "this returns the result of the operation, \
2956                      without modifying the original"]
2957        #[inline(always)]
2958        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2959            (self.wrapping_shr(rhs), rhs >= Self::BITS)
2960        }
2961
2962        /// Raises self to the power of `exp`, using exponentiation by squaring.
2963        ///
2964        /// Returns a tuple of the exponentiation along with a bool indicating
2965        /// whether an overflow happened.
2966        ///
2967        /// # Examples
2968        ///
2969        /// Basic usage:
2970        ///
2971        /// ```
2972        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
2973        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
2974        /// ```
2975        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2976        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2977        #[must_use = "this returns the result of the operation, \
2978                      without modifying the original"]
2979        #[inline]
2980        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
2981            if exp == 0{
2982                return (1,false);
2983            }
2984            let mut base = self;
2985            let mut acc: Self = 1;
2986            let mut overflown = false;
2987            // Scratch space for storing results of overflowing_mul.
2988            let mut r;
2989
2990            loop {
2991                if (exp & 1) == 1 {
2992                    r = acc.overflowing_mul(base);
2993                    // since exp!=0, finally the exp must be 1.
2994                    if exp == 1 {
2995                        r.1 |= overflown;
2996                        return r;
2997                    }
2998                    acc = r.0;
2999                    overflown |= r.1;
3000                }
3001                exp /= 2;
3002                r = base.overflowing_mul(base);
3003                base = r.0;
3004                overflown |= r.1;
3005            }
3006        }
3007
3008        /// Raises self to the power of `exp`, using exponentiation by squaring.
3009        ///
3010        /// # Examples
3011        ///
3012        /// Basic usage:
3013        ///
3014        /// ```
3015        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
3016        /// ```
3017        #[stable(feature = "rust1", since = "1.0.0")]
3018        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3019        #[must_use = "this returns the result of the operation, \
3020                      without modifying the original"]
3021        #[inline]
3022        #[rustc_inherit_overflow_checks]
3023        pub const fn pow(self, mut exp: u32) -> Self {
3024            if exp == 0 {
3025                return 1;
3026            }
3027            let mut base = self;
3028            let mut acc = 1;
3029
3030            if intrinsics::is_val_statically_known(exp) {
3031                while exp > 1 {
3032                    if (exp & 1) == 1 {
3033                        acc = acc * base;
3034                    }
3035                    exp /= 2;
3036                    base = base * base;
3037                }
3038
3039                // since exp!=0, finally the exp must be 1.
3040                // Deal with the final bit of the exponent separately, since
3041                // squaring the base afterwards is not necessary and may cause a
3042                // needless overflow.
3043                acc * base
3044            } else {
3045                // This is faster than the above when the exponent is not known
3046                // at compile time. We can't use the same code for the constant
3047                // exponent case because LLVM is currently unable to unroll
3048                // this loop.
3049                loop {
3050                    if (exp & 1) == 1 {
3051                        acc = acc * base;
3052                        // since exp!=0, finally the exp must be 1.
3053                        if exp == 1 {
3054                            return acc;
3055                        }
3056                    }
3057                    exp /= 2;
3058                    base = base * base;
3059                }
3060            }
3061        }
3062
3063        /// Returns the square root of the number, rounded down.
3064        ///
3065        /// # Examples
3066        ///
3067        /// Basic usage:
3068        /// ```
3069        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3070        /// ```
3071        #[stable(feature = "isqrt", since = "1.84.0")]
3072        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3073        #[must_use = "this returns the result of the operation, \
3074                      without modifying the original"]
3075        #[inline]
3076        pub const fn isqrt(self) -> Self {
3077            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
3078
3079            // Inform the optimizer what the range of outputs is. If testing
3080            // `core` crashes with no panic message and a `num::int_sqrt::u*`
3081            // test failed, it's because your edits caused these assertions or
3082            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
3083            //
3084            // SAFETY: Integer square root is a monotonically nondecreasing
3085            // function, which means that increasing the input will never
3086            // cause the output to decrease. Thus, since the input for unsigned
3087            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
3088            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
3089            unsafe {
3090                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
3091                crate::hint::assert_unchecked(result <= MAX_RESULT);
3092            }
3093
3094            result
3095        }
3096
3097        /// Performs Euclidean division.
3098        ///
3099        /// Since, for the positive integers, all common
3100        /// definitions of division are equal, this
3101        /// is exactly equal to `self / rhs`.
3102        ///
3103        /// # Panics
3104        ///
3105        /// This function will panic if `rhs` is zero.
3106        ///
3107        /// # Examples
3108        ///
3109        /// Basic usage:
3110        ///
3111        /// ```
3112        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
3113        /// ```
3114        #[stable(feature = "euclidean_division", since = "1.38.0")]
3115        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3116        #[must_use = "this returns the result of the operation, \
3117                      without modifying the original"]
3118        #[inline(always)]
3119        #[track_caller]
3120        pub const fn div_euclid(self, rhs: Self) -> Self {
3121            self / rhs
3122        }
3123
3124
3125        /// Calculates the least remainder of `self (mod rhs)`.
3126        ///
3127        /// Since, for the positive integers, all common
3128        /// definitions of division are equal, this
3129        /// is exactly equal to `self % rhs`.
3130        ///
3131        /// # Panics
3132        ///
3133        /// This function will panic if `rhs` is zero.
3134        ///
3135        /// # Examples
3136        ///
3137        /// Basic usage:
3138        ///
3139        /// ```
3140        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
3141        /// ```
3142        #[doc(alias = "modulo", alias = "mod")]
3143        #[stable(feature = "euclidean_division", since = "1.38.0")]
3144        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3145        #[must_use = "this returns the result of the operation, \
3146                      without modifying the original"]
3147        #[inline(always)]
3148        #[track_caller]
3149        pub const fn rem_euclid(self, rhs: Self) -> Self {
3150            self % rhs
3151        }
3152
3153        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3154        ///
3155        /// This is the same as performing `self / rhs` for all unsigned integers.
3156        ///
3157        /// # Panics
3158        ///
3159        /// This function will panic if `rhs` is zero.
3160        ///
3161        /// # Examples
3162        ///
3163        /// Basic usage:
3164        ///
3165        /// ```
3166        /// #![feature(int_roundings)]
3167        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
3168        /// ```
3169        #[unstable(feature = "int_roundings", issue = "88581")]
3170        #[must_use = "this returns the result of the operation, \
3171                      without modifying the original"]
3172        #[inline(always)]
3173        #[track_caller]
3174        pub const fn div_floor(self, rhs: Self) -> Self {
3175            self / rhs
3176        }
3177
3178        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3179        ///
3180        /// # Panics
3181        ///
3182        /// This function will panic if `rhs` is zero.
3183        ///
3184        /// # Examples
3185        ///
3186        /// Basic usage:
3187        ///
3188        /// ```
3189        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
3190        /// ```
3191        #[stable(feature = "int_roundings1", since = "1.73.0")]
3192        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3193        #[must_use = "this returns the result of the operation, \
3194                      without modifying the original"]
3195        #[inline]
3196        #[track_caller]
3197        pub const fn div_ceil(self, rhs: Self) -> Self {
3198            let d = self / rhs;
3199            let r = self % rhs;
3200            if r > 0 {
3201                d + 1
3202            } else {
3203                d
3204            }
3205        }
3206
3207        /// Calculates the smallest value greater than or equal to `self` that
3208        /// is a multiple of `rhs`.
3209        ///
3210        /// # Panics
3211        ///
3212        /// This function will panic if `rhs` is zero.
3213        ///
3214        /// ## Overflow behavior
3215        ///
3216        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3217        /// mode) and wrap if overflow checks are disabled (default in release mode).
3218        ///
3219        /// # Examples
3220        ///
3221        /// Basic usage:
3222        ///
3223        /// ```
3224        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3225        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3226        /// ```
3227        #[stable(feature = "int_roundings1", since = "1.73.0")]
3228        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3229        #[must_use = "this returns the result of the operation, \
3230                      without modifying the original"]
3231        #[inline]
3232        #[rustc_inherit_overflow_checks]
3233        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3234            match self % rhs {
3235                0 => self,
3236                r => self + (rhs - r)
3237            }
3238        }
3239
3240        /// Calculates the smallest value greater than or equal to `self` that
3241        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
3242        /// operation would result in overflow.
3243        ///
3244        /// # Examples
3245        ///
3246        /// Basic usage:
3247        ///
3248        /// ```
3249        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3250        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3251        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3252        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3253        /// ```
3254        #[stable(feature = "int_roundings1", since = "1.73.0")]
3255        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3256        #[must_use = "this returns the result of the operation, \
3257                      without modifying the original"]
3258        #[inline]
3259        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3260            match try_opt!(self.checked_rem(rhs)) {
3261                0 => Some(self),
3262                // rhs - r cannot overflow because r is smaller than rhs
3263                r => self.checked_add(rhs - r)
3264            }
3265        }
3266
3267        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
3268        ///
3269        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
3270        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
3271        /// `n.is_multiple_of(0) == false`.
3272        ///
3273        /// # Examples
3274        ///
3275        /// Basic usage:
3276        ///
3277        /// ```
3278        /// #![feature(unsigned_is_multiple_of)]
3279        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
3280        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
3281        ///
3282        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
3283        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
3284        /// ```
3285        #[unstable(feature = "unsigned_is_multiple_of", issue = "128101")]
3286        #[must_use]
3287        #[inline]
3288        #[rustc_inherit_overflow_checks]
3289        pub const fn is_multiple_of(self, rhs: Self) -> bool {
3290            match rhs {
3291                0 => self == 0,
3292                _ => self % rhs == 0,
3293            }
3294        }
3295
3296        /// Returns `true` if and only if `self == 2^k` for some `k`.
3297        ///
3298        /// # Examples
3299        ///
3300        /// Basic usage:
3301        ///
3302        /// ```
3303        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
3304        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
3305        /// ```
3306        #[must_use]
3307        #[stable(feature = "rust1", since = "1.0.0")]
3308        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
3309        #[inline(always)]
3310        pub const fn is_power_of_two(self) -> bool {
3311            self.count_ones() == 1
3312        }
3313
3314        // Returns one less than next power of two.
3315        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
3316        //
3317        // 8u8.one_less_than_next_power_of_two() == 7
3318        // 6u8.one_less_than_next_power_of_two() == 7
3319        //
3320        // This method cannot overflow, as in the `next_power_of_two`
3321        // overflow cases it instead ends up returning the maximum value
3322        // of the type, and can return 0 for 0.
3323        #[inline]
3324        const fn one_less_than_next_power_of_two(self) -> Self {
3325            if self <= 1 { return 0; }
3326
3327            let p = self - 1;
3328            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
3329            // That means the shift is always in-bounds, and some processors
3330            // (such as intel pre-haswell) have more efficient ctlz
3331            // intrinsics when the argument is non-zero.
3332            let z = unsafe { intrinsics::ctlz_nonzero(p) };
3333            <$SelfT>::MAX >> z
3334        }
3335
3336        /// Returns the smallest power of two greater than or equal to `self`.
3337        ///
3338        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
3339        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
3340        /// release mode (the only situation in which this method can return 0).
3341        ///
3342        /// # Examples
3343        ///
3344        /// Basic usage:
3345        ///
3346        /// ```
3347        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
3348        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
3349        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
3350        /// ```
3351        #[stable(feature = "rust1", since = "1.0.0")]
3352        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3353        #[must_use = "this returns the result of the operation, \
3354                      without modifying the original"]
3355        #[inline]
3356        #[rustc_inherit_overflow_checks]
3357        pub const fn next_power_of_two(self) -> Self {
3358            self.one_less_than_next_power_of_two() + 1
3359        }
3360
3361        /// Returns the smallest power of two greater than or equal to `self`. If
3362        /// the next power of two is greater than the type's maximum value,
3363        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
3364        ///
3365        /// # Examples
3366        ///
3367        /// Basic usage:
3368        ///
3369        /// ```
3370        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
3371        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
3372        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
3373        /// ```
3374        #[inline]
3375        #[stable(feature = "rust1", since = "1.0.0")]
3376        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3377        #[must_use = "this returns the result of the operation, \
3378                      without modifying the original"]
3379        pub const fn checked_next_power_of_two(self) -> Option<Self> {
3380            self.one_less_than_next_power_of_two().checked_add(1)
3381        }
3382
3383        /// Returns the smallest power of two greater than or equal to `n`. If
3384        /// the next power of two is greater than the type's maximum value,
3385        /// the return value is wrapped to `0`.
3386        ///
3387        /// # Examples
3388        ///
3389        /// Basic usage:
3390        ///
3391        /// ```
3392        /// #![feature(wrapping_next_power_of_two)]
3393        ///
3394        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
3395        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
3396        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
3397        /// ```
3398        #[inline]
3399        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
3400                   reason = "needs decision on wrapping behavior")]
3401        #[must_use = "this returns the result of the operation, \
3402                      without modifying the original"]
3403        pub const fn wrapping_next_power_of_two(self) -> Self {
3404            self.one_less_than_next_power_of_two().wrapping_add(1)
3405        }
3406
3407        /// Returns the memory representation of this integer as a byte array in
3408        /// big-endian (network) byte order.
3409        ///
3410        #[doc = $to_xe_bytes_doc]
3411        ///
3412        /// # Examples
3413        ///
3414        /// ```
3415        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3416        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3417        /// ```
3418        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3419        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3420        #[must_use = "this returns the result of the operation, \
3421                      without modifying the original"]
3422        #[inline]
3423        pub const fn to_be_bytes(self) -> [u8; mem::size_of::<Self>()] {
3424            self.to_be().to_ne_bytes()
3425        }
3426
3427        /// Returns the memory representation of this integer as a byte array in
3428        /// little-endian byte order.
3429        ///
3430        #[doc = $to_xe_bytes_doc]
3431        ///
3432        /// # Examples
3433        ///
3434        /// ```
3435        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3436        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3437        /// ```
3438        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3439        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3440        #[must_use = "this returns the result of the operation, \
3441                      without modifying the original"]
3442        #[inline]
3443        pub const fn to_le_bytes(self) -> [u8; mem::size_of::<Self>()] {
3444            self.to_le().to_ne_bytes()
3445        }
3446
3447        /// Returns the memory representation of this integer as a byte array in
3448        /// native byte order.
3449        ///
3450        /// As the target platform's native endianness is used, portable code
3451        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3452        /// instead.
3453        ///
3454        #[doc = $to_xe_bytes_doc]
3455        ///
3456        /// [`to_be_bytes`]: Self::to_be_bytes
3457        /// [`to_le_bytes`]: Self::to_le_bytes
3458        ///
3459        /// # Examples
3460        ///
3461        /// ```
3462        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3463        /// assert_eq!(
3464        ///     bytes,
3465        ///     if cfg!(target_endian = "big") {
3466        #[doc = concat!("        ", $be_bytes)]
3467        ///     } else {
3468        #[doc = concat!("        ", $le_bytes)]
3469        ///     }
3470        /// );
3471        /// ```
3472        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3473        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3474        #[must_use = "this returns the result of the operation, \
3475                      without modifying the original"]
3476        // SAFETY: const sound because integers are plain old datatypes so we can always
3477        // transmute them to arrays of bytes
3478        #[inline]
3479        pub const fn to_ne_bytes(self) -> [u8; mem::size_of::<Self>()] {
3480            // SAFETY: integers are plain old datatypes so we can always transmute them to
3481            // arrays of bytes
3482            unsafe { mem::transmute(self) }
3483        }
3484
3485        /// Creates a native endian integer value from its representation
3486        /// as a byte array in big endian.
3487        ///
3488        #[doc = $from_xe_bytes_doc]
3489        ///
3490        /// # Examples
3491        ///
3492        /// ```
3493        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3494        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3495        /// ```
3496        ///
3497        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3498        ///
3499        /// ```
3500        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3501        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
3502        ///     *input = rest;
3503        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3504        /// }
3505        /// ```
3506        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3507        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3508        #[must_use]
3509        #[inline]
3510        pub const fn from_be_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
3511            Self::from_be(Self::from_ne_bytes(bytes))
3512        }
3513
3514        /// Creates a native endian integer value from its representation
3515        /// as a byte array in little endian.
3516        ///
3517        #[doc = $from_xe_bytes_doc]
3518        ///
3519        /// # Examples
3520        ///
3521        /// ```
3522        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3523        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3524        /// ```
3525        ///
3526        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3527        ///
3528        /// ```
3529        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3530        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
3531        ///     *input = rest;
3532        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3533        /// }
3534        /// ```
3535        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3536        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3537        #[must_use]
3538        #[inline]
3539        pub const fn from_le_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
3540            Self::from_le(Self::from_ne_bytes(bytes))
3541        }
3542
3543        /// Creates a native endian integer value from its memory representation
3544        /// as a byte array in native endianness.
3545        ///
3546        /// As the target platform's native endianness is used, portable code
3547        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3548        /// appropriate instead.
3549        ///
3550        /// [`from_be_bytes`]: Self::from_be_bytes
3551        /// [`from_le_bytes`]: Self::from_le_bytes
3552        ///
3553        #[doc = $from_xe_bytes_doc]
3554        ///
3555        /// # Examples
3556        ///
3557        /// ```
3558        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3559        #[doc = concat!("    ", $be_bytes, "")]
3560        /// } else {
3561        #[doc = concat!("    ", $le_bytes, "")]
3562        /// });
3563        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3564        /// ```
3565        ///
3566        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3567        ///
3568        /// ```
3569        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3570        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
3571        ///     *input = rest;
3572        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3573        /// }
3574        /// ```
3575        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3576        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3577        #[must_use]
3578        // SAFETY: const sound because integers are plain old datatypes so we can always
3579        // transmute to them
3580        #[inline]
3581        pub const fn from_ne_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
3582            // SAFETY: integers are plain old datatypes so we can always transmute to them
3583            unsafe { mem::transmute(bytes) }
3584        }
3585
3586        /// New code should prefer to use
3587        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3588        ///
3589        /// Returns the smallest value that can be represented by this integer type.
3590        #[stable(feature = "rust1", since = "1.0.0")]
3591        #[rustc_promotable]
3592        #[inline(always)]
3593        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3594        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3595        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3596        pub const fn min_value() -> Self { Self::MIN }
3597
3598        /// New code should prefer to use
3599        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3600        ///
3601        /// Returns the largest value that can be represented by this integer type.
3602        #[stable(feature = "rust1", since = "1.0.0")]
3603        #[rustc_promotable]
3604        #[inline(always)]
3605        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3606        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3607        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3608        pub const fn max_value() -> Self { Self::MAX }
3609    }
3610}