core/fmt/
num.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
//! Integer and floating-point number formatting

use crate::mem::MaybeUninit;
use crate::num::fmt as numfmt;
use crate::ops::{Div, Rem, Sub};
use crate::{fmt, ptr, slice, str};

#[doc(hidden)]
trait DisplayInt:
    PartialEq + PartialOrd + Div<Output = Self> + Rem<Output = Self> + Sub<Output = Self> + Copy
{
    fn zero() -> Self;
    fn from_u8(u: u8) -> Self;
    fn to_u8(&self) -> u8;
    #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
    fn to_u32(&self) -> u32;
    fn to_u64(&self) -> u64;
    fn to_u128(&self) -> u128;
}

macro_rules! impl_int {
    ($($t:ident)*) => (
      $(impl DisplayInt for $t {
          fn zero() -> Self { 0 }
          fn from_u8(u: u8) -> Self { u as Self }
          fn to_u8(&self) -> u8 { *self as u8 }
          #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
          fn to_u32(&self) -> u32 { *self as u32 }
          fn to_u64(&self) -> u64 { *self as u64 }
          fn to_u128(&self) -> u128 { *self as u128 }
      })*
    )
}
macro_rules! impl_uint {
    ($($t:ident)*) => (
      $(impl DisplayInt for $t {
          fn zero() -> Self { 0 }
          fn from_u8(u: u8) -> Self { u as Self }
          fn to_u8(&self) -> u8 { *self as u8 }
          #[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
          fn to_u32(&self) -> u32 { *self as u32 }
          fn to_u64(&self) -> u64 { *self as u64 }
          fn to_u128(&self) -> u128 { *self as u128 }
      })*
    )
}

impl_int! { i8 i16 i32 i64 i128 isize }
impl_uint! { u8 u16 u32 u64 u128 usize }

/// A type that represents a specific radix
///
/// # Safety
///
/// `digit` must return an ASCII character.
#[doc(hidden)]
unsafe trait GenericRadix: Sized {
    /// The number of digits.
    const BASE: u8;

    /// A radix-specific prefix string.
    const PREFIX: &'static str;

    /// Converts an integer to corresponding radix digit.
    fn digit(x: u8) -> u8;

    /// Format an integer using the radix using a formatter.
    fn fmt_int<T: DisplayInt>(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // The radix can be as low as 2, so we need a buffer of at least 128
        // characters for a base 2 number.
        let zero = T::zero();
        let is_nonnegative = x >= zero;
        let mut buf = [MaybeUninit::<u8>::uninit(); 128];
        let mut curr = buf.len();
        let base = T::from_u8(Self::BASE);
        if is_nonnegative {
            // Accumulate each digit of the number from the least significant
            // to the most significant figure.
            for byte in buf.iter_mut().rev() {
                let n = x % base; // Get the current place value.
                x = x / base; // Deaccumulate the number.
                byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer.
                curr -= 1;
                if x == zero {
                    // No more digits left to accumulate.
                    break;
                };
            }
        } else {
            // Do the same as above, but accounting for two's complement.
            for byte in buf.iter_mut().rev() {
                let n = zero - (x % base); // Get the current place value.
                x = x / base; // Deaccumulate the number.
                byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer.
                curr -= 1;
                if x == zero {
                    // No more digits left to accumulate.
                    break;
                };
            }
        }
        let buf = &buf[curr..];
        // SAFETY: The only chars in `buf` are created by `Self::digit` which are assumed to be
        // valid UTF-8
        let buf = unsafe {
            str::from_utf8_unchecked(slice::from_raw_parts(
                MaybeUninit::slice_as_ptr(buf),
                buf.len(),
            ))
        };
        f.pad_integral(is_nonnegative, Self::PREFIX, buf)
    }
}

/// A binary (base 2) radix
#[derive(Clone, PartialEq)]
struct Binary;

/// An octal (base 8) radix
#[derive(Clone, PartialEq)]
struct Octal;

/// A hexadecimal (base 16) radix, formatted with lower-case characters
#[derive(Clone, PartialEq)]
struct LowerHex;

/// A hexadecimal (base 16) radix, formatted with upper-case characters
#[derive(Clone, PartialEq)]
struct UpperHex;

macro_rules! radix {
    ($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => {
        unsafe impl GenericRadix for $T {
            const BASE: u8 = $base;
            const PREFIX: &'static str = $prefix;
            fn digit(x: u8) -> u8 {
                match x {
                    $($x => $conv,)+
                    x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x),
                }
            }
        }
    }
}

radix! { Binary,    2, "0b", x @  0 ..=  1 => b'0' + x }
radix! { Octal,     8, "0o", x @  0 ..=  7 => b'0' + x }
radix! { LowerHex, 16, "0x", x @  0 ..=  9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @  0 ..=  9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) }

macro_rules! int_base {
    (fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::$Trait for $T {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                $Radix.fmt_int(*self as $U, f)
            }
        }
    };
}

macro_rules! integer {
    ($Int:ident, $Uint:ident) => {
        int_base! { fmt::Binary   for $Int as $Uint  -> Binary }
        int_base! { fmt::Octal    for $Int as $Uint  -> Octal }
        int_base! { fmt::LowerHex for $Int as $Uint  -> LowerHex }
        int_base! { fmt::UpperHex for $Int as $Uint  -> UpperHex }

        int_base! { fmt::Binary   for $Uint as $Uint -> Binary }
        int_base! { fmt::Octal    for $Uint as $Uint -> Octal }
        int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex }
        int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex }
    };
}
integer! { isize, usize }
integer! { i8, u8 }
integer! { i16, u16 }
integer! { i32, u32 }
integer! { i64, u64 }
integer! { i128, u128 }
macro_rules! debug {
    ($($T:ident)*) => {$(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::Debug for $T {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                if f.debug_lower_hex() {
                    fmt::LowerHex::fmt(self, f)
                } else if f.debug_upper_hex() {
                    fmt::UpperHex::fmt(self, f)
                } else {
                    fmt::Display::fmt(self, f)
                }
            }
        }
    )*};
}
debug! {
  i8 i16 i32 i64 i128 isize
  u8 u16 u32 u64 u128 usize
}

// 2 digit decimal look up table
static DEC_DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\
      2021222324252627282930313233343536373839\
      4041424344454647484950515253545556575859\
      6061626364656667686970717273747576777879\
      8081828384858687888990919293949596979899";

macro_rules! impl_Display {
    ($($t:ident $(as $positive:ident)? named $name:ident,)* ; as $u:ident via $conv_fn:ident named $gen_name:ident) => {

        $(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::Display for $t {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                // If it's a signed integer.
                $(
                    let is_nonnegative = *self >= 0;

                    #[cfg(not(feature = "optimize_for_size"))]
                    {
                        if !is_nonnegative {
                            // convert the negative num to positive by summing 1 to its 2s complement
                            return (!self as $positive).wrapping_add(1)._fmt(false, f);
                        }
                    }
                    #[cfg(feature = "optimize_for_size")]
                    {
                        if !is_nonnegative {
                            // convert the negative num to positive by summing 1 to its 2s complement
                            return $gen_name((!self.$conv_fn()).wrapping_add(1), false, f);
                        }
                    }
                )?
                // If it's a positive integer.
                #[cfg(not(feature = "optimize_for_size"))]
                {
                    self._fmt(true, f)
                }
                #[cfg(feature = "optimize_for_size")]
                {
                    $gen_name(self.$conv_fn(), true, f)
                }
            }
        }

        #[cfg(not(feature = "optimize_for_size"))]
        impl $t {
            fn _fmt(mut self: $t, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                const SIZE: usize = $t::MAX.ilog(10) as usize + 1;
                let mut buf = [MaybeUninit::<u8>::uninit(); SIZE];
                let mut curr = SIZE;
                let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
                let lut_ptr = DEC_DIGITS_LUT.as_ptr();

                // SAFETY: Since `d1` and `d2` are always less than or equal to `198`, we
                // can copy from `lut_ptr[d1..d1 + 1]` and `lut_ptr[d2..d2 + 1]`. To show
                // that it's OK to copy into `buf_ptr`, notice that at the beginning
                // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
                // each step this is kept the same as `n` is divided. Since `n` is always
                // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
                // is safe to access.
                unsafe {
                    // need at least 16 bits for the 4-characters-at-a-time to work.
                    #[allow(overflowing_literals)]
                    #[allow(unused_comparisons)]
                    // This block will be removed for smaller types at compile time and in the worst
                    // case, it will prevent to have the `10000` literal to overflow for `i8` and `u8`.
                    if core::mem::size_of::<$t>() >= 2 {
                        // eagerly decode 4 characters at a time
                        while self >= 10000 {
                            let rem = (self % 10000) as usize;
                            self /= 10000;

                            let d1 = (rem / 100) << 1;
                            let d2 = (rem % 100) << 1;
                            curr -= 4;

                            // We are allowed to copy to `buf_ptr[curr..curr + 3]` here since
                            // otherwise `curr < 0`. But then `n` was originally at least `10000^10`
                            // which is `10^40 > 2^128 > n`.
                            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(curr), 2);
                            ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(curr + 2), 2);
                        }
                    }

                    // if we reach here numbers are <= 9999, so at most 4 chars long
                    let mut n = self as usize; // possibly reduce 64bit math

                    // decode 2 more chars, if > 2 chars
                    if n >= 100 {
                        let d1 = (n % 100) << 1;
                        n /= 100;
                        curr -= 2;
                        ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
                    }

                    // if we reach here numbers are <= 100, so at most 2 chars long
                    // The biggest it can be is 99, and 99 << 1 == 198, so a `u8` is enough.
                    // decode last 1 or 2 chars
                    if n < 10 {
                        curr -= 1;
                        *buf_ptr.add(curr) = (n as u8) + b'0';
                    } else {
                        let d1 = n << 1;
                        curr -= 2;
                        ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
                    }
                }

                // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
                // UTF-8 since `DEC_DIGITS_LUT` is
                let buf_slice = unsafe {
                    str::from_utf8_unchecked(
                        slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr))
                };
                f.pad_integral(is_nonnegative, "", buf_slice)
            }
        })*

        #[cfg(feature = "optimize_for_size")]
        fn $gen_name(mut n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            // 2^128 is about 3*10^38, so 39 gives an extra byte of space
            let mut buf = [MaybeUninit::<u8>::uninit(); 39];
            let mut curr = buf.len();
            let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);

            // SAFETY: To show that it's OK to copy into `buf_ptr`, notice that at the beginning
            // `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
            // each step this is kept the same as `n` is divided. Since `n` is always
            // non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
            // is safe to access.
            unsafe {
                loop {
                    curr -= 1;
                    buf_ptr.add(curr).write((n % 10) as u8 + b'0');
                    n /= 10;

                    if n == 0 {
                        break;
                    }
                }
            }

            // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid UTF-8
            let buf_slice = unsafe {
                str::from_utf8_unchecked(
                    slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr))
            };
            f.pad_integral(is_nonnegative, "", buf_slice)
        }
    };
}

macro_rules! impl_Exp {
    ($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => {
        fn $name(
            mut n: $u,
            is_nonnegative: bool,
            upper: bool,
            f: &mut fmt::Formatter<'_>
        ) -> fmt::Result {
            let (mut n, mut exponent, trailing_zeros, added_precision) = {
                let mut exponent = 0;
                // count and remove trailing decimal zeroes
                while n % 10 == 0 && n >= 10 {
                    n /= 10;
                    exponent += 1;
                }
                let (added_precision, subtracted_precision) = match f.precision() {
                    Some(fmt_prec) => {
                        // number of decimal digits minus 1
                        let mut tmp = n;
                        let mut prec = 0;
                        while tmp >= 10 {
                            tmp /= 10;
                            prec += 1;
                        }
                        (fmt_prec.saturating_sub(prec), prec.saturating_sub(fmt_prec))
                    }
                    None => (0, 0)
                };
                for _ in 1..subtracted_precision {
                    n /= 10;
                    exponent += 1;
                }
                if subtracted_precision != 0 {
                    let rem = n % 10;
                    n /= 10;
                    exponent += 1;
                    // round up last digit, round to even on a tie
                    if rem > 5 || (rem == 5 && (n % 2 != 0 || subtracted_precision > 1 )) {
                        n += 1;
                        // if the digit is rounded to the next power
                        // instead adjust the exponent
                        if n.ilog10() > (n - 1).ilog10() {
                            n /= 10;
                            exponent += 1;
                        }
                    }
                }
                (n, exponent, exponent, added_precision)
            };

            // Since `curr` always decreases by the number of digits copied, this means
            // that `curr >= 0`.
            let mut buf = [MaybeUninit::<u8>::uninit(); 40];
            let mut curr = buf.len(); //index for buf
            let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
            let lut_ptr = DEC_DIGITS_LUT.as_ptr();

            // decode 2 chars at a time
            while n >= 100 {
                let d1 = ((n % 100) as usize) << 1;
                curr -= 2;
                // SAFETY: `d1 <= 198`, so we can copy from `lut_ptr[d1..d1 + 2]` since
                // `DEC_DIGITS_LUT` has a length of 200.
                unsafe {
                    ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
                }
                n /= 100;
                exponent += 2;
            }
            // n is <= 99, so at most 2 chars long
            let mut n = n as isize; // possibly reduce 64bit math
            // decode second-to-last character
            if n >= 10 {
                curr -= 1;
                // SAFETY: Safe since `40 > curr >= 0` (see comment)
                unsafe {
                    *buf_ptr.add(curr) = (n as u8 % 10_u8) + b'0';
                }
                n /= 10;
                exponent += 1;
            }
            // add decimal point iff >1 mantissa digit will be printed
            if exponent != trailing_zeros || added_precision != 0 {
                curr -= 1;
                // SAFETY: Safe since `40 > curr >= 0`
                unsafe {
                    *buf_ptr.add(curr) = b'.';
                }
            }

            // SAFETY: Safe since `40 > curr >= 0`
            let buf_slice = unsafe {
                // decode last character
                curr -= 1;
                *buf_ptr.add(curr) = (n as u8) + b'0';

                let len = buf.len() - curr as usize;
                slice::from_raw_parts(buf_ptr.add(curr), len)
            };

            // stores 'e' (or 'E') and the up to 2-digit exponent
            let mut exp_buf = [MaybeUninit::<u8>::uninit(); 3];
            let exp_ptr = MaybeUninit::slice_as_mut_ptr(&mut exp_buf);
            // SAFETY: In either case, `exp_buf` is written within bounds and `exp_ptr[..len]`
            // is contained within `exp_buf` since `len <= 3`.
            let exp_slice = unsafe {
                *exp_ptr.add(0) = if upper { b'E' } else { b'e' };
                let len = if exponent < 10 {
                    *exp_ptr.add(1) = (exponent as u8) + b'0';
                    2
                } else {
                    let off = exponent << 1;
                    ptr::copy_nonoverlapping(lut_ptr.add(off), exp_ptr.add(1), 2);
                    3
                };
                slice::from_raw_parts(exp_ptr, len)
            };

            let parts = &[
                numfmt::Part::Copy(buf_slice),
                numfmt::Part::Zero(added_precision),
                numfmt::Part::Copy(exp_slice),
            ];
            let sign = if !is_nonnegative {
                "-"
            } else if f.sign_plus() {
                "+"
            } else {
                ""
            };
            let formatted = numfmt::Formatted { sign, parts };
            // SAFETY: `buf_slice` and `exp_slice` contain only ASCII characters.
            unsafe { f.pad_formatted_parts(&formatted) }
        }

        $(
            #[stable(feature = "integer_exp_format", since = "1.42.0")]
            impl fmt::LowerExp for $t {
                #[allow(unused_comparisons)]
                fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                    let is_nonnegative = *self >= 0;
                    let n = if is_nonnegative {
                        self.$conv_fn()
                    } else {
                        // convert the negative num to positive by summing 1 to its 2s complement
                        (!self.$conv_fn()).wrapping_add(1)
                    };
                    $name(n, is_nonnegative, false, f)
                }
            })*
        $(
            #[stable(feature = "integer_exp_format", since = "1.42.0")]
            impl fmt::UpperExp for $t {
                #[allow(unused_comparisons)]
                fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                    let is_nonnegative = *self >= 0;
                    let n = if is_nonnegative {
                        self.$conv_fn()
                    } else {
                        // convert the negative num to positive by summing 1 to its 2s complement
                        (!self.$conv_fn()).wrapping_add(1)
                    };
                    $name(n, is_nonnegative, true, f)
                }
            })*
    };
}

// Include wasm32 in here since it doesn't reflect the native pointer size, and
// often cares strongly about getting a smaller code size.
#[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))]
mod imp {
    use super::*;
    impl_Display!(
        i8 as u8 named fmt_i8,
        u8 named fmt_u8,
        i16 as u16  named fmt_i16,
        u16 named fmt_u16,
        i32 as u32 named fmt_i32,
        u32 named fmt_u32,
        i64 as u64 named fmt_i64,
        u64 named fmt_u64,
        isize as usize named fmt_isize,
        usize named fmt_usize,
        ; as u64 via to_u64 named fmt_u64
    );
    impl_Exp!(
        i8, u8, i16, u16, i32, u32, i64, u64, usize, isize
            as u64 via to_u64 named exp_u64
    );
}

#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
mod imp {
    use super::*;
    impl_Display!(
        i8 as u8 named fmt_i8,
        u8 named fmt_u8,
        i16 as u16  named fmt_i16,
        u16 named fmt_u16,
        i32 as u32 named fmt_i32,
        u32 named fmt_u32,
        isize as usize named fmt_isize,
        usize named fmt_usize,
        ; as u32 via to_u32 named fmt_u32);
    impl_Display!(
        i64 as u64 named fmt_i64,
        u64 named fmt_u64,
        ; as u64 via to_u64 named fmt_u64);

    impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32);
    impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64);
}
impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128);

/// Helper function for writing a u64 into `buf` going from last to first, with `curr`.
fn parse_u64_into<const N: usize>(mut n: u64, buf: &mut [MaybeUninit<u8>; N], curr: &mut usize) {
    let buf_ptr = MaybeUninit::slice_as_mut_ptr(buf);
    let lut_ptr = DEC_DIGITS_LUT.as_ptr();
    assert!(*curr > 19);

    // SAFETY:
    // Writes at most 19 characters into the buffer. Guaranteed that any ptr into LUT is at most
    // 198, so will never OOB. There is a check above that there are at least 19 characters
    // remaining.
    unsafe {
        if n >= 1e16 as u64 {
            let to_parse = n % 1e16 as u64;
            n /= 1e16 as u64;

            // Some of these are nops but it looks more elegant this way.
            let d1 = ((to_parse / 1e14 as u64) % 100) << 1;
            let d2 = ((to_parse / 1e12 as u64) % 100) << 1;
            let d3 = ((to_parse / 1e10 as u64) % 100) << 1;
            let d4 = ((to_parse / 1e8 as u64) % 100) << 1;
            let d5 = ((to_parse / 1e6 as u64) % 100) << 1;
            let d6 = ((to_parse / 1e4 as u64) % 100) << 1;
            let d7 = ((to_parse / 1e2 as u64) % 100) << 1;
            let d8 = ((to_parse / 1e0 as u64) % 100) << 1;

            *curr -= 16;

            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d5 as usize), buf_ptr.add(*curr + 8), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d6 as usize), buf_ptr.add(*curr + 10), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d7 as usize), buf_ptr.add(*curr + 12), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d8 as usize), buf_ptr.add(*curr + 14), 2);
        }
        if n >= 1e8 as u64 {
            let to_parse = n % 1e8 as u64;
            n /= 1e8 as u64;

            // Some of these are nops but it looks more elegant this way.
            let d1 = ((to_parse / 1e6 as u64) % 100) << 1;
            let d2 = ((to_parse / 1e4 as u64) % 100) << 1;
            let d3 = ((to_parse / 1e2 as u64) % 100) << 1;
            let d4 = ((to_parse / 1e0 as u64) % 100) << 1;
            *curr -= 8;

            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2);
        }
        // `n` < 1e8 < (1 << 32)
        let mut n = n as u32;
        if n >= 1e4 as u32 {
            let to_parse = n % 1e4 as u32;
            n /= 1e4 as u32;

            let d1 = (to_parse / 100) << 1;
            let d2 = (to_parse % 100) << 1;
            *curr -= 4;

            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
            ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
        }

        // `n` < 1e4 < (1 << 16)
        let mut n = n as u16;
        if n >= 100 {
            let d1 = (n % 100) << 1;
            n /= 100;
            *curr -= 2;
            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2);
        }

        // decode last 1 or 2 chars
        if n < 10 {
            *curr -= 1;
            *buf_ptr.add(*curr) = (n as u8) + b'0';
        } else {
            let d1 = n << 1;
            *curr -= 2;
            ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2);
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for u128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt_u128(*self, true, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for i128 {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let is_nonnegative = *self >= 0;
        let n = if is_nonnegative {
            self.to_u128()
        } else {
            // convert the negative num to positive by summing 1 to its 2s complement
            (!self.to_u128()).wrapping_add(1)
        };
        fmt_u128(n, is_nonnegative, f)
    }
}

/// Specialized optimization for u128. Instead of taking two items at a time, it splits
/// into at most 2 u64s, and then chunks by 10e16, 10e8, 10e4, 10e2, and then 10e1.
/// It also has to handle 1 last item, as 10^40 > 2^128 > 10^39, whereas
/// 10^20 > 2^64 > 10^19.
fn fmt_u128(n: u128, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
    // 2^128 is about 3*10^38, so 39 gives an extra byte of space
    let mut buf = [MaybeUninit::<u8>::uninit(); 39];
    let mut curr = buf.len();

    let (n, rem) = udiv_1e19(n);
    parse_u64_into(rem, &mut buf, &mut curr);

    if n != 0 {
        // 0 pad up to point
        let target = buf.len() - 19;
        // SAFETY: Guaranteed that we wrote at most 19 bytes, and there must be space
        // remaining since it has length 39
        unsafe {
            ptr::write_bytes(
                MaybeUninit::slice_as_mut_ptr(&mut buf).add(target),
                b'0',
                curr - target,
            );
        }
        curr = target;

        let (n, rem) = udiv_1e19(n);
        parse_u64_into(rem, &mut buf, &mut curr);
        // Should this following branch be annotated with unlikely?
        if n != 0 {
            let target = buf.len() - 38;
            // The raw `buf_ptr` pointer is only valid until `buf` is used the next time,
            // buf `buf` is not used in this scope so we are good.
            let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
            // SAFETY: At this point we wrote at most 38 bytes, pad up to that point,
            // There can only be at most 1 digit remaining.
            unsafe {
                ptr::write_bytes(buf_ptr.add(target), b'0', curr - target);
                curr = target - 1;
                *buf_ptr.add(curr) = (n as u8) + b'0';
            }
        }
    }

    // SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
    // UTF-8 since `DEC_DIGITS_LUT` is
    let buf_slice = unsafe {
        str::from_utf8_unchecked(slice::from_raw_parts(
            MaybeUninit::slice_as_mut_ptr(&mut buf).add(curr),
            buf.len() - curr,
        ))
    };
    f.pad_integral(is_nonnegative, "", buf_slice)
}

/// Partition of `n` into n > 1e19 and rem <= 1e19
///
/// Integer division algorithm is based on the following paper:
///
///   T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication”
///   in Proc. of the SIGPLAN94 Conference on Programming Language Design and
///   Implementation, 1994, pp. 61–72
///
fn udiv_1e19(n: u128) -> (u128, u64) {
    const DIV: u64 = 1e19 as u64;
    const FACTOR: u128 = 156927543384667019095894735580191660403;

    let quot = if n < 1 << 83 {
        ((n >> 19) as u64 / (DIV >> 19)) as u128
    } else {
        u128_mulhi(n, FACTOR) >> 62
    };

    let rem = (n - quot * DIV as u128) as u64;
    (quot, rem)
}

/// Multiply unsigned 128 bit integers, return upper 128 bits of the result
#[inline]
fn u128_mulhi(x: u128, y: u128) -> u128 {
    let x_lo = x as u64;
    let x_hi = (x >> 64) as u64;
    let y_lo = y as u64;
    let y_hi = (y >> 64) as u64;

    // handle possibility of overflow
    let carry = (x_lo as u128 * y_lo as u128) >> 64;
    let m = x_lo as u128 * y_hi as u128 + carry;
    let high1 = m >> 64;

    let m_lo = m as u64;
    let high2 = (x_hi as u128 * y_lo as u128 + m_lo as u128) >> 64;

    x_hi as u128 * y_hi as u128 + high1 + high2
}