core/fmt/num.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
//! Integer and floating-point number formatting
use crate::mem::MaybeUninit;
use crate::num::fmt as numfmt;
use crate::ops::{Div, Rem, Sub};
use crate::{fmt, ptr, slice, str};
#[doc(hidden)]
trait DisplayInt:
PartialEq + PartialOrd + Div<Output = Self> + Rem<Output = Self> + Sub<Output = Self> + Copy
{
fn zero() -> Self;
fn from_u8(u: u8) -> Self;
fn to_u8(&self) -> u8;
#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
fn to_u32(&self) -> u32;
fn to_u64(&self) -> u64;
fn to_u128(&self) -> u128;
}
macro_rules! impl_int {
($($t:ident)*) => (
$(impl DisplayInt for $t {
fn zero() -> Self { 0 }
fn from_u8(u: u8) -> Self { u as Self }
fn to_u8(&self) -> u8 { *self as u8 }
#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
fn to_u32(&self) -> u32 { *self as u32 }
fn to_u64(&self) -> u64 { *self as u64 }
fn to_u128(&self) -> u128 { *self as u128 }
})*
)
}
macro_rules! impl_uint {
($($t:ident)*) => (
$(impl DisplayInt for $t {
fn zero() -> Self { 0 }
fn from_u8(u: u8) -> Self { u as Self }
fn to_u8(&self) -> u8 { *self as u8 }
#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
fn to_u32(&self) -> u32 { *self as u32 }
fn to_u64(&self) -> u64 { *self as u64 }
fn to_u128(&self) -> u128 { *self as u128 }
})*
)
}
impl_int! { i8 i16 i32 i64 i128 isize }
impl_uint! { u8 u16 u32 u64 u128 usize }
/// A type that represents a specific radix
///
/// # Safety
///
/// `digit` must return an ASCII character.
#[doc(hidden)]
unsafe trait GenericRadix: Sized {
/// The number of digits.
const BASE: u8;
/// A radix-specific prefix string.
const PREFIX: &'static str;
/// Converts an integer to corresponding radix digit.
fn digit(x: u8) -> u8;
/// Format an integer using the radix using a formatter.
fn fmt_int<T: DisplayInt>(&self, mut x: T, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// The radix can be as low as 2, so we need a buffer of at least 128
// characters for a base 2 number.
let zero = T::zero();
let is_nonnegative = x >= zero;
let mut buf = [MaybeUninit::<u8>::uninit(); 128];
let mut curr = buf.len();
let base = T::from_u8(Self::BASE);
if is_nonnegative {
// Accumulate each digit of the number from the least significant
// to the most significant figure.
for byte in buf.iter_mut().rev() {
let n = x % base; // Get the current place value.
x = x / base; // Deaccumulate the number.
byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer.
curr -= 1;
if x == zero {
// No more digits left to accumulate.
break;
};
}
} else {
// Do the same as above, but accounting for two's complement.
for byte in buf.iter_mut().rev() {
let n = zero - (x % base); // Get the current place value.
x = x / base; // Deaccumulate the number.
byte.write(Self::digit(n.to_u8())); // Store the digit in the buffer.
curr -= 1;
if x == zero {
// No more digits left to accumulate.
break;
};
}
}
let buf = &buf[curr..];
// SAFETY: The only chars in `buf` are created by `Self::digit` which are assumed to be
// valid UTF-8
let buf = unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(
MaybeUninit::slice_as_ptr(buf),
buf.len(),
))
};
f.pad_integral(is_nonnegative, Self::PREFIX, buf)
}
}
/// A binary (base 2) radix
#[derive(Clone, PartialEq)]
struct Binary;
/// An octal (base 8) radix
#[derive(Clone, PartialEq)]
struct Octal;
/// A hexadecimal (base 16) radix, formatted with lower-case characters
#[derive(Clone, PartialEq)]
struct LowerHex;
/// A hexadecimal (base 16) radix, formatted with upper-case characters
#[derive(Clone, PartialEq)]
struct UpperHex;
macro_rules! radix {
($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => {
unsafe impl GenericRadix for $T {
const BASE: u8 = $base;
const PREFIX: &'static str = $prefix;
fn digit(x: u8) -> u8 {
match x {
$($x => $conv,)+
x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x),
}
}
}
}
}
radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x }
radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x }
radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) }
macro_rules! int_base {
(fmt::$Trait:ident for $T:ident as $U:ident -> $Radix:ident) => {
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::$Trait for $T {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
$Radix.fmt_int(*self as $U, f)
}
}
};
}
macro_rules! integer {
($Int:ident, $Uint:ident) => {
int_base! { fmt::Binary for $Int as $Uint -> Binary }
int_base! { fmt::Octal for $Int as $Uint -> Octal }
int_base! { fmt::LowerHex for $Int as $Uint -> LowerHex }
int_base! { fmt::UpperHex for $Int as $Uint -> UpperHex }
int_base! { fmt::Binary for $Uint as $Uint -> Binary }
int_base! { fmt::Octal for $Uint as $Uint -> Octal }
int_base! { fmt::LowerHex for $Uint as $Uint -> LowerHex }
int_base! { fmt::UpperHex for $Uint as $Uint -> UpperHex }
};
}
integer! { isize, usize }
integer! { i8, u8 }
integer! { i16, u16 }
integer! { i32, u32 }
integer! { i64, u64 }
integer! { i128, u128 }
macro_rules! debug {
($($T:ident)*) => {$(
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Debug for $T {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if f.debug_lower_hex() {
fmt::LowerHex::fmt(self, f)
} else if f.debug_upper_hex() {
fmt::UpperHex::fmt(self, f)
} else {
fmt::Display::fmt(self, f)
}
}
}
)*};
}
debug! {
i8 i16 i32 i64 i128 isize
u8 u16 u32 u64 u128 usize
}
// 2 digit decimal look up table
static DEC_DIGITS_LUT: &[u8; 200] = b"0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
macro_rules! impl_Display {
($($t:ident $(as $positive:ident)? named $name:ident,)* ; as $u:ident via $conv_fn:ident named $gen_name:ident) => {
$(
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for $t {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// If it's a signed integer.
$(
let is_nonnegative = *self >= 0;
#[cfg(not(feature = "optimize_for_size"))]
{
if !is_nonnegative {
// convert the negative num to positive by summing 1 to its 2s complement
return (!self as $positive).wrapping_add(1)._fmt(false, f);
}
}
#[cfg(feature = "optimize_for_size")]
{
if !is_nonnegative {
// convert the negative num to positive by summing 1 to its 2s complement
return $gen_name((!self.$conv_fn()).wrapping_add(1), false, f);
}
}
)?
// If it's a positive integer.
#[cfg(not(feature = "optimize_for_size"))]
{
self._fmt(true, f)
}
#[cfg(feature = "optimize_for_size")]
{
$gen_name(self.$conv_fn(), true, f)
}
}
}
#[cfg(not(feature = "optimize_for_size"))]
impl $t {
fn _fmt(mut self: $t, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
const SIZE: usize = $t::MAX.ilog(10) as usize + 1;
let mut buf = [MaybeUninit::<u8>::uninit(); SIZE];
let mut curr = SIZE;
let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
// SAFETY: Since `d1` and `d2` are always less than or equal to `198`, we
// can copy from `lut_ptr[d1..d1 + 1]` and `lut_ptr[d2..d2 + 1]`. To show
// that it's OK to copy into `buf_ptr`, notice that at the beginning
// `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
// each step this is kept the same as `n` is divided. Since `n` is always
// non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
// is safe to access.
unsafe {
// need at least 16 bits for the 4-characters-at-a-time to work.
#[allow(overflowing_literals)]
#[allow(unused_comparisons)]
// This block will be removed for smaller types at compile time and in the worst
// case, it will prevent to have the `10000` literal to overflow for `i8` and `u8`.
if core::mem::size_of::<$t>() >= 2 {
// eagerly decode 4 characters at a time
while self >= 10000 {
let rem = (self % 10000) as usize;
self /= 10000;
let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
// We are allowed to copy to `buf_ptr[curr..curr + 3]` here since
// otherwise `curr < 0`. But then `n` was originally at least `10000^10`
// which is `10^40 > 2^128 > n`.
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(curr + 2), 2);
}
}
// if we reach here numbers are <= 9999, so at most 4 chars long
let mut n = self as usize; // possibly reduce 64bit math
// decode 2 more chars, if > 2 chars
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
}
// if we reach here numbers are <= 100, so at most 2 chars long
// The biggest it can be is 99, and 99 << 1 == 198, so a `u8` is enough.
// decode last 1 or 2 chars
if n < 10 {
curr -= 1;
*buf_ptr.add(curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
}
}
// SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
// UTF-8 since `DEC_DIGITS_LUT` is
let buf_slice = unsafe {
str::from_utf8_unchecked(
slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr))
};
f.pad_integral(is_nonnegative, "", buf_slice)
}
})*
#[cfg(feature = "optimize_for_size")]
fn $gen_name(mut n: $u, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// 2^128 is about 3*10^38, so 39 gives an extra byte of space
let mut buf = [MaybeUninit::<u8>::uninit(); 39];
let mut curr = buf.len();
let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
// SAFETY: To show that it's OK to copy into `buf_ptr`, notice that at the beginning
// `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
// each step this is kept the same as `n` is divided. Since `n` is always
// non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
// is safe to access.
unsafe {
loop {
curr -= 1;
buf_ptr.add(curr).write((n % 10) as u8 + b'0');
n /= 10;
if n == 0 {
break;
}
}
}
// SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid UTF-8
let buf_slice = unsafe {
str::from_utf8_unchecked(
slice::from_raw_parts(buf_ptr.add(curr), buf.len() - curr))
};
f.pad_integral(is_nonnegative, "", buf_slice)
}
};
}
macro_rules! impl_Exp {
($($t:ident),* as $u:ident via $conv_fn:ident named $name:ident) => {
fn $name(
mut n: $u,
is_nonnegative: bool,
upper: bool,
f: &mut fmt::Formatter<'_>
) -> fmt::Result {
let (mut n, mut exponent, trailing_zeros, added_precision) = {
let mut exponent = 0;
// count and remove trailing decimal zeroes
while n % 10 == 0 && n >= 10 {
n /= 10;
exponent += 1;
}
let (added_precision, subtracted_precision) = match f.precision() {
Some(fmt_prec) => {
// number of decimal digits minus 1
let mut tmp = n;
let mut prec = 0;
while tmp >= 10 {
tmp /= 10;
prec += 1;
}
(fmt_prec.saturating_sub(prec), prec.saturating_sub(fmt_prec))
}
None => (0, 0)
};
for _ in 1..subtracted_precision {
n /= 10;
exponent += 1;
}
if subtracted_precision != 0 {
let rem = n % 10;
n /= 10;
exponent += 1;
// round up last digit, round to even on a tie
if rem > 5 || (rem == 5 && (n % 2 != 0 || subtracted_precision > 1 )) {
n += 1;
// if the digit is rounded to the next power
// instead adjust the exponent
if n.ilog10() > (n - 1).ilog10() {
n /= 10;
exponent += 1;
}
}
}
(n, exponent, exponent, added_precision)
};
// Since `curr` always decreases by the number of digits copied, this means
// that `curr >= 0`.
let mut buf = [MaybeUninit::<u8>::uninit(); 40];
let mut curr = buf.len(); //index for buf
let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
// decode 2 chars at a time
while n >= 100 {
let d1 = ((n % 100) as usize) << 1;
curr -= 2;
// SAFETY: `d1 <= 198`, so we can copy from `lut_ptr[d1..d1 + 2]` since
// `DEC_DIGITS_LUT` has a length of 200.
unsafe {
ptr::copy_nonoverlapping(lut_ptr.add(d1), buf_ptr.add(curr), 2);
}
n /= 100;
exponent += 2;
}
// n is <= 99, so at most 2 chars long
let mut n = n as isize; // possibly reduce 64bit math
// decode second-to-last character
if n >= 10 {
curr -= 1;
// SAFETY: Safe since `40 > curr >= 0` (see comment)
unsafe {
*buf_ptr.add(curr) = (n as u8 % 10_u8) + b'0';
}
n /= 10;
exponent += 1;
}
// add decimal point iff >1 mantissa digit will be printed
if exponent != trailing_zeros || added_precision != 0 {
curr -= 1;
// SAFETY: Safe since `40 > curr >= 0`
unsafe {
*buf_ptr.add(curr) = b'.';
}
}
// SAFETY: Safe since `40 > curr >= 0`
let buf_slice = unsafe {
// decode last character
curr -= 1;
*buf_ptr.add(curr) = (n as u8) + b'0';
let len = buf.len() - curr as usize;
slice::from_raw_parts(buf_ptr.add(curr), len)
};
// stores 'e' (or 'E') and the up to 2-digit exponent
let mut exp_buf = [MaybeUninit::<u8>::uninit(); 3];
let exp_ptr = MaybeUninit::slice_as_mut_ptr(&mut exp_buf);
// SAFETY: In either case, `exp_buf` is written within bounds and `exp_ptr[..len]`
// is contained within `exp_buf` since `len <= 3`.
let exp_slice = unsafe {
*exp_ptr.add(0) = if upper { b'E' } else { b'e' };
let len = if exponent < 10 {
*exp_ptr.add(1) = (exponent as u8) + b'0';
2
} else {
let off = exponent << 1;
ptr::copy_nonoverlapping(lut_ptr.add(off), exp_ptr.add(1), 2);
3
};
slice::from_raw_parts(exp_ptr, len)
};
let parts = &[
numfmt::Part::Copy(buf_slice),
numfmt::Part::Zero(added_precision),
numfmt::Part::Copy(exp_slice),
];
let sign = if !is_nonnegative {
"-"
} else if f.sign_plus() {
"+"
} else {
""
};
let formatted = numfmt::Formatted { sign, parts };
// SAFETY: `buf_slice` and `exp_slice` contain only ASCII characters.
unsafe { f.pad_formatted_parts(&formatted) }
}
$(
#[stable(feature = "integer_exp_format", since = "1.42.0")]
impl fmt::LowerExp for $t {
#[allow(unused_comparisons)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.$conv_fn()
} else {
// convert the negative num to positive by summing 1 to its 2s complement
(!self.$conv_fn()).wrapping_add(1)
};
$name(n, is_nonnegative, false, f)
}
})*
$(
#[stable(feature = "integer_exp_format", since = "1.42.0")]
impl fmt::UpperExp for $t {
#[allow(unused_comparisons)]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.$conv_fn()
} else {
// convert the negative num to positive by summing 1 to its 2s complement
(!self.$conv_fn()).wrapping_add(1)
};
$name(n, is_nonnegative, true, f)
}
})*
};
}
// Include wasm32 in here since it doesn't reflect the native pointer size, and
// often cares strongly about getting a smaller code size.
#[cfg(any(target_pointer_width = "64", target_arch = "wasm32"))]
mod imp {
use super::*;
impl_Display!(
i8 as u8 named fmt_i8,
u8 named fmt_u8,
i16 as u16 named fmt_i16,
u16 named fmt_u16,
i32 as u32 named fmt_i32,
u32 named fmt_u32,
i64 as u64 named fmt_i64,
u64 named fmt_u64,
isize as usize named fmt_isize,
usize named fmt_usize,
; as u64 via to_u64 named fmt_u64
);
impl_Exp!(
i8, u8, i16, u16, i32, u32, i64, u64, usize, isize
as u64 via to_u64 named exp_u64
);
}
#[cfg(not(any(target_pointer_width = "64", target_arch = "wasm32")))]
mod imp {
use super::*;
impl_Display!(
i8 as u8 named fmt_i8,
u8 named fmt_u8,
i16 as u16 named fmt_i16,
u16 named fmt_u16,
i32 as u32 named fmt_i32,
u32 named fmt_u32,
isize as usize named fmt_isize,
usize named fmt_usize,
; as u32 via to_u32 named fmt_u32);
impl_Display!(
i64 as u64 named fmt_i64,
u64 named fmt_u64,
; as u64 via to_u64 named fmt_u64);
impl_Exp!(i8, u8, i16, u16, i32, u32, isize, usize as u32 via to_u32 named exp_u32);
impl_Exp!(i64, u64 as u64 via to_u64 named exp_u64);
}
impl_Exp!(i128, u128 as u128 via to_u128 named exp_u128);
/// Helper function for writing a u64 into `buf` going from last to first, with `curr`.
fn parse_u64_into<const N: usize>(mut n: u64, buf: &mut [MaybeUninit<u8>; N], curr: &mut usize) {
let buf_ptr = MaybeUninit::slice_as_mut_ptr(buf);
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
assert!(*curr > 19);
// SAFETY:
// Writes at most 19 characters into the buffer. Guaranteed that any ptr into LUT is at most
// 198, so will never OOB. There is a check above that there are at least 19 characters
// remaining.
unsafe {
if n >= 1e16 as u64 {
let to_parse = n % 1e16 as u64;
n /= 1e16 as u64;
// Some of these are nops but it looks more elegant this way.
let d1 = ((to_parse / 1e14 as u64) % 100) << 1;
let d2 = ((to_parse / 1e12 as u64) % 100) << 1;
let d3 = ((to_parse / 1e10 as u64) % 100) << 1;
let d4 = ((to_parse / 1e8 as u64) % 100) << 1;
let d5 = ((to_parse / 1e6 as u64) % 100) << 1;
let d6 = ((to_parse / 1e4 as u64) % 100) << 1;
let d7 = ((to_parse / 1e2 as u64) % 100) << 1;
let d8 = ((to_parse / 1e0 as u64) % 100) << 1;
*curr -= 16;
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d5 as usize), buf_ptr.add(*curr + 8), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d6 as usize), buf_ptr.add(*curr + 10), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d7 as usize), buf_ptr.add(*curr + 12), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d8 as usize), buf_ptr.add(*curr + 14), 2);
}
if n >= 1e8 as u64 {
let to_parse = n % 1e8 as u64;
n /= 1e8 as u64;
// Some of these are nops but it looks more elegant this way.
let d1 = ((to_parse / 1e6 as u64) % 100) << 1;
let d2 = ((to_parse / 1e4 as u64) % 100) << 1;
let d3 = ((to_parse / 1e2 as u64) % 100) << 1;
let d4 = ((to_parse / 1e0 as u64) % 100) << 1;
*curr -= 8;
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d3 as usize), buf_ptr.add(*curr + 4), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d4 as usize), buf_ptr.add(*curr + 6), 2);
}
// `n` < 1e8 < (1 << 32)
let mut n = n as u32;
if n >= 1e4 as u32 {
let to_parse = n % 1e4 as u32;
n /= 1e4 as u32;
let d1 = (to_parse / 100) << 1;
let d2 = (to_parse % 100) << 1;
*curr -= 4;
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr + 0), 2);
ptr::copy_nonoverlapping(lut_ptr.add(d2 as usize), buf_ptr.add(*curr + 2), 2);
}
// `n` < 1e4 < (1 << 16)
let mut n = n as u16;
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
*curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2);
}
// decode last 1 or 2 chars
if n < 10 {
*curr -= 1;
*buf_ptr.add(*curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
*curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.add(d1 as usize), buf_ptr.add(*curr), 2);
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for u128 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt_u128(*self, true, f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for i128 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let is_nonnegative = *self >= 0;
let n = if is_nonnegative {
self.to_u128()
} else {
// convert the negative num to positive by summing 1 to its 2s complement
(!self.to_u128()).wrapping_add(1)
};
fmt_u128(n, is_nonnegative, f)
}
}
/// Specialized optimization for u128. Instead of taking two items at a time, it splits
/// into at most 2 u64s, and then chunks by 10e16, 10e8, 10e4, 10e2, and then 10e1.
/// It also has to handle 1 last item, as 10^40 > 2^128 > 10^39, whereas
/// 10^20 > 2^64 > 10^19.
fn fmt_u128(n: u128, is_nonnegative: bool, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// 2^128 is about 3*10^38, so 39 gives an extra byte of space
let mut buf = [MaybeUninit::<u8>::uninit(); 39];
let mut curr = buf.len();
let (n, rem) = udiv_1e19(n);
parse_u64_into(rem, &mut buf, &mut curr);
if n != 0 {
// 0 pad up to point
let target = buf.len() - 19;
// SAFETY: Guaranteed that we wrote at most 19 bytes, and there must be space
// remaining since it has length 39
unsafe {
ptr::write_bytes(
MaybeUninit::slice_as_mut_ptr(&mut buf).add(target),
b'0',
curr - target,
);
}
curr = target;
let (n, rem) = udiv_1e19(n);
parse_u64_into(rem, &mut buf, &mut curr);
// Should this following branch be annotated with unlikely?
if n != 0 {
let target = buf.len() - 38;
// The raw `buf_ptr` pointer is only valid until `buf` is used the next time,
// buf `buf` is not used in this scope so we are good.
let buf_ptr = MaybeUninit::slice_as_mut_ptr(&mut buf);
// SAFETY: At this point we wrote at most 38 bytes, pad up to that point,
// There can only be at most 1 digit remaining.
unsafe {
ptr::write_bytes(buf_ptr.add(target), b'0', curr - target);
curr = target - 1;
*buf_ptr.add(curr) = (n as u8) + b'0';
}
}
}
// SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
// UTF-8 since `DEC_DIGITS_LUT` is
let buf_slice = unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(
MaybeUninit::slice_as_mut_ptr(&mut buf).add(curr),
buf.len() - curr,
))
};
f.pad_integral(is_nonnegative, "", buf_slice)
}
/// Partition of `n` into n > 1e19 and rem <= 1e19
///
/// Integer division algorithm is based on the following paper:
///
/// T. Granlund and P. Montgomery, “Division by Invariant Integers Using Multiplication”
/// in Proc. of the SIGPLAN94 Conference on Programming Language Design and
/// Implementation, 1994, pp. 61–72
///
fn udiv_1e19(n: u128) -> (u128, u64) {
const DIV: u64 = 1e19 as u64;
const FACTOR: u128 = 156927543384667019095894735580191660403;
let quot = if n < 1 << 83 {
((n >> 19) as u64 / (DIV >> 19)) as u128
} else {
u128_mulhi(n, FACTOR) >> 62
};
let rem = (n - quot * DIV as u128) as u64;
(quot, rem)
}
/// Multiply unsigned 128 bit integers, return upper 128 bits of the result
#[inline]
fn u128_mulhi(x: u128, y: u128) -> u128 {
let x_lo = x as u64;
let x_hi = (x >> 64) as u64;
let y_lo = y as u64;
let y_hi = (y >> 64) as u64;
// handle possibility of overflow
let carry = (x_lo as u128 * y_lo as u128) >> 64;
let m = x_lo as u128 * y_hi as u128 + carry;
let high1 = m >> 64;
let m_lo = m as u64;
let high2 = (x_hi as u128 * y_lo as u128 + m_lo as u128) >> 64;
x_hi as u128 * y_hi as u128 + high1 + high2
}