1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
//! The string Pattern API.
//!
//! The Pattern API provides a generic mechanism for using different pattern
//! types when searching through a string.
//!
//! For more details, see the traits [`Pattern`], [`Searcher`],
//! [`ReverseSearcher`], and [`DoubleEndedSearcher`].
//!
//! Although this API is unstable, it is exposed via stable APIs on the
//! [`str`] type.
//!
//! # Examples
//!
//! [`Pattern`] is [implemented][pattern-impls] in the stable API for
//! [`&str`][`str`], [`char`], slices of [`char`], and functions and closures
//! implementing `FnMut(char) -> bool`.
//!
//! ```
//! let s = "Can you find a needle in a haystack?";
//!
//! // &str pattern
//! assert_eq!(s.find("you"), Some(4));
//! // char pattern
//! assert_eq!(s.find('n'), Some(2));
//! // array of chars pattern
//! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u']), Some(1));
//! // slice of chars pattern
//! assert_eq!(s.find(&['a', 'e', 'i', 'o', 'u'][..]), Some(1));
//! // closure pattern
//! assert_eq!(s.find(|c: char| c.is_ascii_punctuation()), Some(35));
//! ```
//!
//! [pattern-impls]: Pattern#implementors

#![unstable(
    feature = "pattern",
    reason = "API not fully fleshed out and ready to be stabilized",
    issue = "27721"
)]

use crate::cmp;
use crate::cmp::Ordering;
use crate::convert::TryInto as _;
use crate::fmt;
use crate::slice::memchr;

// Pattern

/// A string pattern.
///
/// A `Pattern<'a>` expresses that the implementing type
/// can be used as a string pattern for searching in a [`&'a str`][str].
///
/// For example, both `'a'` and `"aa"` are patterns that
/// would match at index `1` in the string `"baaaab"`.
///
/// The trait itself acts as a builder for an associated
/// [`Searcher`] type, which does the actual work of finding
/// occurrences of the pattern in a string.
///
/// Depending on the type of the pattern, the behaviour of methods like
/// [`str::find`] and [`str::contains`] can change. The table below describes
/// some of those behaviours.
///
/// | Pattern type             | Match condition                           |
/// |--------------------------|-------------------------------------------|
/// | `&str`                   | is substring                              |
/// | `char`                   | is contained in string                    |
/// | `&[char]`                | any char in slice is contained in string  |
/// | `F: FnMut(char) -> bool` | `F` returns `true` for a char in string   |
/// | `&&str`                  | is substring                              |
/// | `&String`                | is substring                              |
///
/// # Examples
///
/// ```
/// // &str
/// assert_eq!("abaaa".find("ba"), Some(1));
/// assert_eq!("abaaa".find("bac"), None);
///
/// // char
/// assert_eq!("abaaa".find('a'), Some(0));
/// assert_eq!("abaaa".find('b'), Some(1));
/// assert_eq!("abaaa".find('c'), None);
///
/// // &[char; N]
/// assert_eq!("ab".find(&['b', 'a']), Some(0));
/// assert_eq!("abaaa".find(&['a', 'z']), Some(0));
/// assert_eq!("abaaa".find(&['c', 'd']), None);
///
/// // &[char]
/// assert_eq!("ab".find(&['b', 'a'][..]), Some(0));
/// assert_eq!("abaaa".find(&['a', 'z'][..]), Some(0));
/// assert_eq!("abaaa".find(&['c', 'd'][..]), None);
///
/// // FnMut(char) -> bool
/// assert_eq!("abcdef_z".find(|ch| ch > 'd' && ch < 'y'), Some(4));
/// assert_eq!("abcddd_z".find(|ch| ch > 'd' && ch < 'y'), None);
/// ```
pub trait Pattern<'a>: Sized {
    /// Associated searcher for this pattern
    type Searcher: Searcher<'a>;

    /// Constructs the associated searcher from
    /// `self` and the `haystack` to search in.
    fn into_searcher(self, haystack: &'a str) -> Self::Searcher;

    /// Checks whether the pattern matches anywhere in the haystack
    #[inline]
    fn is_contained_in(self, haystack: &'a str) -> bool {
        self.into_searcher(haystack).next_match().is_some()
    }

    /// Checks whether the pattern matches at the front of the haystack
    #[inline]
    fn is_prefix_of(self, haystack: &'a str) -> bool {
        matches!(self.into_searcher(haystack).next(), SearchStep::Match(0, _))
    }

    /// Checks whether the pattern matches at the back of the haystack
    #[inline]
    fn is_suffix_of(self, haystack: &'a str) -> bool
    where
        Self::Searcher: ReverseSearcher<'a>,
    {
        matches!(self.into_searcher(haystack).next_back(), SearchStep::Match(_, j) if haystack.len() == j)
    }

    /// Removes the pattern from the front of haystack, if it matches.
    #[inline]
    fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
        if let SearchStep::Match(start, len) = self.into_searcher(haystack).next() {
            debug_assert_eq!(
                start, 0,
                "The first search step from Searcher \
                 must include the first character"
            );
            // SAFETY: `Searcher` is known to return valid indices.
            unsafe { Some(haystack.get_unchecked(len..)) }
        } else {
            None
        }
    }

    /// Removes the pattern from the back of haystack, if it matches.
    #[inline]
    fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str>
    where
        Self::Searcher: ReverseSearcher<'a>,
    {
        if let SearchStep::Match(start, end) = self.into_searcher(haystack).next_back() {
            debug_assert_eq!(
                end,
                haystack.len(),
                "The first search step from ReverseSearcher \
                 must include the last character"
            );
            // SAFETY: `Searcher` is known to return valid indices.
            unsafe { Some(haystack.get_unchecked(..start)) }
        } else {
            None
        }
    }
}

// Searcher

/// Result of calling [`Searcher::next()`] or [`ReverseSearcher::next_back()`].
#[derive(Copy, Clone, Eq, PartialEq, Debug)]
pub enum SearchStep {
    /// Expresses that a match of the pattern has been found at
    /// `haystack[a..b]`.
    Match(usize, usize),
    /// Expresses that `haystack[a..b]` has been rejected as a possible match
    /// of the pattern.
    ///
    /// Note that there might be more than one `Reject` between two `Match`es,
    /// there is no requirement for them to be combined into one.
    Reject(usize, usize),
    /// Expresses that every byte of the haystack has been visited, ending
    /// the iteration.
    Done,
}

/// A searcher for a string pattern.
///
/// This trait provides methods for searching for non-overlapping
/// matches of a pattern starting from the front (left) of a string.
///
/// It will be implemented by associated `Searcher`
/// types of the [`Pattern`] trait.
///
/// The trait is marked unsafe because the indices returned by the
/// [`next()`][Searcher::next] methods are required to lie on valid utf8
/// boundaries in the haystack. This enables consumers of this trait to
/// slice the haystack without additional runtime checks.
pub unsafe trait Searcher<'a> {
    /// Getter for the underlying string to be searched in
    ///
    /// Will always return the same [`&str`][str].
    fn haystack(&self) -> &'a str;

    /// Performs the next search step starting from the front.
    ///
    /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]` matches
    ///   the pattern.
    /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]` can
    ///   not match the pattern, even partially.
    /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack has
    ///   been visited.
    ///
    /// The stream of [`Match`][SearchStep::Match] and
    /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done]
    /// will contain index ranges that are adjacent, non-overlapping,
    /// covering the whole haystack, and laying on utf8 boundaries.
    ///
    /// A [`Match`][SearchStep::Match] result needs to contain the whole matched
    /// pattern, however [`Reject`][SearchStep::Reject] results may be split up
    /// into arbitrary many adjacent fragments. Both ranges may have zero length.
    ///
    /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"`
    /// might produce the stream
    /// `[Reject(0, 1), Reject(1, 2), Match(2, 5), Reject(5, 8)]`
    fn next(&mut self) -> SearchStep;

    /// Finds the next [`Match`][SearchStep::Match] result. See [`next()`][Searcher::next].
    ///
    /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges
    /// of this and [`next_reject`][Searcher::next_reject] will overlap. This will return
    /// `(start_match, end_match)`, where start_match is the index of where
    /// the match begins, and end_match is the index after the end of the match.
    #[inline]
    fn next_match(&mut self) -> Option<(usize, usize)> {
        loop {
            match self.next() {
                SearchStep::Match(a, b) => return Some((a, b)),
                SearchStep::Done => return None,
                _ => continue,
            }
        }
    }

    /// Finds the next [`Reject`][SearchStep::Reject] result. See [`next()`][Searcher::next]
    /// and [`next_match()`][Searcher::next_match].
    ///
    /// Unlike [`next()`][Searcher::next], there is no guarantee that the returned ranges
    /// of this and [`next_match`][Searcher::next_match] will overlap.
    #[inline]
    fn next_reject(&mut self) -> Option<(usize, usize)> {
        loop {
            match self.next() {
                SearchStep::Reject(a, b) => return Some((a, b)),
                SearchStep::Done => return None,
                _ => continue,
            }
        }
    }
}

/// A reverse searcher for a string pattern.
///
/// This trait provides methods for searching for non-overlapping
/// matches of a pattern starting from the back (right) of a string.
///
/// It will be implemented by associated [`Searcher`]
/// types of the [`Pattern`] trait if the pattern supports searching
/// for it from the back.
///
/// The index ranges returned by this trait are not required
/// to exactly match those of the forward search in reverse.
///
/// For the reason why this trait is marked unsafe, see the
/// parent trait [`Searcher`].
pub unsafe trait ReverseSearcher<'a>: Searcher<'a> {
    /// Performs the next search step starting from the back.
    ///
    /// - Returns [`Match(a, b)`][SearchStep::Match] if `haystack[a..b]`
    ///   matches the pattern.
    /// - Returns [`Reject(a, b)`][SearchStep::Reject] if `haystack[a..b]`
    ///   can not match the pattern, even partially.
    /// - Returns [`Done`][SearchStep::Done] if every byte of the haystack
    ///   has been visited
    ///
    /// The stream of [`Match`][SearchStep::Match] and
    /// [`Reject`][SearchStep::Reject] values up to a [`Done`][SearchStep::Done]
    /// will contain index ranges that are adjacent, non-overlapping,
    /// covering the whole haystack, and laying on utf8 boundaries.
    ///
    /// A [`Match`][SearchStep::Match] result needs to contain the whole matched
    /// pattern, however [`Reject`][SearchStep::Reject] results may be split up
    /// into arbitrary many adjacent fragments. Both ranges may have zero length.
    ///
    /// As an example, the pattern `"aaa"` and the haystack `"cbaaaaab"`
    /// might produce the stream
    /// `[Reject(7, 8), Match(4, 7), Reject(1, 4), Reject(0, 1)]`.
    fn next_back(&mut self) -> SearchStep;

    /// Finds the next [`Match`][SearchStep::Match] result.
    /// See [`next_back()`][ReverseSearcher::next_back].
    #[inline]
    fn next_match_back(&mut self) -> Option<(usize, usize)> {
        loop {
            match self.next_back() {
                SearchStep::Match(a, b) => return Some((a, b)),
                SearchStep::Done => return None,
                _ => continue,
            }
        }
    }

    /// Finds the next [`Reject`][SearchStep::Reject] result.
    /// See [`next_back()`][ReverseSearcher::next_back].
    #[inline]
    fn next_reject_back(&mut self) -> Option<(usize, usize)> {
        loop {
            match self.next_back() {
                SearchStep::Reject(a, b) => return Some((a, b)),
                SearchStep::Done => return None,
                _ => continue,
            }
        }
    }
}

/// A marker trait to express that a [`ReverseSearcher`]
/// can be used for a [`DoubleEndedIterator`] implementation.
///
/// For this, the impl of [`Searcher`] and [`ReverseSearcher`] need
/// to follow these conditions:
///
/// - All results of `next()` need to be identical
///   to the results of `next_back()` in reverse order.
/// - `next()` and `next_back()` need to behave as
///   the two ends of a range of values, that is they
///   can not "walk past each other".
///
/// # Examples
///
/// `char::Searcher` is a `DoubleEndedSearcher` because searching for a
/// [`char`] only requires looking at one at a time, which behaves the same
/// from both ends.
///
/// `(&str)::Searcher` is not a `DoubleEndedSearcher` because
/// the pattern `"aa"` in the haystack `"aaa"` matches as either
/// `"[aa]a"` or `"a[aa]"`, depending on which side it is searched.
pub trait DoubleEndedSearcher<'a>: ReverseSearcher<'a> {}

/////////////////////////////////////////////////////////////////////////////
// Impl for char
/////////////////////////////////////////////////////////////////////////////

/// Associated type for `<char as Pattern<'a>>::Searcher`.
#[derive(Clone, Debug)]
pub struct CharSearcher<'a> {
    haystack: &'a str,
    // safety invariant: `finger`/`finger_back` must be a valid utf8 byte index of `haystack`
    // This invariant can be broken *within* next_match and next_match_back, however
    // they must exit with fingers on valid code point boundaries.
    /// `finger` is the current byte index of the forward search.
    /// Imagine that it exists before the byte at its index, i.e.
    /// `haystack[finger]` is the first byte of the slice we must inspect during
    /// forward searching
    finger: usize,
    /// `finger_back` is the current byte index of the reverse search.
    /// Imagine that it exists after the byte at its index, i.e.
    /// haystack[finger_back - 1] is the last byte of the slice we must inspect during
    /// forward searching (and thus the first byte to be inspected when calling next_back()).
    finger_back: usize,
    /// The character being searched for
    needle: char,

    // safety invariant: `utf8_size` must be less than 5
    /// The number of bytes `needle` takes up when encoded in utf8.
    utf8_size: u8,
    /// A utf8 encoded copy of the `needle`
    utf8_encoded: [u8; 4],
}

impl CharSearcher<'_> {
    fn utf8_size(&self) -> usize {
        self.utf8_size.into()
    }
}

unsafe impl<'a> Searcher<'a> for CharSearcher<'a> {
    #[inline]
    fn haystack(&self) -> &'a str {
        self.haystack
    }
    #[inline]
    fn next(&mut self) -> SearchStep {
        let old_finger = self.finger;
        // SAFETY: 1-4 guarantee safety of `get_unchecked`
        // 1. `self.finger` and `self.finger_back` are kept on unicode boundaries
        //    (this is invariant)
        // 2. `self.finger >= 0` since it starts at 0 and only increases
        // 3. `self.finger < self.finger_back` because otherwise the char `iter`
        //    would return `SearchStep::Done`
        // 4. `self.finger` comes before the end of the haystack because `self.finger_back`
        //    starts at the end and only decreases
        let slice = unsafe { self.haystack.get_unchecked(old_finger..self.finger_back) };
        let mut iter = slice.chars();
        let old_len = iter.iter.len();
        if let Some(ch) = iter.next() {
            // add byte offset of current character
            // without re-encoding as utf-8
            self.finger += old_len - iter.iter.len();
            if ch == self.needle {
                SearchStep::Match(old_finger, self.finger)
            } else {
                SearchStep::Reject(old_finger, self.finger)
            }
        } else {
            SearchStep::Done
        }
    }
    #[inline]
    fn next_match(&mut self) -> Option<(usize, usize)> {
        loop {
            // get the haystack after the last character found
            let bytes = self.haystack.as_bytes().get(self.finger..self.finger_back)?;
            // the last byte of the utf8 encoded needle
            // SAFETY: we have an invariant that `utf8_size < 5`
            let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) };
            if let Some(index) = memchr::memchr(last_byte, bytes) {
                // The new finger is the index of the byte we found,
                // plus one, since we memchr'd for the last byte of the character.
                //
                // Note that this doesn't always give us a finger on a UTF8 boundary.
                // If we *didn't* find our character
                // we may have indexed to the non-last byte of a 3-byte or 4-byte character.
                // We can't just skip to the next valid starting byte because a character like
                // ꁁ (U+A041 YI SYLLABLE PA), utf-8 `EA 81 81` will have us always find
                // the second byte when searching for the third.
                //
                // However, this is totally okay. While we have the invariant that
                // self.finger is on a UTF8 boundary, this invariant is not relied upon
                // within this method (it is relied upon in CharSearcher::next()).
                //
                // We only exit this method when we reach the end of the string, or if we
                // find something. When we find something the `finger` will be set
                // to a UTF8 boundary.
                self.finger += index + 1;
                if self.finger >= self.utf8_size() {
                    let found_char = self.finger - self.utf8_size();
                    if let Some(slice) = self.haystack.as_bytes().get(found_char..self.finger) {
                        if slice == &self.utf8_encoded[0..self.utf8_size()] {
                            return Some((found_char, self.finger));
                        }
                    }
                }
            } else {
                // found nothing, exit
                self.finger = self.finger_back;
                return None;
            }
        }
    }

    // let next_reject use the default implementation from the Searcher trait
}

unsafe impl<'a> ReverseSearcher<'a> for CharSearcher<'a> {
    #[inline]
    fn next_back(&mut self) -> SearchStep {
        let old_finger = self.finger_back;
        // SAFETY: see the comment for next() above
        let slice = unsafe { self.haystack.get_unchecked(self.finger..old_finger) };
        let mut iter = slice.chars();
        let old_len = iter.iter.len();
        if let Some(ch) = iter.next_back() {
            // subtract byte offset of current character
            // without re-encoding as utf-8
            self.finger_back -= old_len - iter.iter.len();
            if ch == self.needle {
                SearchStep::Match(self.finger_back, old_finger)
            } else {
                SearchStep::Reject(self.finger_back, old_finger)
            }
        } else {
            SearchStep::Done
        }
    }
    #[inline]
    fn next_match_back(&mut self) -> Option<(usize, usize)> {
        let haystack = self.haystack.as_bytes();
        loop {
            // get the haystack up to but not including the last character searched
            let bytes = haystack.get(self.finger..self.finger_back)?;
            // the last byte of the utf8 encoded needle
            // SAFETY: we have an invariant that `utf8_size < 5`
            let last_byte = unsafe { *self.utf8_encoded.get_unchecked(self.utf8_size() - 1) };
            if let Some(index) = memchr::memrchr(last_byte, bytes) {
                // we searched a slice that was offset by self.finger,
                // add self.finger to recoup the original index
                let index = self.finger + index;
                // memrchr will return the index of the byte we wish to
                // find. In case of an ASCII character, this is indeed
                // were we wish our new finger to be ("after" the found
                // char in the paradigm of reverse iteration). For
                // multibyte chars we need to skip down by the number of more
                // bytes they have than ASCII
                let shift = self.utf8_size() - 1;
                if index >= shift {
                    let found_char = index - shift;
                    if let Some(slice) = haystack.get(found_char..(found_char + self.utf8_size())) {
                        if slice == &self.utf8_encoded[0..self.utf8_size()] {
                            // move finger to before the character found (i.e., at its start index)
                            self.finger_back = found_char;
                            return Some((self.finger_back, self.finger_back + self.utf8_size()));
                        }
                    }
                }
                // We can't use finger_back = index - size + 1 here. If we found the last char
                // of a different-sized character (or the middle byte of a different character)
                // we need to bump the finger_back down to `index`. This similarly makes
                // `finger_back` have the potential to no longer be on a boundary,
                // but this is OK since we only exit this function on a boundary
                // or when the haystack has been searched completely.
                //
                // Unlike next_match this does not
                // have the problem of repeated bytes in utf-8 because
                // we're searching for the last byte, and we can only have
                // found the last byte when searching in reverse.
                self.finger_back = index;
            } else {
                self.finger_back = self.finger;
                // found nothing, exit
                return None;
            }
        }
    }

    // let next_reject_back use the default implementation from the Searcher trait
}

impl<'a> DoubleEndedSearcher<'a> for CharSearcher<'a> {}

/// Searches for chars that are equal to a given [`char`].
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find('o'), Some(4));
/// ```
impl<'a> Pattern<'a> for char {
    type Searcher = CharSearcher<'a>;

    #[inline]
    fn into_searcher(self, haystack: &'a str) -> Self::Searcher {
        let mut utf8_encoded = [0; 4];
        let utf8_size = self
            .encode_utf8(&mut utf8_encoded)
            .len()
            .try_into()
            .expect("char len should be less than 255");

        CharSearcher {
            haystack,
            finger: 0,
            finger_back: haystack.len(),
            needle: self,
            utf8_size,
            utf8_encoded,
        }
    }

    #[inline]
    fn is_contained_in(self, haystack: &'a str) -> bool {
        if (self as u32) < 128 {
            haystack.as_bytes().contains(&(self as u8))
        } else {
            let mut buffer = [0u8; 4];
            self.encode_utf8(&mut buffer).is_contained_in(haystack)
        }
    }

    #[inline]
    fn is_prefix_of(self, haystack: &'a str) -> bool {
        self.encode_utf8(&mut [0u8; 4]).is_prefix_of(haystack)
    }

    #[inline]
    fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
        self.encode_utf8(&mut [0u8; 4]).strip_prefix_of(haystack)
    }

    #[inline]
    fn is_suffix_of(self, haystack: &'a str) -> bool
    where
        Self::Searcher: ReverseSearcher<'a>,
    {
        self.encode_utf8(&mut [0u8; 4]).is_suffix_of(haystack)
    }

    #[inline]
    fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str>
    where
        Self::Searcher: ReverseSearcher<'a>,
    {
        self.encode_utf8(&mut [0u8; 4]).strip_suffix_of(haystack)
    }
}

/////////////////////////////////////////////////////////////////////////////
// Impl for a MultiCharEq wrapper
/////////////////////////////////////////////////////////////////////////////

#[doc(hidden)]
trait MultiCharEq {
    fn matches(&mut self, c: char) -> bool;
}

impl<F> MultiCharEq for F
where
    F: FnMut(char) -> bool,
{
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        (*self)(c)
    }
}

impl<const N: usize> MultiCharEq for [char; N] {
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&m| m == c)
    }
}

impl<const N: usize> MultiCharEq for &[char; N] {
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&m| m == c)
    }
}

impl MultiCharEq for &[char] {
    #[inline]
    fn matches(&mut self, c: char) -> bool {
        self.iter().any(|&m| m == c)
    }
}

struct MultiCharEqPattern<C: MultiCharEq>(C);

#[derive(Clone, Debug)]
struct MultiCharEqSearcher<'a, C: MultiCharEq> {
    char_eq: C,
    haystack: &'a str,
    char_indices: super::CharIndices<'a>,
}

impl<'a, C: MultiCharEq> Pattern<'a> for MultiCharEqPattern<C> {
    type Searcher = MultiCharEqSearcher<'a, C>;

    #[inline]
    fn into_searcher(self, haystack: &'a str) -> MultiCharEqSearcher<'a, C> {
        MultiCharEqSearcher { haystack, char_eq: self.0, char_indices: haystack.char_indices() }
    }
}

unsafe impl<'a, C: MultiCharEq> Searcher<'a> for MultiCharEqSearcher<'a, C> {
    #[inline]
    fn haystack(&self) -> &'a str {
        self.haystack
    }

    #[inline]
    fn next(&mut self) -> SearchStep {
        let s = &mut self.char_indices;
        // Compare lengths of the internal byte slice iterator
        // to find length of current char
        let pre_len = s.iter.iter.len();
        if let Some((i, c)) = s.next() {
            let len = s.iter.iter.len();
            let char_len = pre_len - len;
            if self.char_eq.matches(c) {
                return SearchStep::Match(i, i + char_len);
            } else {
                return SearchStep::Reject(i, i + char_len);
            }
        }
        SearchStep::Done
    }
}

unsafe impl<'a, C: MultiCharEq> ReverseSearcher<'a> for MultiCharEqSearcher<'a, C> {
    #[inline]
    fn next_back(&mut self) -> SearchStep {
        let s = &mut self.char_indices;
        // Compare lengths of the internal byte slice iterator
        // to find length of current char
        let pre_len = s.iter.iter.len();
        if let Some((i, c)) = s.next_back() {
            let len = s.iter.iter.len();
            let char_len = pre_len - len;
            if self.char_eq.matches(c) {
                return SearchStep::Match(i, i + char_len);
            } else {
                return SearchStep::Reject(i, i + char_len);
            }
        }
        SearchStep::Done
    }
}

impl<'a, C: MultiCharEq> DoubleEndedSearcher<'a> for MultiCharEqSearcher<'a, C> {}

/////////////////////////////////////////////////////////////////////////////

macro_rules! pattern_methods {
    ($t:ty, $pmap:expr, $smap:expr) => {
        type Searcher = $t;

        #[inline]
        fn into_searcher(self, haystack: &'a str) -> $t {
            ($smap)(($pmap)(self).into_searcher(haystack))
        }

        #[inline]
        fn is_contained_in(self, haystack: &'a str) -> bool {
            ($pmap)(self).is_contained_in(haystack)
        }

        #[inline]
        fn is_prefix_of(self, haystack: &'a str) -> bool {
            ($pmap)(self).is_prefix_of(haystack)
        }

        #[inline]
        fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
            ($pmap)(self).strip_prefix_of(haystack)
        }

        #[inline]
        fn is_suffix_of(self, haystack: &'a str) -> bool
        where
            $t: ReverseSearcher<'a>,
        {
            ($pmap)(self).is_suffix_of(haystack)
        }

        #[inline]
        fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str>
        where
            $t: ReverseSearcher<'a>,
        {
            ($pmap)(self).strip_suffix_of(haystack)
        }
    };
}

macro_rules! searcher_methods {
    (forward) => {
        #[inline]
        fn haystack(&self) -> &'a str {
            self.0.haystack()
        }
        #[inline]
        fn next(&mut self) -> SearchStep {
            self.0.next()
        }
        #[inline]
        fn next_match(&mut self) -> Option<(usize, usize)> {
            self.0.next_match()
        }
        #[inline]
        fn next_reject(&mut self) -> Option<(usize, usize)> {
            self.0.next_reject()
        }
    };
    (reverse) => {
        #[inline]
        fn next_back(&mut self) -> SearchStep {
            self.0.next_back()
        }
        #[inline]
        fn next_match_back(&mut self) -> Option<(usize, usize)> {
            self.0.next_match_back()
        }
        #[inline]
        fn next_reject_back(&mut self) -> Option<(usize, usize)> {
            self.0.next_reject_back()
        }
    };
}

/// Associated type for `<[char; N] as Pattern<'a>>::Searcher`.
#[derive(Clone, Debug)]
pub struct CharArraySearcher<'a, const N: usize>(
    <MultiCharEqPattern<[char; N]> as Pattern<'a>>::Searcher,
);

/// Associated type for `<&[char; N] as Pattern<'a>>::Searcher`.
#[derive(Clone, Debug)]
pub struct CharArrayRefSearcher<'a, 'b, const N: usize>(
    <MultiCharEqPattern<&'b [char; N]> as Pattern<'a>>::Searcher,
);

/// Searches for chars that are equal to any of the [`char`]s in the array.
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find(['o', 'l']), Some(2));
/// assert_eq!("Hello world".find(['h', 'w']), Some(6));
/// ```
impl<'a, const N: usize> Pattern<'a> for [char; N] {
    pattern_methods!(CharArraySearcher<'a, N>, MultiCharEqPattern, CharArraySearcher);
}

unsafe impl<'a, const N: usize> Searcher<'a> for CharArraySearcher<'a, N> {
    searcher_methods!(forward);
}

unsafe impl<'a, const N: usize> ReverseSearcher<'a> for CharArraySearcher<'a, N> {
    searcher_methods!(reverse);
}

impl<'a, const N: usize> DoubleEndedSearcher<'a> for CharArraySearcher<'a, N> {}

/// Searches for chars that are equal to any of the [`char`]s in the array.
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find(&['o', 'l']), Some(2));
/// assert_eq!("Hello world".find(&['h', 'w']), Some(6));
/// ```
impl<'a, 'b, const N: usize> Pattern<'a> for &'b [char; N] {
    pattern_methods!(CharArrayRefSearcher<'a, 'b, N>, MultiCharEqPattern, CharArrayRefSearcher);
}

unsafe impl<'a, 'b, const N: usize> Searcher<'a> for CharArrayRefSearcher<'a, 'b, N> {
    searcher_methods!(forward);
}

unsafe impl<'a, 'b, const N: usize> ReverseSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> {
    searcher_methods!(reverse);
}

impl<'a, 'b, const N: usize> DoubleEndedSearcher<'a> for CharArrayRefSearcher<'a, 'b, N> {}

/////////////////////////////////////////////////////////////////////////////
// Impl for &[char]
/////////////////////////////////////////////////////////////////////////////

// Todo: Change / Remove due to ambiguity in meaning.

/// Associated type for `<&[char] as Pattern<'a>>::Searcher`.
#[derive(Clone, Debug)]
pub struct CharSliceSearcher<'a, 'b>(<MultiCharEqPattern<&'b [char]> as Pattern<'a>>::Searcher);

unsafe impl<'a, 'b> Searcher<'a> for CharSliceSearcher<'a, 'b> {
    searcher_methods!(forward);
}

unsafe impl<'a, 'b> ReverseSearcher<'a> for CharSliceSearcher<'a, 'b> {
    searcher_methods!(reverse);
}

impl<'a, 'b> DoubleEndedSearcher<'a> for CharSliceSearcher<'a, 'b> {}

/// Searches for chars that are equal to any of the [`char`]s in the slice.
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find(&['l', 'l'] as &[_]), Some(2));
/// assert_eq!("Hello world".find(&['l', 'l'][..]), Some(2));
/// ```
impl<'a, 'b> Pattern<'a> for &'b [char] {
    pattern_methods!(CharSliceSearcher<'a, 'b>, MultiCharEqPattern, CharSliceSearcher);
}

/////////////////////////////////////////////////////////////////////////////
// Impl for F: FnMut(char) -> bool
/////////////////////////////////////////////////////////////////////////////

/// Associated type for `<F as Pattern<'a>>::Searcher`.
#[derive(Clone)]
pub struct CharPredicateSearcher<'a, F>(<MultiCharEqPattern<F> as Pattern<'a>>::Searcher)
where
    F: FnMut(char) -> bool;

impl<F> fmt::Debug for CharPredicateSearcher<'_, F>
where
    F: FnMut(char) -> bool,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("CharPredicateSearcher")
            .field("haystack", &self.0.haystack)
            .field("char_indices", &self.0.char_indices)
            .finish()
    }
}
unsafe impl<'a, F> Searcher<'a> for CharPredicateSearcher<'a, F>
where
    F: FnMut(char) -> bool,
{
    searcher_methods!(forward);
}

unsafe impl<'a, F> ReverseSearcher<'a> for CharPredicateSearcher<'a, F>
where
    F: FnMut(char) -> bool,
{
    searcher_methods!(reverse);
}

impl<'a, F> DoubleEndedSearcher<'a> for CharPredicateSearcher<'a, F> where F: FnMut(char) -> bool {}

/// Searches for [`char`]s that match the given predicate.
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find(char::is_uppercase), Some(0));
/// assert_eq!("Hello world".find(|c| "aeiou".contains(c)), Some(1));
/// ```
impl<'a, F> Pattern<'a> for F
where
    F: FnMut(char) -> bool,
{
    pattern_methods!(CharPredicateSearcher<'a, F>, MultiCharEqPattern, CharPredicateSearcher);
}

/////////////////////////////////////////////////////////////////////////////
// Impl for &&str
/////////////////////////////////////////////////////////////////////////////

/// Delegates to the `&str` impl.
impl<'a, 'b, 'c> Pattern<'a> for &'c &'b str {
    pattern_methods!(StrSearcher<'a, 'b>, |&s| s, |s| s);
}

/////////////////////////////////////////////////////////////////////////////
// Impl for &str
/////////////////////////////////////////////////////////////////////////////

/// Non-allocating substring search.
///
/// Will handle the pattern `""` as returning empty matches at each character
/// boundary.
///
/// # Examples
///
/// ```
/// assert_eq!("Hello world".find("world"), Some(6));
/// ```
impl<'a, 'b> Pattern<'a> for &'b str {
    type Searcher = StrSearcher<'a, 'b>;

    #[inline]
    fn into_searcher(self, haystack: &'a str) -> StrSearcher<'a, 'b> {
        StrSearcher::new(haystack, self)
    }

    /// Checks whether the pattern matches at the front of the haystack.
    #[inline]
    fn is_prefix_of(self, haystack: &'a str) -> bool {
        haystack.as_bytes().starts_with(self.as_bytes())
    }

    /// Checks whether the pattern matches anywhere in the haystack
    #[inline]
    fn is_contained_in(self, haystack: &'a str) -> bool {
        if self.len() == 0 {
            return true;
        }

        match self.len().cmp(&haystack.len()) {
            Ordering::Less => {
                if self.len() == 1 {
                    return haystack.as_bytes().contains(&self.as_bytes()[0]);
                }

                #[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
                if self.len() <= 32 {
                    if let Some(result) = simd_contains(self, haystack) {
                        return result;
                    }
                }

                self.into_searcher(haystack).next_match().is_some()
            }
            _ => self == haystack,
        }
    }

    /// Removes the pattern from the front of haystack, if it matches.
    #[inline]
    fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str> {
        if self.is_prefix_of(haystack) {
            // SAFETY: prefix was just verified to exist.
            unsafe { Some(haystack.get_unchecked(self.as_bytes().len()..)) }
        } else {
            None
        }
    }

    /// Checks whether the pattern matches at the back of the haystack.
    #[inline]
    fn is_suffix_of(self, haystack: &'a str) -> bool {
        haystack.as_bytes().ends_with(self.as_bytes())
    }

    /// Removes the pattern from the back of haystack, if it matches.
    #[inline]
    fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> {
        if self.is_suffix_of(haystack) {
            let i = haystack.len() - self.as_bytes().len();
            // SAFETY: suffix was just verified to exist.
            unsafe { Some(haystack.get_unchecked(..i)) }
        } else {
            None
        }
    }
}

/////////////////////////////////////////////////////////////////////////////
// Two Way substring searcher
/////////////////////////////////////////////////////////////////////////////

#[derive(Clone, Debug)]
/// Associated type for `<&str as Pattern<'a>>::Searcher`.
pub struct StrSearcher<'a, 'b> {
    haystack: &'a str,
    needle: &'b str,

    searcher: StrSearcherImpl,
}

#[derive(Clone, Debug)]
enum StrSearcherImpl {
    Empty(EmptyNeedle),
    TwoWay(TwoWaySearcher),
}

#[derive(Clone, Debug)]
struct EmptyNeedle {
    position: usize,
    end: usize,
    is_match_fw: bool,
    is_match_bw: bool,
    // Needed in case of an empty haystack, see #85462
    is_finished: bool,
}

impl<'a, 'b> StrSearcher<'a, 'b> {
    fn new(haystack: &'a str, needle: &'b str) -> StrSearcher<'a, 'b> {
        if needle.is_empty() {
            StrSearcher {
                haystack,
                needle,
                searcher: StrSearcherImpl::Empty(EmptyNeedle {
                    position: 0,
                    end: haystack.len(),
                    is_match_fw: true,
                    is_match_bw: true,
                    is_finished: false,
                }),
            }
        } else {
            StrSearcher {
                haystack,
                needle,
                searcher: StrSearcherImpl::TwoWay(TwoWaySearcher::new(
                    needle.as_bytes(),
                    haystack.len(),
                )),
            }
        }
    }
}

unsafe impl<'a, 'b> Searcher<'a> for StrSearcher<'a, 'b> {
    #[inline]
    fn haystack(&self) -> &'a str {
        self.haystack
    }

    #[inline]
    fn next(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                if searcher.is_finished {
                    return SearchStep::Done;
                }
                // empty needle rejects every char and matches every empty string between them
                let is_match = searcher.is_match_fw;
                searcher.is_match_fw = !searcher.is_match_fw;
                let pos = searcher.position;
                match self.haystack[pos..].chars().next() {
                    _ if is_match => SearchStep::Match(pos, pos),
                    None => {
                        searcher.is_finished = true;
                        SearchStep::Done
                    }
                    Some(ch) => {
                        searcher.position += ch.len_utf8();
                        SearchStep::Reject(pos, searcher.position)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                // TwoWaySearcher produces valid *Match* indices that split at char boundaries
                // as long as it does correct matching and that haystack and needle are
                // valid UTF-8
                // *Rejects* from the algorithm can fall on any indices, but we will walk them
                // manually to the next character boundary, so that they are utf-8 safe.
                if searcher.position == self.haystack.len() {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next::<RejectAndMatch>(
                    self.haystack.as_bytes(),
                    self.needle.as_bytes(),
                    is_long,
                ) {
                    SearchStep::Reject(a, mut b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(b) {
                            b += 1;
                        }
                        searcher.position = cmp::max(b, searcher.position);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline]
    fn next_match(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => loop {
                match self.next() {
                    SearchStep::Match(a, b) => return Some((a, b)),
                    SearchStep::Done => return None,
                    SearchStep::Reject(..) => {}
                }
            },
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false` cases to encourage the compiler
                // to specialize the two cases separately.
                if is_long {
                    searcher.next::<MatchOnly>(
                        self.haystack.as_bytes(),
                        self.needle.as_bytes(),
                        true,
                    )
                } else {
                    searcher.next::<MatchOnly>(
                        self.haystack.as_bytes(),
                        self.needle.as_bytes(),
                        false,
                    )
                }
            }
        }
    }
}

unsafe impl<'a, 'b> ReverseSearcher<'a> for StrSearcher<'a, 'b> {
    #[inline]
    fn next_back(&mut self) -> SearchStep {
        match self.searcher {
            StrSearcherImpl::Empty(ref mut searcher) => {
                if searcher.is_finished {
                    return SearchStep::Done;
                }
                let is_match = searcher.is_match_bw;
                searcher.is_match_bw = !searcher.is_match_bw;
                let end = searcher.end;
                match self.haystack[..end].chars().next_back() {
                    _ if is_match => SearchStep::Match(end, end),
                    None => {
                        searcher.is_finished = true;
                        SearchStep::Done
                    }
                    Some(ch) => {
                        searcher.end -= ch.len_utf8();
                        SearchStep::Reject(searcher.end, end)
                    }
                }
            }
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                if searcher.end == 0 {
                    return SearchStep::Done;
                }
                let is_long = searcher.memory == usize::MAX;
                match searcher.next_back::<RejectAndMatch>(
                    self.haystack.as_bytes(),
                    self.needle.as_bytes(),
                    is_long,
                ) {
                    SearchStep::Reject(mut a, b) => {
                        // skip to next char boundary
                        while !self.haystack.is_char_boundary(a) {
                            a -= 1;
                        }
                        searcher.end = cmp::min(a, searcher.end);
                        SearchStep::Reject(a, b)
                    }
                    otherwise => otherwise,
                }
            }
        }
    }

    #[inline]
    fn next_match_back(&mut self) -> Option<(usize, usize)> {
        match self.searcher {
            StrSearcherImpl::Empty(..) => loop {
                match self.next_back() {
                    SearchStep::Match(a, b) => return Some((a, b)),
                    SearchStep::Done => return None,
                    SearchStep::Reject(..) => {}
                }
            },
            StrSearcherImpl::TwoWay(ref mut searcher) => {
                let is_long = searcher.memory == usize::MAX;
                // write out `true` and `false`, like `next_match`
                if is_long {
                    searcher.next_back::<MatchOnly>(
                        self.haystack.as_bytes(),
                        self.needle.as_bytes(),
                        true,
                    )
                } else {
                    searcher.next_back::<MatchOnly>(
                        self.haystack.as_bytes(),
                        self.needle.as_bytes(),
                        false,
                    )
                }
            }
        }
    }
}

/// The internal state of the two-way substring search algorithm.
#[derive(Clone, Debug)]
struct TwoWaySearcher {
    // constants
    /// critical factorization index
    crit_pos: usize,
    /// critical factorization index for reversed needle
    crit_pos_back: usize,
    period: usize,
    /// `byteset` is an extension (not part of the two way algorithm);
    /// it's a 64-bit "fingerprint" where each set bit `j` corresponds
    /// to a (byte & 63) == j present in the needle.
    byteset: u64,

    // variables
    position: usize,
    end: usize,
    /// index into needle before which we have already matched
    memory: usize,
    /// index into needle after which we have already matched
    memory_back: usize,
}

/*
    This is the Two-Way search algorithm, which was introduced in the paper:
    Crochemore, M., Perrin, D., 1991, Two-way string-matching, Journal of the ACM 38(3):651-675.

    Here's some background information.

    A *word* is a string of symbols. The *length* of a word should be a familiar
    notion, and here we denote it for any word x by |x|.
    (We also allow for the possibility of the *empty word*, a word of length zero).

    If x is any non-empty word, then an integer p with 0 < p <= |x| is said to be a
    *period* for x iff for all i with 0 <= i <= |x| - p - 1, we have x[i] == x[i+p].
    For example, both 1 and 2 are periods for the string "aa". As another example,
    the only period of the string "abcd" is 4.

    We denote by period(x) the *smallest* period of x (provided that x is non-empty).
    This is always well-defined since every non-empty word x has at least one period,
    |x|. We sometimes call this *the period* of x.

    If u, v and x are words such that x = uv, where uv is the concatenation of u and
    v, then we say that (u, v) is a *factorization* of x.

    Let (u, v) be a factorization for a word x. Then if w is a non-empty word such
    that both of the following hold

      - either w is a suffix of u or u is a suffix of w
      - either w is a prefix of v or v is a prefix of w

    then w is said to be a *repetition* for the factorization (u, v).

    Just to unpack this, there are four possibilities here. Let w = "abc". Then we
    might have:

      - w is a suffix of u and w is a prefix of v. ex: ("lolabc", "abcde")
      - w is a suffix of u and v is a prefix of w. ex: ("lolabc", "ab")
      - u is a suffix of w and w is a prefix of v. ex: ("bc", "abchi")
      - u is a suffix of w and v is a prefix of w. ex: ("bc", "a")

    Note that the word vu is a repetition for any factorization (u,v) of x = uv,
    so every factorization has at least one repetition.

    If x is a string and (u, v) is a factorization for x, then a *local period* for
    (u, v) is an integer r such that there is some word w such that |w| = r and w is
    a repetition for (u, v).

    We denote by local_period(u, v) the smallest local period of (u, v). We sometimes
    call this *the local period* of (u, v). Provided that x = uv is non-empty, this
    is well-defined (because each non-empty word has at least one factorization, as
    noted above).

    It can be proven that the following is an equivalent definition of a local period
    for a factorization (u, v): any positive integer r such that x[i] == x[i+r] for
    all i such that |u| - r <= i <= |u| - 1 and such that both x[i] and x[i+r] are
    defined. (i.e., i > 0 and i + r < |x|).

    Using the above reformulation, it is easy to prove that

        1 <= local_period(u, v) <= period(uv)

    A factorization (u, v) of x such that local_period(u,v) = period(x) is called a
    *critical factorization*.

    The algorithm hinges on the following theorem, which is stated without proof:

    **Critical Factorization Theorem** Any word x has at least one critical
    factorization (u, v) such that |u| < period(x).

    The purpose of maximal_suffix is to find such a critical factorization.

    If the period is short, compute another factorization x = u' v' to use
    for reverse search, chosen instead so that |v'| < period(x).

*/
impl TwoWaySearcher {
    fn new(needle: &[u8], end: usize) -> TwoWaySearcher {
        let (crit_pos_false, period_false) = TwoWaySearcher::maximal_suffix(needle, false);
        let (crit_pos_true, period_true) = TwoWaySearcher::maximal_suffix(needle, true);

        let (crit_pos, period) = if crit_pos_false > crit_pos_true {
            (crit_pos_false, period_false)
        } else {
            (crit_pos_true, period_true)
        };

        // A particularly readable explanation of what's going on here can be found
        // in Crochemore and Rytter's book "Text Algorithms", ch 13. Specifically
        // see the code for "Algorithm CP" on p. 323.
        //
        // What's going on is we have some critical factorization (u, v) of the
        // needle, and we want to determine whether u is a suffix of
        // &v[..period]. If it is, we use "Algorithm CP1". Otherwise we use
        // "Algorithm CP2", which is optimized for when the period of the needle
        // is large.
        if needle[..crit_pos] == needle[period..period + crit_pos] {
            // short period case -- the period is exact
            // compute a separate critical factorization for the reversed needle
            // x = u' v' where |v'| < period(x).
            //
            // This is sped up by the period being known already.
            // Note that a case like x = "acba" may be factored exactly forwards
            // (crit_pos = 1, period = 3) while being factored with approximate
            // period in reverse (crit_pos = 2, period = 2). We use the given
            // reverse factorization but keep the exact period.
            let crit_pos_back = needle.len()
                - cmp::max(
                    TwoWaySearcher::reverse_maximal_suffix(needle, period, false),
                    TwoWaySearcher::reverse_maximal_suffix(needle, period, true),
                );

            TwoWaySearcher {
                crit_pos,
                crit_pos_back,
                period,
                byteset: Self::byteset_create(&needle[..period]),

                position: 0,
                end,
                memory: 0,
                memory_back: needle.len(),
            }
        } else {
            // long period case -- we have an approximation to the actual period,
            // and don't use memorization.
            //
            // Approximate the period by lower bound max(|u|, |v|) + 1.
            // The critical factorization is efficient to use for both forward and
            // reverse search.

            TwoWaySearcher {
                crit_pos,
                crit_pos_back: crit_pos,
                period: cmp::max(crit_pos, needle.len() - crit_pos) + 1,
                byteset: Self::byteset_create(needle),

                position: 0,
                end,
                memory: usize::MAX, // Dummy value to signify that the period is long
                memory_back: usize::MAX,
            }
        }
    }

    #[inline]
    fn byteset_create(bytes: &[u8]) -> u64 {
        bytes.iter().fold(0, |a, &b| (1 << (b & 0x3f)) | a)
    }

    #[inline]
    fn byteset_contains(&self, byte: u8) -> bool {
        (self.byteset >> ((byte & 0x3f) as usize)) & 1 != 0
    }

    // One of the main ideas of Two-Way is that we factorize the needle into
    // two halves, (u, v), and begin trying to find v in the haystack by scanning
    // left to right. If v matches, we try to match u by scanning right to left.
    // How far we can jump when we encounter a mismatch is all based on the fact
    // that (u, v) is a critical factorization for the needle.
    #[inline]
    fn next<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output
    where
        S: TwoWayStrategy,
    {
        // `next()` uses `self.position` as its cursor
        let old_pos = self.position;
        let needle_last = needle.len() - 1;
        'search: loop {
            // Check that we have room to search in
            // position + needle_last can not overflow if we assume slices
            // are bounded by isize's range.
            let tail_byte = match haystack.get(self.position + needle_last) {
                Some(&b) => b,
                None => {
                    self.position = haystack.len();
                    return S::rejecting(old_pos, self.position);
                }
            };

            if S::use_early_reject() && old_pos != self.position {
                return S::rejecting(old_pos, self.position);
            }

            // Quickly skip by large portions unrelated to our substring
            if !self.byteset_contains(tail_byte) {
                self.position += needle.len();
                if !long_period {
                    self.memory = 0;
                }
                continue 'search;
            }

            // See if the right part of the needle matches
            let start =
                if long_period { self.crit_pos } else { cmp::max(self.crit_pos, self.memory) };
            for i in start..needle.len() {
                if needle[i] != haystack[self.position + i] {
                    self.position += i - self.crit_pos + 1;
                    if !long_period {
                        self.memory = 0;
                    }
                    continue 'search;
                }
            }

            // See if the left part of the needle matches
            let start = if long_period { 0 } else { self.memory };
            for i in (start..self.crit_pos).rev() {
                if needle[i] != haystack[self.position + i] {
                    self.position += self.period;
                    if !long_period {
                        self.memory = needle.len() - self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.position;

            // Note: add self.period instead of needle.len() to have overlapping matches
            self.position += needle.len();
            if !long_period {
                self.memory = 0; // set to needle.len() - self.period for overlapping matches
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Follows the ideas in `next()`.
    //
    // The definitions are symmetrical, with period(x) = period(reverse(x))
    // and local_period(u, v) = local_period(reverse(v), reverse(u)), so if (u, v)
    // is a critical factorization, so is (reverse(v), reverse(u)).
    //
    // For the reverse case we have computed a critical factorization x = u' v'
    // (field `crit_pos_back`). We need |u| < period(x) for the forward case and
    // thus |v'| < period(x) for the reverse.
    //
    // To search in reverse through the haystack, we search forward through
    // a reversed haystack with a reversed needle, matching first u' and then v'.
    #[inline]
    fn next_back<S>(&mut self, haystack: &[u8], needle: &[u8], long_period: bool) -> S::Output
    where
        S: TwoWayStrategy,
    {
        // `next_back()` uses `self.end` as its cursor -- so that `next()` and `next_back()`
        // are independent.
        let old_end = self.end;
        'search: loop {
            // Check that we have room to search in
            // end - needle.len() will wrap around when there is no more room,
            // but due to slice length limits it can never wrap all the way back
            // into the length of haystack.
            let front_byte = match haystack.get(self.end.wrapping_sub(needle.len())) {
                Some(&b) => b,
                None => {
                    self.end = 0;
                    return S::rejecting(0, old_end);
                }
            };

            if S::use_early_reject() && old_end != self.end {
                return S::rejecting(self.end, old_end);
            }

            // Quickly skip by large portions unrelated to our substring
            if !self.byteset_contains(front_byte) {
                self.end -= needle.len();
                if !long_period {
                    self.memory_back = needle.len();
                }
                continue 'search;
            }

            // See if the left part of the needle matches
            let crit = if long_period {
                self.crit_pos_back
            } else {
                cmp::min(self.crit_pos_back, self.memory_back)
            };
            for i in (0..crit).rev() {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.crit_pos_back - i;
                    if !long_period {
                        self.memory_back = needle.len();
                    }
                    continue 'search;
                }
            }

            // See if the right part of the needle matches
            let needle_end = if long_period { needle.len() } else { self.memory_back };
            for i in self.crit_pos_back..needle_end {
                if needle[i] != haystack[self.end - needle.len() + i] {
                    self.end -= self.period;
                    if !long_period {
                        self.memory_back = self.period;
                    }
                    continue 'search;
                }
            }

            // We have found a match!
            let match_pos = self.end - needle.len();
            // Note: sub self.period instead of needle.len() to have overlapping matches
            self.end -= needle.len();
            if !long_period {
                self.memory_back = needle.len();
            }

            return S::matching(match_pos, match_pos + needle.len());
        }
    }

    // Compute the maximal suffix of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u, v) of `arr`.
    //
    // Returns (`i`, `p`) where `i` is the starting index of v and `p` is the
    // period of v.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    #[inline]
    fn maximal_suffix(arr: &[u8], order_greater: bool) -> (usize, usize) {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
        // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper

        while let Some(&a) = arr.get(right + offset) {
            // `left` will be inbounds when `right` is.
            let b = arr[left + offset];
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
        }
        (left, period)
    }

    // Compute the maximal suffix of the reverse of `arr`.
    //
    // The maximal suffix is a possible critical factorization (u', v') of `arr`.
    //
    // Returns `i` where `i` is the starting index of v', from the back;
    // returns immediately when a period of `known_period` is reached.
    //
    // `order_greater` determines if lexical order is `<` or `>`. Both
    // orders must be computed -- the ordering with the largest `i` gives
    // a critical factorization.
    //
    // For long period cases, the resulting period is not exact (it is too short).
    fn reverse_maximal_suffix(arr: &[u8], known_period: usize, order_greater: bool) -> usize {
        let mut left = 0; // Corresponds to i in the paper
        let mut right = 1; // Corresponds to j in the paper
        let mut offset = 0; // Corresponds to k in the paper, but starting at 0
        // to match 0-based indexing.
        let mut period = 1; // Corresponds to p in the paper
        let n = arr.len();

        while right + offset < n {
            let a = arr[n - (1 + right + offset)];
            let b = arr[n - (1 + left + offset)];
            if (a < b && !order_greater) || (a > b && order_greater) {
                // Suffix is smaller, period is entire prefix so far.
                right += offset + 1;
                offset = 0;
                period = right - left;
            } else if a == b {
                // Advance through repetition of the current period.
                if offset + 1 == period {
                    right += offset + 1;
                    offset = 0;
                } else {
                    offset += 1;
                }
            } else {
                // Suffix is larger, start over from current location.
                left = right;
                right += 1;
                offset = 0;
                period = 1;
            }
            if period == known_period {
                break;
            }
        }
        debug_assert!(period <= known_period);
        left
    }
}

// TwoWayStrategy allows the algorithm to either skip non-matches as quickly
// as possible, or to work in a mode where it emits Rejects relatively quickly.
trait TwoWayStrategy {
    type Output;
    fn use_early_reject() -> bool;
    fn rejecting(a: usize, b: usize) -> Self::Output;
    fn matching(a: usize, b: usize) -> Self::Output;
}

/// Skip to match intervals as quickly as possible
enum MatchOnly {}

impl TwoWayStrategy for MatchOnly {
    type Output = Option<(usize, usize)>;

    #[inline]
    fn use_early_reject() -> bool {
        false
    }
    #[inline]
    fn rejecting(_a: usize, _b: usize) -> Self::Output {
        None
    }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output {
        Some((a, b))
    }
}

/// Emit Rejects regularly
enum RejectAndMatch {}

impl TwoWayStrategy for RejectAndMatch {
    type Output = SearchStep;

    #[inline]
    fn use_early_reject() -> bool {
        true
    }
    #[inline]
    fn rejecting(a: usize, b: usize) -> Self::Output {
        SearchStep::Reject(a, b)
    }
    #[inline]
    fn matching(a: usize, b: usize) -> Self::Output {
        SearchStep::Match(a, b)
    }
}

/// SIMD search for short needles based on
/// Wojciech Muła's "SIMD-friendly algorithms for substring searching"[0]
///
/// It skips ahead by the vector width on each iteration (rather than the needle length as two-way
/// does) by probing the first and last byte of the needle for the whole vector width
/// and only doing full needle comparisons when the vectorized probe indicated potential matches.
///
/// Since the x86_64 baseline only offers SSE2 we only use u8x16 here.
/// If we ever ship std with for x86-64-v3 or adapt this for other platforms then wider vectors
/// should be evaluated.
///
/// For haystacks smaller than vector-size + needle length it falls back to
/// a naive O(n*m) search so this implementation should not be called on larger needles.
///
/// [0]: http://0x80.pl/articles/simd-strfind.html#sse-avx2
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))]
#[inline]
fn simd_contains(needle: &str, haystack: &str) -> Option<bool> {
    let needle = needle.as_bytes();
    let haystack = haystack.as_bytes();

    debug_assert!(needle.len() > 1);

    use crate::ops::BitAnd;
    use crate::simd::cmp::SimdPartialEq;
    use crate::simd::mask8x16 as Mask;
    use crate::simd::u8x16 as Block;

    let first_probe = needle[0];
    let last_byte_offset = needle.len() - 1;

    // the offset used for the 2nd vector
    let second_probe_offset = if needle.len() == 2 {
        // never bail out on len=2 needles because the probes will fully cover them and have
        // no degenerate cases.
        1
    } else {
        // try a few bytes in case first and last byte of the needle are the same
        let Some(second_probe_offset) =
            (needle.len().saturating_sub(4)..needle.len()).rfind(|&idx| needle[idx] != first_probe)
        else {
            // fall back to other search methods if we can't find any different bytes
            // since we could otherwise hit some degenerate cases
            return None;
        };
        second_probe_offset
    };

    // do a naive search if the haystack is too small to fit
    if haystack.len() < Block::LEN + last_byte_offset {
        return Some(haystack.windows(needle.len()).any(|c| c == needle));
    }

    let first_probe: Block = Block::splat(first_probe);
    let second_probe: Block = Block::splat(needle[second_probe_offset]);
    // first byte are already checked by the outer loop. to verify a match only the
    // remainder has to be compared.
    let trimmed_needle = &needle[1..];

    // this #[cold] is load-bearing, benchmark before removing it...
    let check_mask = #[cold]
    |idx, mask: u16, skip: bool| -> bool {
        if skip {
            return false;
        }

        // and so is this. optimizations are weird.
        let mut mask = mask;

        while mask != 0 {
            let trailing = mask.trailing_zeros();
            let offset = idx + trailing as usize + 1;
            // SAFETY: mask is between 0 and 15 trailing zeroes, we skip one additional byte that was already compared
            // and then take trimmed_needle.len() bytes. This is within the bounds defined by the outer loop
            unsafe {
                let sub = haystack.get_unchecked(offset..).get_unchecked(..trimmed_needle.len());
                if small_slice_eq(sub, trimmed_needle) {
                    return true;
                }
            }
            mask &= !(1 << trailing);
        }
        return false;
    };

    let test_chunk = |idx| -> u16 {
        // SAFETY: this requires at least LANES bytes being readable at idx
        // that is ensured by the loop ranges (see comments below)
        let a: Block = unsafe { haystack.as_ptr().add(idx).cast::<Block>().read_unaligned() };
        // SAFETY: this requires LANES + block_offset bytes being readable at idx
        let b: Block = unsafe {
            haystack.as_ptr().add(idx).add(second_probe_offset).cast::<Block>().read_unaligned()
        };
        let eq_first: Mask = a.simd_eq(first_probe);
        let eq_last: Mask = b.simd_eq(second_probe);
        let both = eq_first.bitand(eq_last);
        let mask = both.to_bitmask() as u16;

        return mask;
    };

    let mut i = 0;
    let mut result = false;
    // The loop condition must ensure that there's enough headroom to read LANE bytes,
    // and not only at the current index but also at the index shifted by block_offset
    const UNROLL: usize = 4;
    while i + last_byte_offset + UNROLL * Block::LEN < haystack.len() && !result {
        let mut masks = [0u16; UNROLL];
        for j in 0..UNROLL {
            masks[j] = test_chunk(i + j * Block::LEN);
        }
        for j in 0..UNROLL {
            let mask = masks[j];
            if mask != 0 {
                result |= check_mask(i + j * Block::LEN, mask, result);
            }
        }
        i += UNROLL * Block::LEN;
    }
    while i + last_byte_offset + Block::LEN < haystack.len() && !result {
        let mask = test_chunk(i);
        if mask != 0 {
            result |= check_mask(i, mask, result);
        }
        i += Block::LEN;
    }

    // Process the tail that didn't fit into LANES-sized steps.
    // This simply repeats the same procedure but as right-aligned chunk instead
    // of a left-aligned one. The last byte must be exactly flush with the string end so
    // we don't miss a single byte or read out of bounds.
    let i = haystack.len() - last_byte_offset - Block::LEN;
    let mask = test_chunk(i);
    if mask != 0 {
        result |= check_mask(i, mask, result);
    }

    Some(result)
}

/// Compares short slices for equality.
///
/// It avoids a call to libc's memcmp which is faster on long slices
/// due to SIMD optimizations but it incurs a function call overhead.
///
/// # Safety
///
/// Both slices must have the same length.
#[cfg(all(target_arch = "x86_64", target_feature = "sse2"))] // only called on x86
#[inline]
unsafe fn small_slice_eq(x: &[u8], y: &[u8]) -> bool {
    debug_assert_eq!(x.len(), y.len());
    // This function is adapted from
    // https://github.com/BurntSushi/memchr/blob/8037d11b4357b0f07be2bb66dc2659d9cf28ad32/src/memmem/util.rs#L32

    // If we don't have enough bytes to do 4-byte at a time loads, then
    // fall back to the naive slow version.
    //
    // Potential alternative: We could do a copy_nonoverlapping combined with a mask instead
    // of a loop. Benchmark it.
    if x.len() < 4 {
        for (&b1, &b2) in x.iter().zip(y) {
            if b1 != b2 {
                return false;
            }
        }
        return true;
    }
    // When we have 4 or more bytes to compare, then proceed in chunks of 4 at
    // a time using unaligned loads.
    //
    // Also, why do 4 byte loads instead of, say, 8 byte loads? The reason is
    // that this particular version of memcmp is likely to be called with tiny
    // needles. That means that if we do 8 byte loads, then a higher proportion
    // of memcmp calls will use the slower variant above. With that said, this
    // is a hypothesis and is only loosely supported by benchmarks. There's
    // likely some improvement that could be made here. The main thing here
    // though is to optimize for latency, not throughput.

    // SAFETY: Via the conditional above, we know that both `px` and `py`
    // have the same length, so `px < pxend` implies that `py < pyend`.
    // Thus, dereferencing both `px` and `py` in the loop below is safe.
    //
    // Moreover, we set `pxend` and `pyend` to be 4 bytes before the actual
    // end of `px` and `py`. Thus, the final dereference outside of the
    // loop is guaranteed to be valid. (The final comparison will overlap with
    // the last comparison done in the loop for lengths that aren't multiples
    // of four.)
    //
    // Finally, we needn't worry about alignment here, since we do unaligned
    // loads.
    unsafe {
        let (mut px, mut py) = (x.as_ptr(), y.as_ptr());
        let (pxend, pyend) = (px.add(x.len() - 4), py.add(y.len() - 4));
        while px < pxend {
            let vx = (px as *const u32).read_unaligned();
            let vy = (py as *const u32).read_unaligned();
            if vx != vy {
                return false;
            }
            px = px.add(4);
            py = py.add(4);
        }
        let vx = (pxend as *const u32).read_unaligned();
        let vy = (pyend as *const u32).read_unaligned();
        vx == vy
    }
}