alloc/collections/vec_deque/
mod.rs

1//! A double-ended queue (deque) implemented with a growable ring buffer.
2//!
3//! This queue has *O*(1) amortized inserts and removals from both ends of the
4//! container. It also has *O*(1) indexing like a vector. The contained elements
5//! are not required to be copyable, and the queue will be sendable if the
6//! contained type is sendable.
7
8#![stable(feature = "rust1", since = "1.0.0")]
9
10use core::cmp::{self, Ordering};
11use core::hash::{Hash, Hasher};
12use core::iter::{ByRefSized, repeat_n, repeat_with};
13// This is used in a bunch of intra-doc links.
14// FIXME: For some reason, `#[cfg(doc)]` wasn't sufficient, resulting in
15// failures in linkchecker even though rustdoc built the docs just fine.
16#[allow(unused_imports)]
17use core::mem;
18use core::mem::{ManuallyDrop, SizedTypeProperties};
19use core::ops::{Index, IndexMut, Range, RangeBounds};
20use core::{fmt, ptr, slice};
21
22use crate::alloc::{Allocator, Global};
23use crate::collections::{TryReserveError, TryReserveErrorKind};
24use crate::raw_vec::RawVec;
25use crate::vec::Vec;
26
27#[macro_use]
28mod macros;
29
30#[stable(feature = "drain", since = "1.6.0")]
31pub use self::drain::Drain;
32
33mod drain;
34
35#[stable(feature = "rust1", since = "1.0.0")]
36pub use self::iter_mut::IterMut;
37
38mod iter_mut;
39
40#[stable(feature = "rust1", since = "1.0.0")]
41pub use self::into_iter::IntoIter;
42
43mod into_iter;
44
45#[stable(feature = "rust1", since = "1.0.0")]
46pub use self::iter::Iter;
47
48mod iter;
49
50use self::spec_extend::SpecExtend;
51
52mod spec_extend;
53
54use self::spec_from_iter::SpecFromIter;
55
56mod spec_from_iter;
57
58#[cfg(test)]
59mod tests;
60
61/// A double-ended queue implemented with a growable ring buffer.
62///
63/// The "default" usage of this type as a queue is to use [`push_back`] to add to
64/// the queue, and [`pop_front`] to remove from the queue. [`extend`] and [`append`]
65/// push onto the back in this manner, and iterating over `VecDeque` goes front
66/// to back.
67///
68/// A `VecDeque` with a known list of items can be initialized from an array:
69///
70/// ```
71/// use std::collections::VecDeque;
72///
73/// let deq = VecDeque::from([-1, 0, 1]);
74/// ```
75///
76/// Since `VecDeque` is a ring buffer, its elements are not necessarily contiguous
77/// in memory. If you want to access the elements as a single slice, such as for
78/// efficient sorting, you can use [`make_contiguous`]. It rotates the `VecDeque`
79/// so that its elements do not wrap, and returns a mutable slice to the
80/// now-contiguous element sequence.
81///
82/// [`push_back`]: VecDeque::push_back
83/// [`pop_front`]: VecDeque::pop_front
84/// [`extend`]: VecDeque::extend
85/// [`append`]: VecDeque::append
86/// [`make_contiguous`]: VecDeque::make_contiguous
87#[cfg_attr(not(test), rustc_diagnostic_item = "VecDeque")]
88#[stable(feature = "rust1", since = "1.0.0")]
89#[rustc_insignificant_dtor]
90pub struct VecDeque<
91    T,
92    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
93> {
94    // `self[0]`, if it exists, is `buf[head]`.
95    // `head < buf.capacity()`, unless `buf.capacity() == 0` when `head == 0`.
96    head: usize,
97    // the number of initialized elements, starting from the one at `head` and potentially wrapping around.
98    // if `len == 0`, the exact value of `head` is unimportant.
99    // if `T` is zero-Sized, then `self.len <= usize::MAX`, otherwise `self.len <= isize::MAX as usize`.
100    len: usize,
101    buf: RawVec<T, A>,
102}
103
104#[stable(feature = "rust1", since = "1.0.0")]
105impl<T: Clone, A: Allocator + Clone> Clone for VecDeque<T, A> {
106    #[track_caller]
107    fn clone(&self) -> Self {
108        let mut deq = Self::with_capacity_in(self.len(), self.allocator().clone());
109        deq.extend(self.iter().cloned());
110        deq
111    }
112
113    /// Overwrites the contents of `self` with a clone of the contents of `source`.
114    ///
115    /// This method is preferred over simply assigning `source.clone()` to `self`,
116    /// as it avoids reallocation if possible.
117    #[track_caller]
118    fn clone_from(&mut self, source: &Self) {
119        self.clear();
120        self.extend(source.iter().cloned());
121    }
122}
123
124#[stable(feature = "rust1", since = "1.0.0")]
125unsafe impl<#[may_dangle] T, A: Allocator> Drop for VecDeque<T, A> {
126    fn drop(&mut self) {
127        /// Runs the destructor for all items in the slice when it gets dropped (normally or
128        /// during unwinding).
129        struct Dropper<'a, T>(&'a mut [T]);
130
131        impl<'a, T> Drop for Dropper<'a, T> {
132            fn drop(&mut self) {
133                unsafe {
134                    ptr::drop_in_place(self.0);
135                }
136            }
137        }
138
139        let (front, back) = self.as_mut_slices();
140        unsafe {
141            let _back_dropper = Dropper(back);
142            // use drop for [T]
143            ptr::drop_in_place(front);
144        }
145        // RawVec handles deallocation
146    }
147}
148
149#[stable(feature = "rust1", since = "1.0.0")]
150impl<T> Default for VecDeque<T> {
151    /// Creates an empty deque.
152    #[inline]
153    fn default() -> VecDeque<T> {
154        VecDeque::new()
155    }
156}
157
158impl<T, A: Allocator> VecDeque<T, A> {
159    /// Marginally more convenient
160    #[inline]
161    fn ptr(&self) -> *mut T {
162        self.buf.ptr()
163    }
164
165    /// Appends an element to the buffer.
166    ///
167    /// # Safety
168    ///
169    /// May only be called if `deque.len() < deque.capacity()`
170    #[inline]
171    unsafe fn push_unchecked(&mut self, element: T) {
172        // SAFETY: Because of the precondition, it's guaranteed that there is space
173        // in the logical array after the last element.
174        unsafe { self.buffer_write(self.to_physical_idx(self.len), element) };
175        // This can't overflow because `deque.len() < deque.capacity() <= usize::MAX`.
176        self.len += 1;
177    }
178
179    /// Moves an element out of the buffer
180    #[inline]
181    unsafe fn buffer_read(&mut self, off: usize) -> T {
182        unsafe { ptr::read(self.ptr().add(off)) }
183    }
184
185    /// Writes an element into the buffer, moving it.
186    #[inline]
187    unsafe fn buffer_write(&mut self, off: usize, value: T) {
188        unsafe {
189            ptr::write(self.ptr().add(off), value);
190        }
191    }
192
193    /// Returns a slice pointer into the buffer.
194    /// `range` must lie inside `0..self.capacity()`.
195    #[inline]
196    unsafe fn buffer_range(&self, range: Range<usize>) -> *mut [T] {
197        unsafe {
198            ptr::slice_from_raw_parts_mut(self.ptr().add(range.start), range.end - range.start)
199        }
200    }
201
202    /// Returns `true` if the buffer is at full capacity.
203    #[inline]
204    fn is_full(&self) -> bool {
205        self.len == self.capacity()
206    }
207
208    /// Returns the index in the underlying buffer for a given logical element
209    /// index + addend.
210    #[inline]
211    fn wrap_add(&self, idx: usize, addend: usize) -> usize {
212        wrap_index(idx.wrapping_add(addend), self.capacity())
213    }
214
215    #[inline]
216    fn to_physical_idx(&self, idx: usize) -> usize {
217        self.wrap_add(self.head, idx)
218    }
219
220    /// Returns the index in the underlying buffer for a given logical element
221    /// index - subtrahend.
222    #[inline]
223    fn wrap_sub(&self, idx: usize, subtrahend: usize) -> usize {
224        wrap_index(idx.wrapping_sub(subtrahend).wrapping_add(self.capacity()), self.capacity())
225    }
226
227    /// Copies a contiguous block of memory len long from src to dst
228    #[inline]
229    unsafe fn copy(&mut self, src: usize, dst: usize, len: usize) {
230        debug_assert!(
231            dst + len <= self.capacity(),
232            "cpy dst={} src={} len={} cap={}",
233            dst,
234            src,
235            len,
236            self.capacity()
237        );
238        debug_assert!(
239            src + len <= self.capacity(),
240            "cpy dst={} src={} len={} cap={}",
241            dst,
242            src,
243            len,
244            self.capacity()
245        );
246        unsafe {
247            ptr::copy(self.ptr().add(src), self.ptr().add(dst), len);
248        }
249    }
250
251    /// Copies a contiguous block of memory len long from src to dst
252    #[inline]
253    unsafe fn copy_nonoverlapping(&mut self, src: usize, dst: usize, len: usize) {
254        debug_assert!(
255            dst + len <= self.capacity(),
256            "cno dst={} src={} len={} cap={}",
257            dst,
258            src,
259            len,
260            self.capacity()
261        );
262        debug_assert!(
263            src + len <= self.capacity(),
264            "cno dst={} src={} len={} cap={}",
265            dst,
266            src,
267            len,
268            self.capacity()
269        );
270        unsafe {
271            ptr::copy_nonoverlapping(self.ptr().add(src), self.ptr().add(dst), len);
272        }
273    }
274
275    /// Copies a potentially wrapping block of memory len long from src to dest.
276    /// (abs(dst - src) + len) must be no larger than capacity() (There must be at
277    /// most one continuous overlapping region between src and dest).
278    unsafe fn wrap_copy(&mut self, src: usize, dst: usize, len: usize) {
279        debug_assert!(
280            cmp::min(src.abs_diff(dst), self.capacity() - src.abs_diff(dst)) + len
281                <= self.capacity(),
282            "wrc dst={} src={} len={} cap={}",
283            dst,
284            src,
285            len,
286            self.capacity()
287        );
288
289        // If T is a ZST, don't do any copying.
290        if T::IS_ZST || src == dst || len == 0 {
291            return;
292        }
293
294        let dst_after_src = self.wrap_sub(dst, src) < len;
295
296        let src_pre_wrap_len = self.capacity() - src;
297        let dst_pre_wrap_len = self.capacity() - dst;
298        let src_wraps = src_pre_wrap_len < len;
299        let dst_wraps = dst_pre_wrap_len < len;
300
301        match (dst_after_src, src_wraps, dst_wraps) {
302            (_, false, false) => {
303                // src doesn't wrap, dst doesn't wrap
304                //
305                //        S . . .
306                // 1 [_ _ A A B B C C _]
307                // 2 [_ _ A A A A B B _]
308                //            D . . .
309                //
310                unsafe {
311                    self.copy(src, dst, len);
312                }
313            }
314            (false, false, true) => {
315                // dst before src, src doesn't wrap, dst wraps
316                //
317                //    S . . .
318                // 1 [A A B B _ _ _ C C]
319                // 2 [A A B B _ _ _ A A]
320                // 3 [B B B B _ _ _ A A]
321                //    . .           D .
322                //
323                unsafe {
324                    self.copy(src, dst, dst_pre_wrap_len);
325                    self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len);
326                }
327            }
328            (true, false, true) => {
329                // src before dst, src doesn't wrap, dst wraps
330                //
331                //              S . . .
332                // 1 [C C _ _ _ A A B B]
333                // 2 [B B _ _ _ A A B B]
334                // 3 [B B _ _ _ A A A A]
335                //    . .           D .
336                //
337                unsafe {
338                    self.copy(src + dst_pre_wrap_len, 0, len - dst_pre_wrap_len);
339                    self.copy(src, dst, dst_pre_wrap_len);
340                }
341            }
342            (false, true, false) => {
343                // dst before src, src wraps, dst doesn't wrap
344                //
345                //    . .           S .
346                // 1 [C C _ _ _ A A B B]
347                // 2 [C C _ _ _ B B B B]
348                // 3 [C C _ _ _ B B C C]
349                //              D . . .
350                //
351                unsafe {
352                    self.copy(src, dst, src_pre_wrap_len);
353                    self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len);
354                }
355            }
356            (true, true, false) => {
357                // src before dst, src wraps, dst doesn't wrap
358                //
359                //    . .           S .
360                // 1 [A A B B _ _ _ C C]
361                // 2 [A A A A _ _ _ C C]
362                // 3 [C C A A _ _ _ C C]
363                //    D . . .
364                //
365                unsafe {
366                    self.copy(0, dst + src_pre_wrap_len, len - src_pre_wrap_len);
367                    self.copy(src, dst, src_pre_wrap_len);
368                }
369            }
370            (false, true, true) => {
371                // dst before src, src wraps, dst wraps
372                //
373                //    . . .         S .
374                // 1 [A B C D _ E F G H]
375                // 2 [A B C D _ E G H H]
376                // 3 [A B C D _ E G H A]
377                // 4 [B C C D _ E G H A]
378                //    . .         D . .
379                //
380                debug_assert!(dst_pre_wrap_len > src_pre_wrap_len);
381                let delta = dst_pre_wrap_len - src_pre_wrap_len;
382                unsafe {
383                    self.copy(src, dst, src_pre_wrap_len);
384                    self.copy(0, dst + src_pre_wrap_len, delta);
385                    self.copy(delta, 0, len - dst_pre_wrap_len);
386                }
387            }
388            (true, true, true) => {
389                // src before dst, src wraps, dst wraps
390                //
391                //    . .         S . .
392                // 1 [A B C D _ E F G H]
393                // 2 [A A B D _ E F G H]
394                // 3 [H A B D _ E F G H]
395                // 4 [H A B D _ E F F G]
396                //    . . .         D .
397                //
398                debug_assert!(src_pre_wrap_len > dst_pre_wrap_len);
399                let delta = src_pre_wrap_len - dst_pre_wrap_len;
400                unsafe {
401                    self.copy(0, delta, len - src_pre_wrap_len);
402                    self.copy(self.capacity() - delta, 0, delta);
403                    self.copy(src, dst, dst_pre_wrap_len);
404                }
405            }
406        }
407    }
408
409    /// Copies all values from `src` to `dst`, wrapping around if needed.
410    /// Assumes capacity is sufficient.
411    #[inline]
412    unsafe fn copy_slice(&mut self, dst: usize, src: &[T]) {
413        debug_assert!(src.len() <= self.capacity());
414        let head_room = self.capacity() - dst;
415        if src.len() <= head_room {
416            unsafe {
417                ptr::copy_nonoverlapping(src.as_ptr(), self.ptr().add(dst), src.len());
418            }
419        } else {
420            let (left, right) = src.split_at(head_room);
421            unsafe {
422                ptr::copy_nonoverlapping(left.as_ptr(), self.ptr().add(dst), left.len());
423                ptr::copy_nonoverlapping(right.as_ptr(), self.ptr(), right.len());
424            }
425        }
426    }
427
428    /// Writes all values from `iter` to `dst`.
429    ///
430    /// # Safety
431    ///
432    /// Assumes no wrapping around happens.
433    /// Assumes capacity is sufficient.
434    #[inline]
435    unsafe fn write_iter(
436        &mut self,
437        dst: usize,
438        iter: impl Iterator<Item = T>,
439        written: &mut usize,
440    ) {
441        iter.enumerate().for_each(|(i, element)| unsafe {
442            self.buffer_write(dst + i, element);
443            *written += 1;
444        });
445    }
446
447    /// Writes all values from `iter` to `dst`, wrapping
448    /// at the end of the buffer and returns the number
449    /// of written values.
450    ///
451    /// # Safety
452    ///
453    /// Assumes that `iter` yields at most `len` items.
454    /// Assumes capacity is sufficient.
455    unsafe fn write_iter_wrapping(
456        &mut self,
457        dst: usize,
458        mut iter: impl Iterator<Item = T>,
459        len: usize,
460    ) -> usize {
461        struct Guard<'a, T, A: Allocator> {
462            deque: &'a mut VecDeque<T, A>,
463            written: usize,
464        }
465
466        impl<'a, T, A: Allocator> Drop for Guard<'a, T, A> {
467            fn drop(&mut self) {
468                self.deque.len += self.written;
469            }
470        }
471
472        let head_room = self.capacity() - dst;
473
474        let mut guard = Guard { deque: self, written: 0 };
475
476        if head_room >= len {
477            unsafe { guard.deque.write_iter(dst, iter, &mut guard.written) };
478        } else {
479            unsafe {
480                guard.deque.write_iter(
481                    dst,
482                    ByRefSized(&mut iter).take(head_room),
483                    &mut guard.written,
484                );
485                guard.deque.write_iter(0, iter, &mut guard.written)
486            };
487        }
488
489        guard.written
490    }
491
492    /// Frobs the head and tail sections around to handle the fact that we
493    /// just reallocated. Unsafe because it trusts old_capacity.
494    #[inline]
495    unsafe fn handle_capacity_increase(&mut self, old_capacity: usize) {
496        let new_capacity = self.capacity();
497        debug_assert!(new_capacity >= old_capacity);
498
499        // Move the shortest contiguous section of the ring buffer
500        //
501        // H := head
502        // L := last element (`self.to_physical_idx(self.len - 1)`)
503        //
504        //    H             L
505        //   [o o o o o o o o ]
506        //    H             L
507        // A [o o o o o o o o . . . . . . . . ]
508        //        L H
509        //   [o o o o o o o o ]
510        //          H             L
511        // B [. . . o o o o o o o o . . . . . ]
512        //              L H
513        //   [o o o o o o o o ]
514        //              L                 H
515        // C [o o o o o o . . . . . . . . o o ]
516
517        // can't use is_contiguous() because the capacity is already updated.
518        if self.head <= old_capacity - self.len {
519            // A
520            // Nop
521        } else {
522            let head_len = old_capacity - self.head;
523            let tail_len = self.len - head_len;
524            if head_len > tail_len && new_capacity - old_capacity >= tail_len {
525                // B
526                unsafe {
527                    self.copy_nonoverlapping(0, old_capacity, tail_len);
528                }
529            } else {
530                // C
531                let new_head = new_capacity - head_len;
532                unsafe {
533                    // can't use copy_nonoverlapping here, because if e.g. head_len = 2
534                    // and new_capacity = old_capacity + 1, then the heads overlap.
535                    self.copy(self.head, new_head, head_len);
536                }
537                self.head = new_head;
538            }
539        }
540        debug_assert!(self.head < self.capacity() || self.capacity() == 0);
541    }
542}
543
544impl<T> VecDeque<T> {
545    /// Creates an empty deque.
546    ///
547    /// # Examples
548    ///
549    /// ```
550    /// use std::collections::VecDeque;
551    ///
552    /// let deque: VecDeque<u32> = VecDeque::new();
553    /// ```
554    #[inline]
555    #[stable(feature = "rust1", since = "1.0.0")]
556    #[rustc_const_stable(feature = "const_vec_deque_new", since = "1.68.0")]
557    #[must_use]
558    pub const fn new() -> VecDeque<T> {
559        // FIXME(const-hack): This should just be `VecDeque::new_in(Global)` once that hits stable.
560        VecDeque { head: 0, len: 0, buf: RawVec::new() }
561    }
562
563    /// Creates an empty deque with space for at least `capacity` elements.
564    ///
565    /// # Examples
566    ///
567    /// ```
568    /// use std::collections::VecDeque;
569    ///
570    /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
571    /// ```
572    #[inline]
573    #[stable(feature = "rust1", since = "1.0.0")]
574    #[must_use]
575    #[track_caller]
576    pub fn with_capacity(capacity: usize) -> VecDeque<T> {
577        Self::with_capacity_in(capacity, Global)
578    }
579
580    /// Creates an empty deque with space for at least `capacity` elements.
581    ///
582    /// # Errors
583    ///
584    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
585    /// or if the allocator reports allocation failure.
586    ///
587    /// # Examples
588    ///
589    /// ```
590    /// # #![feature(try_with_capacity)]
591    /// # #[allow(unused)]
592    /// # fn example() -> Result<(), std::collections::TryReserveError> {
593    /// use std::collections::VecDeque;
594    ///
595    /// let deque: VecDeque<u32> = VecDeque::try_with_capacity(10)?;
596    /// # Ok(()) }
597    /// ```
598    #[inline]
599    #[unstable(feature = "try_with_capacity", issue = "91913")]
600    pub fn try_with_capacity(capacity: usize) -> Result<VecDeque<T>, TryReserveError> {
601        Ok(VecDeque { head: 0, len: 0, buf: RawVec::try_with_capacity_in(capacity, Global)? })
602    }
603}
604
605impl<T, A: Allocator> VecDeque<T, A> {
606    /// Creates an empty deque.
607    ///
608    /// # Examples
609    ///
610    /// ```
611    /// use std::collections::VecDeque;
612    ///
613    /// let deque: VecDeque<u32> = VecDeque::new();
614    /// ```
615    #[inline]
616    #[unstable(feature = "allocator_api", issue = "32838")]
617    pub const fn new_in(alloc: A) -> VecDeque<T, A> {
618        VecDeque { head: 0, len: 0, buf: RawVec::new_in(alloc) }
619    }
620
621    /// Creates an empty deque with space for at least `capacity` elements.
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// use std::collections::VecDeque;
627    ///
628    /// let deque: VecDeque<u32> = VecDeque::with_capacity(10);
629    /// ```
630    #[unstable(feature = "allocator_api", issue = "32838")]
631    #[track_caller]
632    pub fn with_capacity_in(capacity: usize, alloc: A) -> VecDeque<T, A> {
633        VecDeque { head: 0, len: 0, buf: RawVec::with_capacity_in(capacity, alloc) }
634    }
635
636    /// Creates a `VecDeque` from a raw allocation, when the initialized
637    /// part of that allocation forms a *contiguous* subslice thereof.
638    ///
639    /// For use by `vec::IntoIter::into_vecdeque`
640    ///
641    /// # Safety
642    ///
643    /// All the usual requirements on the allocated memory like in
644    /// `Vec::from_raw_parts_in`, but takes a *range* of elements that are
645    /// initialized rather than only supporting `0..len`.  Requires that
646    /// `initialized.start` ≤ `initialized.end` ≤ `capacity`.
647    #[inline]
648    pub(crate) unsafe fn from_contiguous_raw_parts_in(
649        ptr: *mut T,
650        initialized: Range<usize>,
651        capacity: usize,
652        alloc: A,
653    ) -> Self {
654        debug_assert!(initialized.start <= initialized.end);
655        debug_assert!(initialized.end <= capacity);
656
657        // SAFETY: Our safety precondition guarantees the range length won't wrap,
658        // and that the allocation is valid for use in `RawVec`.
659        unsafe {
660            VecDeque {
661                head: initialized.start,
662                len: initialized.end.unchecked_sub(initialized.start),
663                buf: RawVec::from_raw_parts_in(ptr, capacity, alloc),
664            }
665        }
666    }
667
668    /// Provides a reference to the element at the given index.
669    ///
670    /// Element at index 0 is the front of the queue.
671    ///
672    /// # Examples
673    ///
674    /// ```
675    /// use std::collections::VecDeque;
676    ///
677    /// let mut buf = VecDeque::new();
678    /// buf.push_back(3);
679    /// buf.push_back(4);
680    /// buf.push_back(5);
681    /// buf.push_back(6);
682    /// assert_eq!(buf.get(1), Some(&4));
683    /// ```
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn get(&self, index: usize) -> Option<&T> {
686        if index < self.len {
687            let idx = self.to_physical_idx(index);
688            unsafe { Some(&*self.ptr().add(idx)) }
689        } else {
690            None
691        }
692    }
693
694    /// Provides a mutable reference to the element at the given index.
695    ///
696    /// Element at index 0 is the front of the queue.
697    ///
698    /// # Examples
699    ///
700    /// ```
701    /// use std::collections::VecDeque;
702    ///
703    /// let mut buf = VecDeque::new();
704    /// buf.push_back(3);
705    /// buf.push_back(4);
706    /// buf.push_back(5);
707    /// buf.push_back(6);
708    /// assert_eq!(buf[1], 4);
709    /// if let Some(elem) = buf.get_mut(1) {
710    ///     *elem = 7;
711    /// }
712    /// assert_eq!(buf[1], 7);
713    /// ```
714    #[stable(feature = "rust1", since = "1.0.0")]
715    pub fn get_mut(&mut self, index: usize) -> Option<&mut T> {
716        if index < self.len {
717            let idx = self.to_physical_idx(index);
718            unsafe { Some(&mut *self.ptr().add(idx)) }
719        } else {
720            None
721        }
722    }
723
724    /// Swaps elements at indices `i` and `j`.
725    ///
726    /// `i` and `j` may be equal.
727    ///
728    /// Element at index 0 is the front of the queue.
729    ///
730    /// # Panics
731    ///
732    /// Panics if either index is out of bounds.
733    ///
734    /// # Examples
735    ///
736    /// ```
737    /// use std::collections::VecDeque;
738    ///
739    /// let mut buf = VecDeque::new();
740    /// buf.push_back(3);
741    /// buf.push_back(4);
742    /// buf.push_back(5);
743    /// assert_eq!(buf, [3, 4, 5]);
744    /// buf.swap(0, 2);
745    /// assert_eq!(buf, [5, 4, 3]);
746    /// ```
747    #[stable(feature = "rust1", since = "1.0.0")]
748    pub fn swap(&mut self, i: usize, j: usize) {
749        assert!(i < self.len());
750        assert!(j < self.len());
751        let ri = self.to_physical_idx(i);
752        let rj = self.to_physical_idx(j);
753        unsafe { ptr::swap(self.ptr().add(ri), self.ptr().add(rj)) }
754    }
755
756    /// Returns the number of elements the deque can hold without
757    /// reallocating.
758    ///
759    /// # Examples
760    ///
761    /// ```
762    /// use std::collections::VecDeque;
763    ///
764    /// let buf: VecDeque<i32> = VecDeque::with_capacity(10);
765    /// assert!(buf.capacity() >= 10);
766    /// ```
767    #[inline]
768    #[stable(feature = "rust1", since = "1.0.0")]
769    pub fn capacity(&self) -> usize {
770        if T::IS_ZST { usize::MAX } else { self.buf.capacity() }
771    }
772
773    /// Reserves the minimum capacity for at least `additional` more elements to be inserted in the
774    /// given deque. Does nothing if the capacity is already sufficient.
775    ///
776    /// Note that the allocator may give the collection more space than it requests. Therefore
777    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
778    /// insertions are expected.
779    ///
780    /// # Panics
781    ///
782    /// Panics if the new capacity overflows `usize`.
783    ///
784    /// # Examples
785    ///
786    /// ```
787    /// use std::collections::VecDeque;
788    ///
789    /// let mut buf: VecDeque<i32> = [1].into();
790    /// buf.reserve_exact(10);
791    /// assert!(buf.capacity() >= 11);
792    /// ```
793    ///
794    /// [`reserve`]: VecDeque::reserve
795    #[stable(feature = "rust1", since = "1.0.0")]
796    #[track_caller]
797    pub fn reserve_exact(&mut self, additional: usize) {
798        let new_cap = self.len.checked_add(additional).expect("capacity overflow");
799        let old_cap = self.capacity();
800
801        if new_cap > old_cap {
802            self.buf.reserve_exact(self.len, additional);
803            unsafe {
804                self.handle_capacity_increase(old_cap);
805            }
806        }
807    }
808
809    /// Reserves capacity for at least `additional` more elements to be inserted in the given
810    /// deque. The collection may reserve more space to speculatively avoid frequent reallocations.
811    ///
812    /// # Panics
813    ///
814    /// Panics if the new capacity overflows `usize`.
815    ///
816    /// # Examples
817    ///
818    /// ```
819    /// use std::collections::VecDeque;
820    ///
821    /// let mut buf: VecDeque<i32> = [1].into();
822    /// buf.reserve(10);
823    /// assert!(buf.capacity() >= 11);
824    /// ```
825    #[stable(feature = "rust1", since = "1.0.0")]
826    #[cfg_attr(not(test), rustc_diagnostic_item = "vecdeque_reserve")]
827    #[track_caller]
828    pub fn reserve(&mut self, additional: usize) {
829        let new_cap = self.len.checked_add(additional).expect("capacity overflow");
830        let old_cap = self.capacity();
831
832        if new_cap > old_cap {
833            // we don't need to reserve_exact(), as the size doesn't have
834            // to be a power of 2.
835            self.buf.reserve(self.len, additional);
836            unsafe {
837                self.handle_capacity_increase(old_cap);
838            }
839        }
840    }
841
842    /// Tries to reserve the minimum capacity for at least `additional` more elements to
843    /// be inserted in the given deque. After calling `try_reserve_exact`,
844    /// capacity will be greater than or equal to `self.len() + additional` if
845    /// it returns `Ok(())`. Does nothing if the capacity is already sufficient.
846    ///
847    /// Note that the allocator may give the collection more space than it
848    /// requests. Therefore, capacity can not be relied upon to be precisely
849    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
850    ///
851    /// [`try_reserve`]: VecDeque::try_reserve
852    ///
853    /// # Errors
854    ///
855    /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
856    /// is returned.
857    ///
858    /// # Examples
859    ///
860    /// ```
861    /// use std::collections::TryReserveError;
862    /// use std::collections::VecDeque;
863    ///
864    /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
865    ///     let mut output = VecDeque::new();
866    ///
867    ///     // Pre-reserve the memory, exiting if we can't
868    ///     output.try_reserve_exact(data.len())?;
869    ///
870    ///     // Now we know this can't OOM(Out-Of-Memory) in the middle of our complex work
871    ///     output.extend(data.iter().map(|&val| {
872    ///         val * 2 + 5 // very complicated
873    ///     }));
874    ///
875    ///     Ok(output)
876    /// }
877    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
878    /// ```
879    #[stable(feature = "try_reserve", since = "1.57.0")]
880    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
881        let new_cap =
882            self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?;
883        let old_cap = self.capacity();
884
885        if new_cap > old_cap {
886            self.buf.try_reserve_exact(self.len, additional)?;
887            unsafe {
888                self.handle_capacity_increase(old_cap);
889            }
890        }
891        Ok(())
892    }
893
894    /// Tries to reserve capacity for at least `additional` more elements to be inserted
895    /// in the given deque. The collection may reserve more space to speculatively avoid
896    /// frequent reallocations. After calling `try_reserve`, capacity will be
897    /// greater than or equal to `self.len() + additional` if it returns
898    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
899    /// preserves the contents even if an error occurs.
900    ///
901    /// # Errors
902    ///
903    /// If the capacity overflows `usize`, or the allocator reports a failure, then an error
904    /// is returned.
905    ///
906    /// # Examples
907    ///
908    /// ```
909    /// use std::collections::TryReserveError;
910    /// use std::collections::VecDeque;
911    ///
912    /// fn process_data(data: &[u32]) -> Result<VecDeque<u32>, TryReserveError> {
913    ///     let mut output = VecDeque::new();
914    ///
915    ///     // Pre-reserve the memory, exiting if we can't
916    ///     output.try_reserve(data.len())?;
917    ///
918    ///     // Now we know this can't OOM in the middle of our complex work
919    ///     output.extend(data.iter().map(|&val| {
920    ///         val * 2 + 5 // very complicated
921    ///     }));
922    ///
923    ///     Ok(output)
924    /// }
925    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
926    /// ```
927    #[stable(feature = "try_reserve", since = "1.57.0")]
928    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
929        let new_cap =
930            self.len.checked_add(additional).ok_or(TryReserveErrorKind::CapacityOverflow)?;
931        let old_cap = self.capacity();
932
933        if new_cap > old_cap {
934            self.buf.try_reserve(self.len, additional)?;
935            unsafe {
936                self.handle_capacity_increase(old_cap);
937            }
938        }
939        Ok(())
940    }
941
942    /// Shrinks the capacity of the deque as much as possible.
943    ///
944    /// It will drop down as close as possible to the length but the allocator may still inform the
945    /// deque that there is space for a few more elements.
946    ///
947    /// # Examples
948    ///
949    /// ```
950    /// use std::collections::VecDeque;
951    ///
952    /// let mut buf = VecDeque::with_capacity(15);
953    /// buf.extend(0..4);
954    /// assert_eq!(buf.capacity(), 15);
955    /// buf.shrink_to_fit();
956    /// assert!(buf.capacity() >= 4);
957    /// ```
958    #[stable(feature = "deque_extras_15", since = "1.5.0")]
959    #[track_caller]
960    pub fn shrink_to_fit(&mut self) {
961        self.shrink_to(0);
962    }
963
964    /// Shrinks the capacity of the deque with a lower bound.
965    ///
966    /// The capacity will remain at least as large as both the length
967    /// and the supplied value.
968    ///
969    /// If the current capacity is less than the lower limit, this is a no-op.
970    ///
971    /// # Examples
972    ///
973    /// ```
974    /// use std::collections::VecDeque;
975    ///
976    /// let mut buf = VecDeque::with_capacity(15);
977    /// buf.extend(0..4);
978    /// assert_eq!(buf.capacity(), 15);
979    /// buf.shrink_to(6);
980    /// assert!(buf.capacity() >= 6);
981    /// buf.shrink_to(0);
982    /// assert!(buf.capacity() >= 4);
983    /// ```
984    #[stable(feature = "shrink_to", since = "1.56.0")]
985    #[track_caller]
986    pub fn shrink_to(&mut self, min_capacity: usize) {
987        let target_cap = min_capacity.max(self.len);
988
989        // never shrink ZSTs
990        if T::IS_ZST || self.capacity() <= target_cap {
991            return;
992        }
993
994        // There are three cases of interest:
995        //   All elements are out of desired bounds
996        //   Elements are contiguous, and tail is out of desired bounds
997        //   Elements are discontiguous
998        //
999        // At all other times, element positions are unaffected.
1000
1001        // `head` and `len` are at most `isize::MAX` and `target_cap < self.capacity()`, so nothing can
1002        // overflow.
1003        let tail_outside = (target_cap + 1..=self.capacity()).contains(&(self.head + self.len));
1004        // Used in the drop guard below.
1005        let old_head = self.head;
1006
1007        if self.len == 0 {
1008            self.head = 0;
1009        } else if self.head >= target_cap && tail_outside {
1010            // Head and tail are both out of bounds, so copy all of them to the front.
1011            //
1012            //  H := head
1013            //  L := last element
1014            //                    H           L
1015            //   [. . . . . . . . o o o o o o o . ]
1016            //    H           L
1017            //   [o o o o o o o . ]
1018            unsafe {
1019                // nonoverlapping because `self.head >= target_cap >= self.len`.
1020                self.copy_nonoverlapping(self.head, 0, self.len);
1021            }
1022            self.head = 0;
1023        } else if self.head < target_cap && tail_outside {
1024            // Head is in bounds, tail is out of bounds.
1025            // Copy the overflowing part to the beginning of the
1026            // buffer. This won't overlap because `target_cap >= self.len`.
1027            //
1028            //  H := head
1029            //  L := last element
1030            //          H           L
1031            //   [. . . o o o o o o o . . . . . . ]
1032            //      L   H
1033            //   [o o . o o o o o ]
1034            let len = self.head + self.len - target_cap;
1035            unsafe {
1036                self.copy_nonoverlapping(target_cap, 0, len);
1037            }
1038        } else if !self.is_contiguous() {
1039            // The head slice is at least partially out of bounds, tail is in bounds.
1040            // Copy the head backwards so it lines up with the target capacity.
1041            // This won't overlap because `target_cap >= self.len`.
1042            //
1043            //  H := head
1044            //  L := last element
1045            //            L                   H
1046            //   [o o o o o . . . . . . . . . o o ]
1047            //            L   H
1048            //   [o o o o o . o o ]
1049            let head_len = self.capacity() - self.head;
1050            let new_head = target_cap - head_len;
1051            unsafe {
1052                // can't use `copy_nonoverlapping()` here because the new and old
1053                // regions for the head might overlap.
1054                self.copy(self.head, new_head, head_len);
1055            }
1056            self.head = new_head;
1057        }
1058
1059        struct Guard<'a, T, A: Allocator> {
1060            deque: &'a mut VecDeque<T, A>,
1061            old_head: usize,
1062            target_cap: usize,
1063        }
1064
1065        impl<T, A: Allocator> Drop for Guard<'_, T, A> {
1066            #[cold]
1067            fn drop(&mut self) {
1068                unsafe {
1069                    // SAFETY: This is only called if `buf.shrink_to_fit` unwinds,
1070                    // which is the only time it's safe to call `abort_shrink`.
1071                    self.deque.abort_shrink(self.old_head, self.target_cap)
1072                }
1073            }
1074        }
1075
1076        let guard = Guard { deque: self, old_head, target_cap };
1077
1078        guard.deque.buf.shrink_to_fit(target_cap);
1079
1080        // Don't drop the guard if we didn't unwind.
1081        mem::forget(guard);
1082
1083        debug_assert!(self.head < self.capacity() || self.capacity() == 0);
1084        debug_assert!(self.len <= self.capacity());
1085    }
1086
1087    /// Reverts the deque back into a consistent state in case `shrink_to` failed.
1088    /// This is necessary to prevent UB if the backing allocator returns an error
1089    /// from `shrink` and `handle_alloc_error` subsequently unwinds (see #123369).
1090    ///
1091    /// `old_head` refers to the head index before `shrink_to` was called. `target_cap`
1092    /// is the capacity that it was trying to shrink to.
1093    unsafe fn abort_shrink(&mut self, old_head: usize, target_cap: usize) {
1094        // Moral equivalent of self.head + self.len <= target_cap. Won't overflow
1095        // because `self.len <= target_cap`.
1096        if self.head <= target_cap - self.len {
1097            // The deque's buffer is contiguous, so no need to copy anything around.
1098            return;
1099        }
1100
1101        // `shrink_to` already copied the head to fit into the new capacity, so this won't overflow.
1102        let head_len = target_cap - self.head;
1103        // `self.head > target_cap - self.len` => `self.len > target_cap - self.head =: head_len` so this must be positive.
1104        let tail_len = self.len - head_len;
1105
1106        if tail_len <= cmp::min(head_len, self.capacity() - target_cap) {
1107            // There's enough spare capacity to copy the tail to the back (because `tail_len < self.capacity() - target_cap`),
1108            // and copying the tail should be cheaper than copying the head (because `tail_len <= head_len`).
1109
1110            unsafe {
1111                // The old tail and the new tail can't overlap because the head slice lies between them. The
1112                // head slice ends at `target_cap`, so that's where we copy to.
1113                self.copy_nonoverlapping(0, target_cap, tail_len);
1114            }
1115        } else {
1116            // Either there's not enough spare capacity to make the deque contiguous, or the head is shorter than the tail
1117            // (and therefore hopefully cheaper to copy).
1118            unsafe {
1119                // The old and the new head slice can overlap, so we can't use `copy_nonoverlapping` here.
1120                self.copy(self.head, old_head, head_len);
1121                self.head = old_head;
1122            }
1123        }
1124    }
1125
1126    /// Shortens the deque, keeping the first `len` elements and dropping
1127    /// the rest.
1128    ///
1129    /// If `len` is greater or equal to the deque's current length, this has
1130    /// no effect.
1131    ///
1132    /// # Examples
1133    ///
1134    /// ```
1135    /// use std::collections::VecDeque;
1136    ///
1137    /// let mut buf = VecDeque::new();
1138    /// buf.push_back(5);
1139    /// buf.push_back(10);
1140    /// buf.push_back(15);
1141    /// assert_eq!(buf, [5, 10, 15]);
1142    /// buf.truncate(1);
1143    /// assert_eq!(buf, [5]);
1144    /// ```
1145    #[stable(feature = "deque_extras", since = "1.16.0")]
1146    pub fn truncate(&mut self, len: usize) {
1147        /// Runs the destructor for all items in the slice when it gets dropped (normally or
1148        /// during unwinding).
1149        struct Dropper<'a, T>(&'a mut [T]);
1150
1151        impl<'a, T> Drop for Dropper<'a, T> {
1152            fn drop(&mut self) {
1153                unsafe {
1154                    ptr::drop_in_place(self.0);
1155                }
1156            }
1157        }
1158
1159        // Safe because:
1160        //
1161        // * Any slice passed to `drop_in_place` is valid; the second case has
1162        //   `len <= front.len()` and returning on `len > self.len()` ensures
1163        //   `begin <= back.len()` in the first case
1164        // * The head of the VecDeque is moved before calling `drop_in_place`,
1165        //   so no value is dropped twice if `drop_in_place` panics
1166        unsafe {
1167            if len >= self.len {
1168                return;
1169            }
1170
1171            let (front, back) = self.as_mut_slices();
1172            if len > front.len() {
1173                let begin = len - front.len();
1174                let drop_back = back.get_unchecked_mut(begin..) as *mut _;
1175                self.len = len;
1176                ptr::drop_in_place(drop_back);
1177            } else {
1178                let drop_back = back as *mut _;
1179                let drop_front = front.get_unchecked_mut(len..) as *mut _;
1180                self.len = len;
1181
1182                // Make sure the second half is dropped even when a destructor
1183                // in the first one panics.
1184                let _back_dropper = Dropper(&mut *drop_back);
1185                ptr::drop_in_place(drop_front);
1186            }
1187        }
1188    }
1189
1190    /// Returns a reference to the underlying allocator.
1191    #[unstable(feature = "allocator_api", issue = "32838")]
1192    #[inline]
1193    pub fn allocator(&self) -> &A {
1194        self.buf.allocator()
1195    }
1196
1197    /// Returns a front-to-back iterator.
1198    ///
1199    /// # Examples
1200    ///
1201    /// ```
1202    /// use std::collections::VecDeque;
1203    ///
1204    /// let mut buf = VecDeque::new();
1205    /// buf.push_back(5);
1206    /// buf.push_back(3);
1207    /// buf.push_back(4);
1208    /// let b: &[_] = &[&5, &3, &4];
1209    /// let c: Vec<&i32> = buf.iter().collect();
1210    /// assert_eq!(&c[..], b);
1211    /// ```
1212    #[stable(feature = "rust1", since = "1.0.0")]
1213    #[cfg_attr(not(test), rustc_diagnostic_item = "vecdeque_iter")]
1214    pub fn iter(&self) -> Iter<'_, T> {
1215        let (a, b) = self.as_slices();
1216        Iter::new(a.iter(), b.iter())
1217    }
1218
1219    /// Returns a front-to-back iterator that returns mutable references.
1220    ///
1221    /// # Examples
1222    ///
1223    /// ```
1224    /// use std::collections::VecDeque;
1225    ///
1226    /// let mut buf = VecDeque::new();
1227    /// buf.push_back(5);
1228    /// buf.push_back(3);
1229    /// buf.push_back(4);
1230    /// for num in buf.iter_mut() {
1231    ///     *num = *num - 2;
1232    /// }
1233    /// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
1234    /// assert_eq!(&buf.iter_mut().collect::<Vec<&mut i32>>()[..], b);
1235    /// ```
1236    #[stable(feature = "rust1", since = "1.0.0")]
1237    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1238        let (a, b) = self.as_mut_slices();
1239        IterMut::new(a.iter_mut(), b.iter_mut())
1240    }
1241
1242    /// Returns a pair of slices which contain, in order, the contents of the
1243    /// deque.
1244    ///
1245    /// If [`make_contiguous`] was previously called, all elements of the
1246    /// deque will be in the first slice and the second slice will be empty.
1247    ///
1248    /// [`make_contiguous`]: VecDeque::make_contiguous
1249    ///
1250    /// # Examples
1251    ///
1252    /// ```
1253    /// use std::collections::VecDeque;
1254    ///
1255    /// let mut deque = VecDeque::new();
1256    ///
1257    /// deque.push_back(0);
1258    /// deque.push_back(1);
1259    /// deque.push_back(2);
1260    ///
1261    /// assert_eq!(deque.as_slices(), (&[0, 1, 2][..], &[][..]));
1262    ///
1263    /// deque.push_front(10);
1264    /// deque.push_front(9);
1265    ///
1266    /// assert_eq!(deque.as_slices(), (&[9, 10][..], &[0, 1, 2][..]));
1267    /// ```
1268    #[inline]
1269    #[stable(feature = "deque_extras_15", since = "1.5.0")]
1270    pub fn as_slices(&self) -> (&[T], &[T]) {
1271        let (a_range, b_range) = self.slice_ranges(.., self.len);
1272        // SAFETY: `slice_ranges` always returns valid ranges into
1273        // the physical buffer.
1274        unsafe { (&*self.buffer_range(a_range), &*self.buffer_range(b_range)) }
1275    }
1276
1277    /// Returns a pair of slices which contain, in order, the contents of the
1278    /// deque.
1279    ///
1280    /// If [`make_contiguous`] was previously called, all elements of the
1281    /// deque will be in the first slice and the second slice will be empty.
1282    ///
1283    /// [`make_contiguous`]: VecDeque::make_contiguous
1284    ///
1285    /// # Examples
1286    ///
1287    /// ```
1288    /// use std::collections::VecDeque;
1289    ///
1290    /// let mut deque = VecDeque::new();
1291    ///
1292    /// deque.push_back(0);
1293    /// deque.push_back(1);
1294    ///
1295    /// deque.push_front(10);
1296    /// deque.push_front(9);
1297    ///
1298    /// deque.as_mut_slices().0[0] = 42;
1299    /// deque.as_mut_slices().1[0] = 24;
1300    /// assert_eq!(deque.as_slices(), (&[42, 10][..], &[24, 1][..]));
1301    /// ```
1302    #[inline]
1303    #[stable(feature = "deque_extras_15", since = "1.5.0")]
1304    pub fn as_mut_slices(&mut self) -> (&mut [T], &mut [T]) {
1305        let (a_range, b_range) = self.slice_ranges(.., self.len);
1306        // SAFETY: `slice_ranges` always returns valid ranges into
1307        // the physical buffer.
1308        unsafe { (&mut *self.buffer_range(a_range), &mut *self.buffer_range(b_range)) }
1309    }
1310
1311    /// Returns the number of elements in the deque.
1312    ///
1313    /// # Examples
1314    ///
1315    /// ```
1316    /// use std::collections::VecDeque;
1317    ///
1318    /// let mut deque = VecDeque::new();
1319    /// assert_eq!(deque.len(), 0);
1320    /// deque.push_back(1);
1321    /// assert_eq!(deque.len(), 1);
1322    /// ```
1323    #[stable(feature = "rust1", since = "1.0.0")]
1324    #[rustc_confusables("length", "size")]
1325    pub fn len(&self) -> usize {
1326        self.len
1327    }
1328
1329    /// Returns `true` if the deque is empty.
1330    ///
1331    /// # Examples
1332    ///
1333    /// ```
1334    /// use std::collections::VecDeque;
1335    ///
1336    /// let mut deque = VecDeque::new();
1337    /// assert!(deque.is_empty());
1338    /// deque.push_front(1);
1339    /// assert!(!deque.is_empty());
1340    /// ```
1341    #[stable(feature = "rust1", since = "1.0.0")]
1342    pub fn is_empty(&self) -> bool {
1343        self.len == 0
1344    }
1345
1346    /// Given a range into the logical buffer of the deque, this function
1347    /// return two ranges into the physical buffer that correspond to
1348    /// the given range. The `len` parameter should usually just be `self.len`;
1349    /// the reason it's passed explicitly is that if the deque is wrapped in
1350    /// a `Drain`, then `self.len` is not actually the length of the deque.
1351    ///
1352    /// # Safety
1353    ///
1354    /// This function is always safe to call. For the resulting ranges to be valid
1355    /// ranges into the physical buffer, the caller must ensure that the result of
1356    /// calling `slice::range(range, ..len)` represents a valid range into the
1357    /// logical buffer, and that all elements in that range are initialized.
1358    fn slice_ranges<R>(&self, range: R, len: usize) -> (Range<usize>, Range<usize>)
1359    where
1360        R: RangeBounds<usize>,
1361    {
1362        let Range { start, end } = slice::range(range, ..len);
1363        let len = end - start;
1364
1365        if len == 0 {
1366            (0..0, 0..0)
1367        } else {
1368            // `slice::range` guarantees that `start <= end <= len`.
1369            // because `len != 0`, we know that `start < end`, so `start < len`
1370            // and the indexing is valid.
1371            let wrapped_start = self.to_physical_idx(start);
1372
1373            // this subtraction can never overflow because `wrapped_start` is
1374            // at most `self.capacity()` (and if `self.capacity != 0`, then `wrapped_start` is strictly less
1375            // than `self.capacity`).
1376            let head_len = self.capacity() - wrapped_start;
1377
1378            if head_len >= len {
1379                // we know that `len + wrapped_start <= self.capacity <= usize::MAX`, so this addition can't overflow
1380                (wrapped_start..wrapped_start + len, 0..0)
1381            } else {
1382                // can't overflow because of the if condition
1383                let tail_len = len - head_len;
1384                (wrapped_start..self.capacity(), 0..tail_len)
1385            }
1386        }
1387    }
1388
1389    /// Creates an iterator that covers the specified range in the deque.
1390    ///
1391    /// # Panics
1392    ///
1393    /// Panics if the starting point is greater than the end point or if
1394    /// the end point is greater than the length of the deque.
1395    ///
1396    /// # Examples
1397    ///
1398    /// ```
1399    /// use std::collections::VecDeque;
1400    ///
1401    /// let deque: VecDeque<_> = [1, 2, 3].into();
1402    /// let range = deque.range(2..).copied().collect::<VecDeque<_>>();
1403    /// assert_eq!(range, [3]);
1404    ///
1405    /// // A full range covers all contents
1406    /// let all = deque.range(..);
1407    /// assert_eq!(all.len(), 3);
1408    /// ```
1409    #[inline]
1410    #[stable(feature = "deque_range", since = "1.51.0")]
1411    pub fn range<R>(&self, range: R) -> Iter<'_, T>
1412    where
1413        R: RangeBounds<usize>,
1414    {
1415        let (a_range, b_range) = self.slice_ranges(range, self.len);
1416        // SAFETY: The ranges returned by `slice_ranges`
1417        // are valid ranges into the physical buffer, so
1418        // it's ok to pass them to `buffer_range` and
1419        // dereference the result.
1420        let a = unsafe { &*self.buffer_range(a_range) };
1421        let b = unsafe { &*self.buffer_range(b_range) };
1422        Iter::new(a.iter(), b.iter())
1423    }
1424
1425    /// Creates an iterator that covers the specified mutable range in the deque.
1426    ///
1427    /// # Panics
1428    ///
1429    /// Panics if the starting point is greater than the end point or if
1430    /// the end point is greater than the length of the deque.
1431    ///
1432    /// # Examples
1433    ///
1434    /// ```
1435    /// use std::collections::VecDeque;
1436    ///
1437    /// let mut deque: VecDeque<_> = [1, 2, 3].into();
1438    /// for v in deque.range_mut(2..) {
1439    ///   *v *= 2;
1440    /// }
1441    /// assert_eq!(deque, [1, 2, 6]);
1442    ///
1443    /// // A full range covers all contents
1444    /// for v in deque.range_mut(..) {
1445    ///   *v *= 2;
1446    /// }
1447    /// assert_eq!(deque, [2, 4, 12]);
1448    /// ```
1449    #[inline]
1450    #[stable(feature = "deque_range", since = "1.51.0")]
1451    pub fn range_mut<R>(&mut self, range: R) -> IterMut<'_, T>
1452    where
1453        R: RangeBounds<usize>,
1454    {
1455        let (a_range, b_range) = self.slice_ranges(range, self.len);
1456        // SAFETY: The ranges returned by `slice_ranges`
1457        // are valid ranges into the physical buffer, so
1458        // it's ok to pass them to `buffer_range` and
1459        // dereference the result.
1460        let a = unsafe { &mut *self.buffer_range(a_range) };
1461        let b = unsafe { &mut *self.buffer_range(b_range) };
1462        IterMut::new(a.iter_mut(), b.iter_mut())
1463    }
1464
1465    /// Removes the specified range from the deque in bulk, returning all
1466    /// removed elements as an iterator. If the iterator is dropped before
1467    /// being fully consumed, it drops the remaining removed elements.
1468    ///
1469    /// The returned iterator keeps a mutable borrow on the queue to optimize
1470    /// its implementation.
1471    ///
1472    ///
1473    /// # Panics
1474    ///
1475    /// Panics if the starting point is greater than the end point or if
1476    /// the end point is greater than the length of the deque.
1477    ///
1478    /// # Leaking
1479    ///
1480    /// If the returned iterator goes out of scope without being dropped (due to
1481    /// [`mem::forget`], for example), the deque may have lost and leaked
1482    /// elements arbitrarily, including elements outside the range.
1483    ///
1484    /// # Examples
1485    ///
1486    /// ```
1487    /// use std::collections::VecDeque;
1488    ///
1489    /// let mut deque: VecDeque<_> = [1, 2, 3].into();
1490    /// let drained = deque.drain(2..).collect::<VecDeque<_>>();
1491    /// assert_eq!(drained, [3]);
1492    /// assert_eq!(deque, [1, 2]);
1493    ///
1494    /// // A full range clears all contents, like `clear()` does
1495    /// deque.drain(..);
1496    /// assert!(deque.is_empty());
1497    /// ```
1498    #[inline]
1499    #[stable(feature = "drain", since = "1.6.0")]
1500    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1501    where
1502        R: RangeBounds<usize>,
1503    {
1504        // Memory safety
1505        //
1506        // When the Drain is first created, the source deque is shortened to
1507        // make sure no uninitialized or moved-from elements are accessible at
1508        // all if the Drain's destructor never gets to run.
1509        //
1510        // Drain will ptr::read out the values to remove.
1511        // When finished, the remaining data will be copied back to cover the hole,
1512        // and the head/tail values will be restored correctly.
1513        //
1514        let Range { start, end } = slice::range(range, ..self.len);
1515        let drain_start = start;
1516        let drain_len = end - start;
1517
1518        // The deque's elements are parted into three segments:
1519        // * 0  -> drain_start
1520        // * drain_start -> drain_start+drain_len
1521        // * drain_start+drain_len -> self.len
1522        //
1523        // H = self.head; T = self.head+self.len; t = drain_start+drain_len; h = drain_head
1524        //
1525        // We store drain_start as self.len, and drain_len and self.len as
1526        // drain_len and orig_len respectively on the Drain. This also
1527        // truncates the effective array such that if the Drain is leaked, we
1528        // have forgotten about the potentially moved values after the start of
1529        // the drain.
1530        //
1531        //        H   h   t   T
1532        // [. . . o o x x o o . . .]
1533        //
1534        // "forget" about the values after the start of the drain until after
1535        // the drain is complete and the Drain destructor is run.
1536
1537        unsafe { Drain::new(self, drain_start, drain_len) }
1538    }
1539
1540    /// Clears the deque, removing all values.
1541    ///
1542    /// # Examples
1543    ///
1544    /// ```
1545    /// use std::collections::VecDeque;
1546    ///
1547    /// let mut deque = VecDeque::new();
1548    /// deque.push_back(1);
1549    /// deque.clear();
1550    /// assert!(deque.is_empty());
1551    /// ```
1552    #[stable(feature = "rust1", since = "1.0.0")]
1553    #[inline]
1554    pub fn clear(&mut self) {
1555        self.truncate(0);
1556        // Not strictly necessary, but leaves things in a more consistent/predictable state.
1557        self.head = 0;
1558    }
1559
1560    /// Returns `true` if the deque contains an element equal to the
1561    /// given value.
1562    ///
1563    /// This operation is *O*(*n*).
1564    ///
1565    /// Note that if you have a sorted `VecDeque`, [`binary_search`] may be faster.
1566    ///
1567    /// [`binary_search`]: VecDeque::binary_search
1568    ///
1569    /// # Examples
1570    ///
1571    /// ```
1572    /// use std::collections::VecDeque;
1573    ///
1574    /// let mut deque: VecDeque<u32> = VecDeque::new();
1575    ///
1576    /// deque.push_back(0);
1577    /// deque.push_back(1);
1578    ///
1579    /// assert_eq!(deque.contains(&1), true);
1580    /// assert_eq!(deque.contains(&10), false);
1581    /// ```
1582    #[stable(feature = "vec_deque_contains", since = "1.12.0")]
1583    pub fn contains(&self, x: &T) -> bool
1584    where
1585        T: PartialEq<T>,
1586    {
1587        let (a, b) = self.as_slices();
1588        a.contains(x) || b.contains(x)
1589    }
1590
1591    /// Provides a reference to the front element, or `None` if the deque is
1592    /// empty.
1593    ///
1594    /// # Examples
1595    ///
1596    /// ```
1597    /// use std::collections::VecDeque;
1598    ///
1599    /// let mut d = VecDeque::new();
1600    /// assert_eq!(d.front(), None);
1601    ///
1602    /// d.push_back(1);
1603    /// d.push_back(2);
1604    /// assert_eq!(d.front(), Some(&1));
1605    /// ```
1606    #[stable(feature = "rust1", since = "1.0.0")]
1607    #[rustc_confusables("first")]
1608    pub fn front(&self) -> Option<&T> {
1609        self.get(0)
1610    }
1611
1612    /// Provides a mutable reference to the front element, or `None` if the
1613    /// deque is empty.
1614    ///
1615    /// # Examples
1616    ///
1617    /// ```
1618    /// use std::collections::VecDeque;
1619    ///
1620    /// let mut d = VecDeque::new();
1621    /// assert_eq!(d.front_mut(), None);
1622    ///
1623    /// d.push_back(1);
1624    /// d.push_back(2);
1625    /// match d.front_mut() {
1626    ///     Some(x) => *x = 9,
1627    ///     None => (),
1628    /// }
1629    /// assert_eq!(d.front(), Some(&9));
1630    /// ```
1631    #[stable(feature = "rust1", since = "1.0.0")]
1632    pub fn front_mut(&mut self) -> Option<&mut T> {
1633        self.get_mut(0)
1634    }
1635
1636    /// Provides a reference to the back element, or `None` if the deque is
1637    /// empty.
1638    ///
1639    /// # Examples
1640    ///
1641    /// ```
1642    /// use std::collections::VecDeque;
1643    ///
1644    /// let mut d = VecDeque::new();
1645    /// assert_eq!(d.back(), None);
1646    ///
1647    /// d.push_back(1);
1648    /// d.push_back(2);
1649    /// assert_eq!(d.back(), Some(&2));
1650    /// ```
1651    #[stable(feature = "rust1", since = "1.0.0")]
1652    #[rustc_confusables("last")]
1653    pub fn back(&self) -> Option<&T> {
1654        self.get(self.len.wrapping_sub(1))
1655    }
1656
1657    /// Provides a mutable reference to the back element, or `None` if the
1658    /// deque is empty.
1659    ///
1660    /// # Examples
1661    ///
1662    /// ```
1663    /// use std::collections::VecDeque;
1664    ///
1665    /// let mut d = VecDeque::new();
1666    /// assert_eq!(d.back(), None);
1667    ///
1668    /// d.push_back(1);
1669    /// d.push_back(2);
1670    /// match d.back_mut() {
1671    ///     Some(x) => *x = 9,
1672    ///     None => (),
1673    /// }
1674    /// assert_eq!(d.back(), Some(&9));
1675    /// ```
1676    #[stable(feature = "rust1", since = "1.0.0")]
1677    pub fn back_mut(&mut self) -> Option<&mut T> {
1678        self.get_mut(self.len.wrapping_sub(1))
1679    }
1680
1681    /// Removes the first element and returns it, or `None` if the deque is
1682    /// empty.
1683    ///
1684    /// # Examples
1685    ///
1686    /// ```
1687    /// use std::collections::VecDeque;
1688    ///
1689    /// let mut d = VecDeque::new();
1690    /// d.push_back(1);
1691    /// d.push_back(2);
1692    ///
1693    /// assert_eq!(d.pop_front(), Some(1));
1694    /// assert_eq!(d.pop_front(), Some(2));
1695    /// assert_eq!(d.pop_front(), None);
1696    /// ```
1697    #[stable(feature = "rust1", since = "1.0.0")]
1698    pub fn pop_front(&mut self) -> Option<T> {
1699        if self.is_empty() {
1700            None
1701        } else {
1702            let old_head = self.head;
1703            self.head = self.to_physical_idx(1);
1704            self.len -= 1;
1705            unsafe {
1706                core::hint::assert_unchecked(self.len < self.capacity());
1707                Some(self.buffer_read(old_head))
1708            }
1709        }
1710    }
1711
1712    /// Removes the last element from the deque and returns it, or `None` if
1713    /// it is empty.
1714    ///
1715    /// # Examples
1716    ///
1717    /// ```
1718    /// use std::collections::VecDeque;
1719    ///
1720    /// let mut buf = VecDeque::new();
1721    /// assert_eq!(buf.pop_back(), None);
1722    /// buf.push_back(1);
1723    /// buf.push_back(3);
1724    /// assert_eq!(buf.pop_back(), Some(3));
1725    /// ```
1726    #[stable(feature = "rust1", since = "1.0.0")]
1727    pub fn pop_back(&mut self) -> Option<T> {
1728        if self.is_empty() {
1729            None
1730        } else {
1731            self.len -= 1;
1732            unsafe {
1733                core::hint::assert_unchecked(self.len < self.capacity());
1734                Some(self.buffer_read(self.to_physical_idx(self.len)))
1735            }
1736        }
1737    }
1738
1739    /// Removes and returns the first element from the deque if the predicate
1740    /// returns `true`, or [`None`] if the predicate returns false or the deque
1741    /// is empty (the predicate will not be called in that case).
1742    ///
1743    /// # Examples
1744    ///
1745    /// ```
1746    /// #![feature(vec_deque_pop_if)]
1747    /// use std::collections::VecDeque;
1748    ///
1749    /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into();
1750    /// let pred = |x: &mut i32| *x % 2 == 0;
1751    ///
1752    /// assert_eq!(deque.pop_front_if(pred), Some(0));
1753    /// assert_eq!(deque, [1, 2, 3, 4]);
1754    /// assert_eq!(deque.pop_front_if(pred), None);
1755    /// ```
1756    #[unstable(feature = "vec_deque_pop_if", issue = "135889")]
1757    pub fn pop_front_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
1758        let first = self.front_mut()?;
1759        if predicate(first) { self.pop_front() } else { None }
1760    }
1761
1762    /// Removes and returns the last element from the deque if the predicate
1763    /// returns `true`, or [`None`] if the predicate returns false or the deque
1764    /// is empty (the predicate will not be called in that case).
1765    ///
1766    /// # Examples
1767    ///
1768    /// ```
1769    /// #![feature(vec_deque_pop_if)]
1770    /// use std::collections::VecDeque;
1771    ///
1772    /// let mut deque: VecDeque<i32> = vec![0, 1, 2, 3, 4].into();
1773    /// let pred = |x: &mut i32| *x % 2 == 0;
1774    ///
1775    /// assert_eq!(deque.pop_back_if(pred), Some(4));
1776    /// assert_eq!(deque, [0, 1, 2, 3]);
1777    /// assert_eq!(deque.pop_back_if(pred), None);
1778    /// ```
1779    #[unstable(feature = "vec_deque_pop_if", issue = "135889")]
1780    pub fn pop_back_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
1781        let first = self.back_mut()?;
1782        if predicate(first) { self.pop_back() } else { None }
1783    }
1784
1785    /// Prepends an element to the deque.
1786    ///
1787    /// # Examples
1788    ///
1789    /// ```
1790    /// use std::collections::VecDeque;
1791    ///
1792    /// let mut d = VecDeque::new();
1793    /// d.push_front(1);
1794    /// d.push_front(2);
1795    /// assert_eq!(d.front(), Some(&2));
1796    /// ```
1797    #[stable(feature = "rust1", since = "1.0.0")]
1798    #[track_caller]
1799    pub fn push_front(&mut self, value: T) {
1800        if self.is_full() {
1801            self.grow();
1802        }
1803
1804        self.head = self.wrap_sub(self.head, 1);
1805        self.len += 1;
1806
1807        unsafe {
1808            self.buffer_write(self.head, value);
1809        }
1810    }
1811
1812    /// Appends an element to the back of the deque.
1813    ///
1814    /// # Examples
1815    ///
1816    /// ```
1817    /// use std::collections::VecDeque;
1818    ///
1819    /// let mut buf = VecDeque::new();
1820    /// buf.push_back(1);
1821    /// buf.push_back(3);
1822    /// assert_eq!(3, *buf.back().unwrap());
1823    /// ```
1824    #[stable(feature = "rust1", since = "1.0.0")]
1825    #[rustc_confusables("push", "put", "append")]
1826    #[track_caller]
1827    pub fn push_back(&mut self, value: T) {
1828        if self.is_full() {
1829            self.grow();
1830        }
1831
1832        unsafe { self.buffer_write(self.to_physical_idx(self.len), value) }
1833        self.len += 1;
1834    }
1835
1836    #[inline]
1837    fn is_contiguous(&self) -> bool {
1838        // Do the calculation like this to avoid overflowing if len + head > usize::MAX
1839        self.head <= self.capacity() - self.len
1840    }
1841
1842    /// Removes an element from anywhere in the deque and returns it,
1843    /// replacing it with the first element.
1844    ///
1845    /// This does not preserve ordering, but is *O*(1).
1846    ///
1847    /// Returns `None` if `index` is out of bounds.
1848    ///
1849    /// Element at index 0 is the front of the queue.
1850    ///
1851    /// # Examples
1852    ///
1853    /// ```
1854    /// use std::collections::VecDeque;
1855    ///
1856    /// let mut buf = VecDeque::new();
1857    /// assert_eq!(buf.swap_remove_front(0), None);
1858    /// buf.push_back(1);
1859    /// buf.push_back(2);
1860    /// buf.push_back(3);
1861    /// assert_eq!(buf, [1, 2, 3]);
1862    ///
1863    /// assert_eq!(buf.swap_remove_front(2), Some(3));
1864    /// assert_eq!(buf, [2, 1]);
1865    /// ```
1866    #[stable(feature = "deque_extras_15", since = "1.5.0")]
1867    pub fn swap_remove_front(&mut self, index: usize) -> Option<T> {
1868        let length = self.len;
1869        if index < length && index != 0 {
1870            self.swap(index, 0);
1871        } else if index >= length {
1872            return None;
1873        }
1874        self.pop_front()
1875    }
1876
1877    /// Removes an element from anywhere in the deque and returns it,
1878    /// replacing it with the last element.
1879    ///
1880    /// This does not preserve ordering, but is *O*(1).
1881    ///
1882    /// Returns `None` if `index` is out of bounds.
1883    ///
1884    /// Element at index 0 is the front of the queue.
1885    ///
1886    /// # Examples
1887    ///
1888    /// ```
1889    /// use std::collections::VecDeque;
1890    ///
1891    /// let mut buf = VecDeque::new();
1892    /// assert_eq!(buf.swap_remove_back(0), None);
1893    /// buf.push_back(1);
1894    /// buf.push_back(2);
1895    /// buf.push_back(3);
1896    /// assert_eq!(buf, [1, 2, 3]);
1897    ///
1898    /// assert_eq!(buf.swap_remove_back(0), Some(1));
1899    /// assert_eq!(buf, [3, 2]);
1900    /// ```
1901    #[stable(feature = "deque_extras_15", since = "1.5.0")]
1902    pub fn swap_remove_back(&mut self, index: usize) -> Option<T> {
1903        let length = self.len;
1904        if length > 0 && index < length - 1 {
1905            self.swap(index, length - 1);
1906        } else if index >= length {
1907            return None;
1908        }
1909        self.pop_back()
1910    }
1911
1912    /// Inserts an element at `index` within the deque, shifting all elements
1913    /// with indices greater than or equal to `index` towards the back.
1914    ///
1915    /// Element at index 0 is the front of the queue.
1916    ///
1917    /// # Panics
1918    ///
1919    /// Panics if `index` is strictly greater than deque's length
1920    ///
1921    /// # Examples
1922    ///
1923    /// ```
1924    /// use std::collections::VecDeque;
1925    ///
1926    /// let mut vec_deque = VecDeque::new();
1927    /// vec_deque.push_back('a');
1928    /// vec_deque.push_back('b');
1929    /// vec_deque.push_back('c');
1930    /// assert_eq!(vec_deque, &['a', 'b', 'c']);
1931    ///
1932    /// vec_deque.insert(1, 'd');
1933    /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c']);
1934    ///
1935    /// vec_deque.insert(4, 'e');
1936    /// assert_eq!(vec_deque, &['a', 'd', 'b', 'c', 'e']);
1937    /// ```
1938    #[stable(feature = "deque_extras_15", since = "1.5.0")]
1939    #[track_caller]
1940    pub fn insert(&mut self, index: usize, value: T) {
1941        assert!(index <= self.len(), "index out of bounds");
1942        if self.is_full() {
1943            self.grow();
1944        }
1945
1946        let k = self.len - index;
1947        if k < index {
1948            // `index + 1` can't overflow, because if index was usize::MAX, then either the
1949            // assert would've failed, or the deque would've tried to grow past usize::MAX
1950            // and panicked.
1951            unsafe {
1952                // see `remove()` for explanation why this wrap_copy() call is safe.
1953                self.wrap_copy(self.to_physical_idx(index), self.to_physical_idx(index + 1), k);
1954                self.buffer_write(self.to_physical_idx(index), value);
1955                self.len += 1;
1956            }
1957        } else {
1958            let old_head = self.head;
1959            self.head = self.wrap_sub(self.head, 1);
1960            unsafe {
1961                self.wrap_copy(old_head, self.head, index);
1962                self.buffer_write(self.to_physical_idx(index), value);
1963                self.len += 1;
1964            }
1965        }
1966    }
1967
1968    /// Removes and returns the element at `index` from the deque.
1969    /// Whichever end is closer to the removal point will be moved to make
1970    /// room, and all the affected elements will be moved to new positions.
1971    /// Returns `None` if `index` is out of bounds.
1972    ///
1973    /// Element at index 0 is the front of the queue.
1974    ///
1975    /// # Examples
1976    ///
1977    /// ```
1978    /// use std::collections::VecDeque;
1979    ///
1980    /// let mut buf = VecDeque::new();
1981    /// buf.push_back('a');
1982    /// buf.push_back('b');
1983    /// buf.push_back('c');
1984    /// assert_eq!(buf, ['a', 'b', 'c']);
1985    ///
1986    /// assert_eq!(buf.remove(1), Some('b'));
1987    /// assert_eq!(buf, ['a', 'c']);
1988    /// ```
1989    #[stable(feature = "rust1", since = "1.0.0")]
1990    #[rustc_confusables("delete", "take")]
1991    pub fn remove(&mut self, index: usize) -> Option<T> {
1992        if self.len <= index {
1993            return None;
1994        }
1995
1996        let wrapped_idx = self.to_physical_idx(index);
1997
1998        let elem = unsafe { Some(self.buffer_read(wrapped_idx)) };
1999
2000        let k = self.len - index - 1;
2001        // safety: due to the nature of the if-condition, whichever wrap_copy gets called,
2002        // its length argument will be at most `self.len / 2`, so there can't be more than
2003        // one overlapping area.
2004        if k < index {
2005            unsafe { self.wrap_copy(self.wrap_add(wrapped_idx, 1), wrapped_idx, k) };
2006            self.len -= 1;
2007        } else {
2008            let old_head = self.head;
2009            self.head = self.to_physical_idx(1);
2010            unsafe { self.wrap_copy(old_head, self.head, index) };
2011            self.len -= 1;
2012        }
2013
2014        elem
2015    }
2016
2017    /// Splits the deque into two at the given index.
2018    ///
2019    /// Returns a newly allocated `VecDeque`. `self` contains elements `[0, at)`,
2020    /// and the returned deque contains elements `[at, len)`.
2021    ///
2022    /// Note that the capacity of `self` does not change.
2023    ///
2024    /// Element at index 0 is the front of the queue.
2025    ///
2026    /// # Panics
2027    ///
2028    /// Panics if `at > len`.
2029    ///
2030    /// # Examples
2031    ///
2032    /// ```
2033    /// use std::collections::VecDeque;
2034    ///
2035    /// let mut buf: VecDeque<_> = ['a', 'b', 'c'].into();
2036    /// let buf2 = buf.split_off(1);
2037    /// assert_eq!(buf, ['a']);
2038    /// assert_eq!(buf2, ['b', 'c']);
2039    /// ```
2040    #[inline]
2041    #[must_use = "use `.truncate()` if you don't need the other half"]
2042    #[stable(feature = "split_off", since = "1.4.0")]
2043    #[track_caller]
2044    pub fn split_off(&mut self, at: usize) -> Self
2045    where
2046        A: Clone,
2047    {
2048        let len = self.len;
2049        assert!(at <= len, "`at` out of bounds");
2050
2051        let other_len = len - at;
2052        let mut other = VecDeque::with_capacity_in(other_len, self.allocator().clone());
2053
2054        unsafe {
2055            let (first_half, second_half) = self.as_slices();
2056
2057            let first_len = first_half.len();
2058            let second_len = second_half.len();
2059            if at < first_len {
2060                // `at` lies in the first half.
2061                let amount_in_first = first_len - at;
2062
2063                ptr::copy_nonoverlapping(first_half.as_ptr().add(at), other.ptr(), amount_in_first);
2064
2065                // just take all of the second half.
2066                ptr::copy_nonoverlapping(
2067                    second_half.as_ptr(),
2068                    other.ptr().add(amount_in_first),
2069                    second_len,
2070                );
2071            } else {
2072                // `at` lies in the second half, need to factor in the elements we skipped
2073                // in the first half.
2074                let offset = at - first_len;
2075                let amount_in_second = second_len - offset;
2076                ptr::copy_nonoverlapping(
2077                    second_half.as_ptr().add(offset),
2078                    other.ptr(),
2079                    amount_in_second,
2080                );
2081            }
2082        }
2083
2084        // Cleanup where the ends of the buffers are
2085        self.len = at;
2086        other.len = other_len;
2087
2088        other
2089    }
2090
2091    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2092    ///
2093    /// # Panics
2094    ///
2095    /// Panics if the new number of elements in self overflows a `usize`.
2096    ///
2097    /// # Examples
2098    ///
2099    /// ```
2100    /// use std::collections::VecDeque;
2101    ///
2102    /// let mut buf: VecDeque<_> = [1, 2].into();
2103    /// let mut buf2: VecDeque<_> = [3, 4].into();
2104    /// buf.append(&mut buf2);
2105    /// assert_eq!(buf, [1, 2, 3, 4]);
2106    /// assert_eq!(buf2, []);
2107    /// ```
2108    #[inline]
2109    #[stable(feature = "append", since = "1.4.0")]
2110    #[track_caller]
2111    pub fn append(&mut self, other: &mut Self) {
2112        if T::IS_ZST {
2113            self.len = self.len.checked_add(other.len).expect("capacity overflow");
2114            other.len = 0;
2115            other.head = 0;
2116            return;
2117        }
2118
2119        self.reserve(other.len);
2120        unsafe {
2121            let (left, right) = other.as_slices();
2122            self.copy_slice(self.to_physical_idx(self.len), left);
2123            // no overflow, because self.capacity() >= old_cap + left.len() >= self.len + left.len()
2124            self.copy_slice(self.to_physical_idx(self.len + left.len()), right);
2125        }
2126        // SAFETY: Update pointers after copying to avoid leaving doppelganger
2127        // in case of panics.
2128        self.len += other.len;
2129        // Now that we own its values, forget everything in `other`.
2130        other.len = 0;
2131        other.head = 0;
2132    }
2133
2134    /// Retains only the elements specified by the predicate.
2135    ///
2136    /// In other words, remove all elements `e` for which `f(&e)` returns false.
2137    /// This method operates in place, visiting each element exactly once in the
2138    /// original order, and preserves the order of the retained elements.
2139    ///
2140    /// # Examples
2141    ///
2142    /// ```
2143    /// use std::collections::VecDeque;
2144    ///
2145    /// let mut buf = VecDeque::new();
2146    /// buf.extend(1..5);
2147    /// buf.retain(|&x| x % 2 == 0);
2148    /// assert_eq!(buf, [2, 4]);
2149    /// ```
2150    ///
2151    /// Because the elements are visited exactly once in the original order,
2152    /// external state may be used to decide which elements to keep.
2153    ///
2154    /// ```
2155    /// use std::collections::VecDeque;
2156    ///
2157    /// let mut buf = VecDeque::new();
2158    /// buf.extend(1..6);
2159    ///
2160    /// let keep = [false, true, true, false, true];
2161    /// let mut iter = keep.iter();
2162    /// buf.retain(|_| *iter.next().unwrap());
2163    /// assert_eq!(buf, [2, 3, 5]);
2164    /// ```
2165    #[stable(feature = "vec_deque_retain", since = "1.4.0")]
2166    pub fn retain<F>(&mut self, mut f: F)
2167    where
2168        F: FnMut(&T) -> bool,
2169    {
2170        self.retain_mut(|elem| f(elem));
2171    }
2172
2173    /// Retains only the elements specified by the predicate.
2174    ///
2175    /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
2176    /// This method operates in place, visiting each element exactly once in the
2177    /// original order, and preserves the order of the retained elements.
2178    ///
2179    /// # Examples
2180    ///
2181    /// ```
2182    /// use std::collections::VecDeque;
2183    ///
2184    /// let mut buf = VecDeque::new();
2185    /// buf.extend(1..5);
2186    /// buf.retain_mut(|x| if *x % 2 == 0 {
2187    ///     *x += 1;
2188    ///     true
2189    /// } else {
2190    ///     false
2191    /// });
2192    /// assert_eq!(buf, [3, 5]);
2193    /// ```
2194    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2195    pub fn retain_mut<F>(&mut self, mut f: F)
2196    where
2197        F: FnMut(&mut T) -> bool,
2198    {
2199        let len = self.len;
2200        let mut idx = 0;
2201        let mut cur = 0;
2202
2203        // Stage 1: All values are retained.
2204        while cur < len {
2205            if !f(&mut self[cur]) {
2206                cur += 1;
2207                break;
2208            }
2209            cur += 1;
2210            idx += 1;
2211        }
2212        // Stage 2: Swap retained value into current idx.
2213        while cur < len {
2214            if !f(&mut self[cur]) {
2215                cur += 1;
2216                continue;
2217            }
2218
2219            self.swap(idx, cur);
2220            cur += 1;
2221            idx += 1;
2222        }
2223        // Stage 3: Truncate all values after idx.
2224        if cur != idx {
2225            self.truncate(idx);
2226        }
2227    }
2228
2229    // Double the buffer size. This method is inline(never), so we expect it to only
2230    // be called in cold paths.
2231    // This may panic or abort
2232    #[inline(never)]
2233    #[track_caller]
2234    fn grow(&mut self) {
2235        // Extend or possibly remove this assertion when valid use-cases for growing the
2236        // buffer without it being full emerge
2237        debug_assert!(self.is_full());
2238        let old_cap = self.capacity();
2239        self.buf.grow_one();
2240        unsafe {
2241            self.handle_capacity_increase(old_cap);
2242        }
2243        debug_assert!(!self.is_full());
2244    }
2245
2246    /// Modifies the deque in-place so that `len()` is equal to `new_len`,
2247    /// either by removing excess elements from the back or by appending
2248    /// elements generated by calling `generator` to the back.
2249    ///
2250    /// # Examples
2251    ///
2252    /// ```
2253    /// use std::collections::VecDeque;
2254    ///
2255    /// let mut buf = VecDeque::new();
2256    /// buf.push_back(5);
2257    /// buf.push_back(10);
2258    /// buf.push_back(15);
2259    /// assert_eq!(buf, [5, 10, 15]);
2260    ///
2261    /// buf.resize_with(5, Default::default);
2262    /// assert_eq!(buf, [5, 10, 15, 0, 0]);
2263    ///
2264    /// buf.resize_with(2, || unreachable!());
2265    /// assert_eq!(buf, [5, 10]);
2266    ///
2267    /// let mut state = 100;
2268    /// buf.resize_with(5, || { state += 1; state });
2269    /// assert_eq!(buf, [5, 10, 101, 102, 103]);
2270    /// ```
2271    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2272    #[track_caller]
2273    pub fn resize_with(&mut self, new_len: usize, generator: impl FnMut() -> T) {
2274        let len = self.len;
2275
2276        if new_len > len {
2277            self.extend(repeat_with(generator).take(new_len - len))
2278        } else {
2279            self.truncate(new_len);
2280        }
2281    }
2282
2283    /// Rearranges the internal storage of this deque so it is one contiguous
2284    /// slice, which is then returned.
2285    ///
2286    /// This method does not allocate and does not change the order of the
2287    /// inserted elements. As it returns a mutable slice, this can be used to
2288    /// sort a deque.
2289    ///
2290    /// Once the internal storage is contiguous, the [`as_slices`] and
2291    /// [`as_mut_slices`] methods will return the entire contents of the
2292    /// deque in a single slice.
2293    ///
2294    /// [`as_slices`]: VecDeque::as_slices
2295    /// [`as_mut_slices`]: VecDeque::as_mut_slices
2296    ///
2297    /// # Examples
2298    ///
2299    /// Sorting the content of a deque.
2300    ///
2301    /// ```
2302    /// use std::collections::VecDeque;
2303    ///
2304    /// let mut buf = VecDeque::with_capacity(15);
2305    ///
2306    /// buf.push_back(2);
2307    /// buf.push_back(1);
2308    /// buf.push_front(3);
2309    ///
2310    /// // sorting the deque
2311    /// buf.make_contiguous().sort();
2312    /// assert_eq!(buf.as_slices(), (&[1, 2, 3] as &[_], &[] as &[_]));
2313    ///
2314    /// // sorting it in reverse order
2315    /// buf.make_contiguous().sort_by(|a, b| b.cmp(a));
2316    /// assert_eq!(buf.as_slices(), (&[3, 2, 1] as &[_], &[] as &[_]));
2317    /// ```
2318    ///
2319    /// Getting immutable access to the contiguous slice.
2320    ///
2321    /// ```rust
2322    /// use std::collections::VecDeque;
2323    ///
2324    /// let mut buf = VecDeque::new();
2325    ///
2326    /// buf.push_back(2);
2327    /// buf.push_back(1);
2328    /// buf.push_front(3);
2329    ///
2330    /// buf.make_contiguous();
2331    /// if let (slice, &[]) = buf.as_slices() {
2332    ///     // we can now be sure that `slice` contains all elements of the deque,
2333    ///     // while still having immutable access to `buf`.
2334    ///     assert_eq!(buf.len(), slice.len());
2335    ///     assert_eq!(slice, &[3, 2, 1] as &[_]);
2336    /// }
2337    /// ```
2338    #[stable(feature = "deque_make_contiguous", since = "1.48.0")]
2339    pub fn make_contiguous(&mut self) -> &mut [T] {
2340        if T::IS_ZST {
2341            self.head = 0;
2342        }
2343
2344        if self.is_contiguous() {
2345            unsafe { return slice::from_raw_parts_mut(self.ptr().add(self.head), self.len) }
2346        }
2347
2348        let &mut Self { head, len, .. } = self;
2349        let ptr = self.ptr();
2350        let cap = self.capacity();
2351
2352        let free = cap - len;
2353        let head_len = cap - head;
2354        let tail = len - head_len;
2355        let tail_len = tail;
2356
2357        if free >= head_len {
2358            // there is enough free space to copy the head in one go,
2359            // this means that we first shift the tail backwards, and then
2360            // copy the head to the correct position.
2361            //
2362            // from: DEFGH....ABC
2363            // to:   ABCDEFGH....
2364            unsafe {
2365                self.copy(0, head_len, tail_len);
2366                // ...DEFGH.ABC
2367                self.copy_nonoverlapping(head, 0, head_len);
2368                // ABCDEFGH....
2369            }
2370
2371            self.head = 0;
2372        } else if free >= tail_len {
2373            // there is enough free space to copy the tail in one go,
2374            // this means that we first shift the head forwards, and then
2375            // copy the tail to the correct position.
2376            //
2377            // from: FGH....ABCDE
2378            // to:   ...ABCDEFGH.
2379            unsafe {
2380                self.copy(head, tail, head_len);
2381                // FGHABCDE....
2382                self.copy_nonoverlapping(0, tail + head_len, tail_len);
2383                // ...ABCDEFGH.
2384            }
2385
2386            self.head = tail;
2387        } else {
2388            // `free` is smaller than both `head_len` and `tail_len`.
2389            // the general algorithm for this first moves the slices
2390            // right next to each other and then uses `slice::rotate`
2391            // to rotate them into place:
2392            //
2393            // initially:   HIJK..ABCDEFG
2394            // step 1:      ..HIJKABCDEFG
2395            // step 2:      ..ABCDEFGHIJK
2396            //
2397            // or:
2398            //
2399            // initially:   FGHIJK..ABCDE
2400            // step 1:      FGHIJKABCDE..
2401            // step 2:      ABCDEFGHIJK..
2402
2403            // pick the shorter of the 2 slices to reduce the amount
2404            // of memory that needs to be moved around.
2405            if head_len > tail_len {
2406                // tail is shorter, so:
2407                //  1. copy tail forwards
2408                //  2. rotate used part of the buffer
2409                //  3. update head to point to the new beginning (which is just `free`)
2410
2411                unsafe {
2412                    // if there is no free space in the buffer, then the slices are already
2413                    // right next to each other and we don't need to move any memory.
2414                    if free != 0 {
2415                        // because we only move the tail forward as much as there's free space
2416                        // behind it, we don't overwrite any elements of the head slice, and
2417                        // the slices end up right next to each other.
2418                        self.copy(0, free, tail_len);
2419                    }
2420
2421                    // We just copied the tail right next to the head slice,
2422                    // so all of the elements in the range are initialized
2423                    let slice = &mut *self.buffer_range(free..self.capacity());
2424
2425                    // because the deque wasn't contiguous, we know that `tail_len < self.len == slice.len()`,
2426                    // so this will never panic.
2427                    slice.rotate_left(tail_len);
2428
2429                    // the used part of the buffer now is `free..self.capacity()`, so set
2430                    // `head` to the beginning of that range.
2431                    self.head = free;
2432                }
2433            } else {
2434                // head is shorter so:
2435                //  1. copy head backwards
2436                //  2. rotate used part of the buffer
2437                //  3. update head to point to the new beginning (which is the beginning of the buffer)
2438
2439                unsafe {
2440                    // if there is no free space in the buffer, then the slices are already
2441                    // right next to each other and we don't need to move any memory.
2442                    if free != 0 {
2443                        // copy the head slice to lie right behind the tail slice.
2444                        self.copy(self.head, tail_len, head_len);
2445                    }
2446
2447                    // because we copied the head slice so that both slices lie right
2448                    // next to each other, all the elements in the range are initialized.
2449                    let slice = &mut *self.buffer_range(0..self.len);
2450
2451                    // because the deque wasn't contiguous, we know that `head_len < self.len == slice.len()`
2452                    // so this will never panic.
2453                    slice.rotate_right(head_len);
2454
2455                    // the used part of the buffer now is `0..self.len`, so set
2456                    // `head` to the beginning of that range.
2457                    self.head = 0;
2458                }
2459            }
2460        }
2461
2462        unsafe { slice::from_raw_parts_mut(ptr.add(self.head), self.len) }
2463    }
2464
2465    /// Rotates the double-ended queue `n` places to the left.
2466    ///
2467    /// Equivalently,
2468    /// - Rotates item `n` into the first position.
2469    /// - Pops the first `n` items and pushes them to the end.
2470    /// - Rotates `len() - n` places to the right.
2471    ///
2472    /// # Panics
2473    ///
2474    /// If `n` is greater than `len()`. Note that `n == len()`
2475    /// does _not_ panic and is a no-op rotation.
2476    ///
2477    /// # Complexity
2478    ///
2479    /// Takes `*O*(min(n, len() - n))` time and no extra space.
2480    ///
2481    /// # Examples
2482    ///
2483    /// ```
2484    /// use std::collections::VecDeque;
2485    ///
2486    /// let mut buf: VecDeque<_> = (0..10).collect();
2487    ///
2488    /// buf.rotate_left(3);
2489    /// assert_eq!(buf, [3, 4, 5, 6, 7, 8, 9, 0, 1, 2]);
2490    ///
2491    /// for i in 1..10 {
2492    ///     assert_eq!(i * 3 % 10, buf[0]);
2493    ///     buf.rotate_left(3);
2494    /// }
2495    /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2496    /// ```
2497    #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2498    pub fn rotate_left(&mut self, n: usize) {
2499        assert!(n <= self.len());
2500        let k = self.len - n;
2501        if n <= k {
2502            unsafe { self.rotate_left_inner(n) }
2503        } else {
2504            unsafe { self.rotate_right_inner(k) }
2505        }
2506    }
2507
2508    /// Rotates the double-ended queue `n` places to the right.
2509    ///
2510    /// Equivalently,
2511    /// - Rotates the first item into position `n`.
2512    /// - Pops the last `n` items and pushes them to the front.
2513    /// - Rotates `len() - n` places to the left.
2514    ///
2515    /// # Panics
2516    ///
2517    /// If `n` is greater than `len()`. Note that `n == len()`
2518    /// does _not_ panic and is a no-op rotation.
2519    ///
2520    /// # Complexity
2521    ///
2522    /// Takes `*O*(min(n, len() - n))` time and no extra space.
2523    ///
2524    /// # Examples
2525    ///
2526    /// ```
2527    /// use std::collections::VecDeque;
2528    ///
2529    /// let mut buf: VecDeque<_> = (0..10).collect();
2530    ///
2531    /// buf.rotate_right(3);
2532    /// assert_eq!(buf, [7, 8, 9, 0, 1, 2, 3, 4, 5, 6]);
2533    ///
2534    /// for i in 1..10 {
2535    ///     assert_eq!(0, buf[i * 3 % 10]);
2536    ///     buf.rotate_right(3);
2537    /// }
2538    /// assert_eq!(buf, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
2539    /// ```
2540    #[stable(feature = "vecdeque_rotate", since = "1.36.0")]
2541    pub fn rotate_right(&mut self, n: usize) {
2542        assert!(n <= self.len());
2543        let k = self.len - n;
2544        if n <= k {
2545            unsafe { self.rotate_right_inner(n) }
2546        } else {
2547            unsafe { self.rotate_left_inner(k) }
2548        }
2549    }
2550
2551    // SAFETY: the following two methods require that the rotation amount
2552    // be less than half the length of the deque.
2553    //
2554    // `wrap_copy` requires that `min(x, capacity() - x) + copy_len <= capacity()`,
2555    // but then `min` is never more than half the capacity, regardless of x,
2556    // so it's sound to call here because we're calling with something
2557    // less than half the length, which is never above half the capacity.
2558
2559    unsafe fn rotate_left_inner(&mut self, mid: usize) {
2560        debug_assert!(mid * 2 <= self.len());
2561        unsafe {
2562            self.wrap_copy(self.head, self.to_physical_idx(self.len), mid);
2563        }
2564        self.head = self.to_physical_idx(mid);
2565    }
2566
2567    unsafe fn rotate_right_inner(&mut self, k: usize) {
2568        debug_assert!(k * 2 <= self.len());
2569        self.head = self.wrap_sub(self.head, k);
2570        unsafe {
2571            self.wrap_copy(self.to_physical_idx(self.len), self.head, k);
2572        }
2573    }
2574
2575    /// Binary searches this `VecDeque` for a given element.
2576    /// If the `VecDeque` is not sorted, the returned result is unspecified and
2577    /// meaningless.
2578    ///
2579    /// If the value is found then [`Result::Ok`] is returned, containing the
2580    /// index of the matching element. If there are multiple matches, then any
2581    /// one of the matches could be returned. If the value is not found then
2582    /// [`Result::Err`] is returned, containing the index where a matching
2583    /// element could be inserted while maintaining sorted order.
2584    ///
2585    /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2586    ///
2587    /// [`binary_search_by`]: VecDeque::binary_search_by
2588    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2589    /// [`partition_point`]: VecDeque::partition_point
2590    ///
2591    /// # Examples
2592    ///
2593    /// Looks up a series of four elements. The first is found, with a
2594    /// uniquely determined position; the second and third are not
2595    /// found; the fourth could match any position in `[1, 4]`.
2596    ///
2597    /// ```
2598    /// use std::collections::VecDeque;
2599    ///
2600    /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2601    ///
2602    /// assert_eq!(deque.binary_search(&13),  Ok(9));
2603    /// assert_eq!(deque.binary_search(&4),   Err(7));
2604    /// assert_eq!(deque.binary_search(&100), Err(13));
2605    /// let r = deque.binary_search(&1);
2606    /// assert!(matches!(r, Ok(1..=4)));
2607    /// ```
2608    ///
2609    /// If you want to insert an item to a sorted deque, while maintaining
2610    /// sort order, consider using [`partition_point`]:
2611    ///
2612    /// ```
2613    /// use std::collections::VecDeque;
2614    ///
2615    /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2616    /// let num = 42;
2617    /// let idx = deque.partition_point(|&x| x <= num);
2618    /// // If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
2619    /// // `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` may allow `insert`
2620    /// // to shift less elements.
2621    /// deque.insert(idx, num);
2622    /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2623    /// ```
2624    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2625    #[inline]
2626    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2627    where
2628        T: Ord,
2629    {
2630        self.binary_search_by(|e| e.cmp(x))
2631    }
2632
2633    /// Binary searches this `VecDeque` with a comparator function.
2634    ///
2635    /// The comparator function should return an order code that indicates
2636    /// whether its argument is `Less`, `Equal` or `Greater` the desired
2637    /// target.
2638    /// If the `VecDeque` is not sorted or if the comparator function does not
2639    /// implement an order consistent with the sort order of the underlying
2640    /// `VecDeque`, the returned result is unspecified and meaningless.
2641    ///
2642    /// If the value is found then [`Result::Ok`] is returned, containing the
2643    /// index of the matching element. If there are multiple matches, then any
2644    /// one of the matches could be returned. If the value is not found then
2645    /// [`Result::Err`] is returned, containing the index where a matching
2646    /// element could be inserted while maintaining sorted order.
2647    ///
2648    /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2649    ///
2650    /// [`binary_search`]: VecDeque::binary_search
2651    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2652    /// [`partition_point`]: VecDeque::partition_point
2653    ///
2654    /// # Examples
2655    ///
2656    /// Looks up a series of four elements. The first is found, with a
2657    /// uniquely determined position; the second and third are not
2658    /// found; the fourth could match any position in `[1, 4]`.
2659    ///
2660    /// ```
2661    /// use std::collections::VecDeque;
2662    ///
2663    /// let deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2664    ///
2665    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&13)),  Ok(9));
2666    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&4)),   Err(7));
2667    /// assert_eq!(deque.binary_search_by(|x| x.cmp(&100)), Err(13));
2668    /// let r = deque.binary_search_by(|x| x.cmp(&1));
2669    /// assert!(matches!(r, Ok(1..=4)));
2670    /// ```
2671    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2672    pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2673    where
2674        F: FnMut(&'a T) -> Ordering,
2675    {
2676        let (front, back) = self.as_slices();
2677        let cmp_back = back.first().map(|elem| f(elem));
2678
2679        if let Some(Ordering::Equal) = cmp_back {
2680            Ok(front.len())
2681        } else if let Some(Ordering::Less) = cmp_back {
2682            back.binary_search_by(f).map(|idx| idx + front.len()).map_err(|idx| idx + front.len())
2683        } else {
2684            front.binary_search_by(f)
2685        }
2686    }
2687
2688    /// Binary searches this `VecDeque` with a key extraction function.
2689    ///
2690    /// Assumes that the deque is sorted by the key, for instance with
2691    /// [`make_contiguous().sort_by_key()`] using the same key extraction function.
2692    /// If the deque is not sorted by the key, the returned result is
2693    /// unspecified and meaningless.
2694    ///
2695    /// If the value is found then [`Result::Ok`] is returned, containing the
2696    /// index of the matching element. If there are multiple matches, then any
2697    /// one of the matches could be returned. If the value is not found then
2698    /// [`Result::Err`] is returned, containing the index where a matching
2699    /// element could be inserted while maintaining sorted order.
2700    ///
2701    /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
2702    ///
2703    /// [`make_contiguous().sort_by_key()`]: VecDeque::make_contiguous
2704    /// [`binary_search`]: VecDeque::binary_search
2705    /// [`binary_search_by`]: VecDeque::binary_search_by
2706    /// [`partition_point`]: VecDeque::partition_point
2707    ///
2708    /// # Examples
2709    ///
2710    /// Looks up a series of four elements in a slice of pairs sorted by
2711    /// their second elements. The first is found, with a uniquely
2712    /// determined position; the second and third are not found; the
2713    /// fourth could match any position in `[1, 4]`.
2714    ///
2715    /// ```
2716    /// use std::collections::VecDeque;
2717    ///
2718    /// let deque: VecDeque<_> = [(0, 0), (2, 1), (4, 1), (5, 1),
2719    ///          (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
2720    ///          (1, 21), (2, 34), (4, 55)].into();
2721    ///
2722    /// assert_eq!(deque.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
2723    /// assert_eq!(deque.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
2724    /// assert_eq!(deque.binary_search_by_key(&100, |&(a, b)| b), Err(13));
2725    /// let r = deque.binary_search_by_key(&1, |&(a, b)| b);
2726    /// assert!(matches!(r, Ok(1..=4)));
2727    /// ```
2728    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2729    #[inline]
2730    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
2731    where
2732        F: FnMut(&'a T) -> B,
2733        B: Ord,
2734    {
2735        self.binary_search_by(|k| f(k).cmp(b))
2736    }
2737
2738    /// Returns the index of the partition point according to the given predicate
2739    /// (the index of the first element of the second partition).
2740    ///
2741    /// The deque is assumed to be partitioned according to the given predicate.
2742    /// This means that all elements for which the predicate returns true are at the start of the deque
2743    /// and all elements for which the predicate returns false are at the end.
2744    /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
2745    /// (all odd numbers are at the start, all even at the end).
2746    ///
2747    /// If the deque is not partitioned, the returned result is unspecified and meaningless,
2748    /// as this method performs a kind of binary search.
2749    ///
2750    /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
2751    ///
2752    /// [`binary_search`]: VecDeque::binary_search
2753    /// [`binary_search_by`]: VecDeque::binary_search_by
2754    /// [`binary_search_by_key`]: VecDeque::binary_search_by_key
2755    ///
2756    /// # Examples
2757    ///
2758    /// ```
2759    /// use std::collections::VecDeque;
2760    ///
2761    /// let deque: VecDeque<_> = [1, 2, 3, 3, 5, 6, 7].into();
2762    /// let i = deque.partition_point(|&x| x < 5);
2763    ///
2764    /// assert_eq!(i, 4);
2765    /// assert!(deque.iter().take(i).all(|&x| x < 5));
2766    /// assert!(deque.iter().skip(i).all(|&x| !(x < 5)));
2767    /// ```
2768    ///
2769    /// If you want to insert an item to a sorted deque, while maintaining
2770    /// sort order:
2771    ///
2772    /// ```
2773    /// use std::collections::VecDeque;
2774    ///
2775    /// let mut deque: VecDeque<_> = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55].into();
2776    /// let num = 42;
2777    /// let idx = deque.partition_point(|&x| x < num);
2778    /// deque.insert(idx, num);
2779    /// assert_eq!(deque, &[0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2780    /// ```
2781    #[stable(feature = "vecdeque_binary_search", since = "1.54.0")]
2782    pub fn partition_point<P>(&self, mut pred: P) -> usize
2783    where
2784        P: FnMut(&T) -> bool,
2785    {
2786        let (front, back) = self.as_slices();
2787
2788        if let Some(true) = back.first().map(|v| pred(v)) {
2789            back.partition_point(pred) + front.len()
2790        } else {
2791            front.partition_point(pred)
2792        }
2793    }
2794}
2795
2796impl<T: Clone, A: Allocator> VecDeque<T, A> {
2797    /// Modifies the deque in-place so that `len()` is equal to new_len,
2798    /// either by removing excess elements from the back or by appending clones of `value`
2799    /// to the back.
2800    ///
2801    /// # Examples
2802    ///
2803    /// ```
2804    /// use std::collections::VecDeque;
2805    ///
2806    /// let mut buf = VecDeque::new();
2807    /// buf.push_back(5);
2808    /// buf.push_back(10);
2809    /// buf.push_back(15);
2810    /// assert_eq!(buf, [5, 10, 15]);
2811    ///
2812    /// buf.resize(2, 0);
2813    /// assert_eq!(buf, [5, 10]);
2814    ///
2815    /// buf.resize(5, 20);
2816    /// assert_eq!(buf, [5, 10, 20, 20, 20]);
2817    /// ```
2818    #[stable(feature = "deque_extras", since = "1.16.0")]
2819    #[track_caller]
2820    pub fn resize(&mut self, new_len: usize, value: T) {
2821        if new_len > self.len() {
2822            let extra = new_len - self.len();
2823            self.extend(repeat_n(value, extra))
2824        } else {
2825            self.truncate(new_len);
2826        }
2827    }
2828}
2829
2830/// Returns the index in the underlying buffer for a given logical element index.
2831#[inline]
2832fn wrap_index(logical_index: usize, capacity: usize) -> usize {
2833    debug_assert!(
2834        (logical_index == 0 && capacity == 0)
2835            || logical_index < capacity
2836            || (logical_index - capacity) < capacity
2837    );
2838    if logical_index >= capacity { logical_index - capacity } else { logical_index }
2839}
2840
2841#[stable(feature = "rust1", since = "1.0.0")]
2842impl<T: PartialEq, A: Allocator> PartialEq for VecDeque<T, A> {
2843    fn eq(&self, other: &Self) -> bool {
2844        if self.len != other.len() {
2845            return false;
2846        }
2847        let (sa, sb) = self.as_slices();
2848        let (oa, ob) = other.as_slices();
2849        if sa.len() == oa.len() {
2850            sa == oa && sb == ob
2851        } else if sa.len() < oa.len() {
2852            // Always divisible in three sections, for example:
2853            // self:  [a b c|d e f]
2854            // other: [0 1 2 3|4 5]
2855            // front = 3, mid = 1,
2856            // [a b c] == [0 1 2] && [d] == [3] && [e f] == [4 5]
2857            let front = sa.len();
2858            let mid = oa.len() - front;
2859
2860            let (oa_front, oa_mid) = oa.split_at(front);
2861            let (sb_mid, sb_back) = sb.split_at(mid);
2862            debug_assert_eq!(sa.len(), oa_front.len());
2863            debug_assert_eq!(sb_mid.len(), oa_mid.len());
2864            debug_assert_eq!(sb_back.len(), ob.len());
2865            sa == oa_front && sb_mid == oa_mid && sb_back == ob
2866        } else {
2867            let front = oa.len();
2868            let mid = sa.len() - front;
2869
2870            let (sa_front, sa_mid) = sa.split_at(front);
2871            let (ob_mid, ob_back) = ob.split_at(mid);
2872            debug_assert_eq!(sa_front.len(), oa.len());
2873            debug_assert_eq!(sa_mid.len(), ob_mid.len());
2874            debug_assert_eq!(sb.len(), ob_back.len());
2875            sa_front == oa && sa_mid == ob_mid && sb == ob_back
2876        }
2877    }
2878}
2879
2880#[stable(feature = "rust1", since = "1.0.0")]
2881impl<T: Eq, A: Allocator> Eq for VecDeque<T, A> {}
2882
2883__impl_slice_eq1! { [] VecDeque<T, A>, Vec<U, A>, }
2884__impl_slice_eq1! { [] VecDeque<T, A>, &[U], }
2885__impl_slice_eq1! { [] VecDeque<T, A>, &mut [U], }
2886__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, [U; N], }
2887__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &[U; N], }
2888__impl_slice_eq1! { [const N: usize] VecDeque<T, A>, &mut [U; N], }
2889
2890#[stable(feature = "rust1", since = "1.0.0")]
2891impl<T: PartialOrd, A: Allocator> PartialOrd for VecDeque<T, A> {
2892    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2893        self.iter().partial_cmp(other.iter())
2894    }
2895}
2896
2897#[stable(feature = "rust1", since = "1.0.0")]
2898impl<T: Ord, A: Allocator> Ord for VecDeque<T, A> {
2899    #[inline]
2900    fn cmp(&self, other: &Self) -> Ordering {
2901        self.iter().cmp(other.iter())
2902    }
2903}
2904
2905#[stable(feature = "rust1", since = "1.0.0")]
2906impl<T: Hash, A: Allocator> Hash for VecDeque<T, A> {
2907    fn hash<H: Hasher>(&self, state: &mut H) {
2908        state.write_length_prefix(self.len);
2909        // It's not possible to use Hash::hash_slice on slices
2910        // returned by as_slices method as their length can vary
2911        // in otherwise identical deques.
2912        //
2913        // Hasher only guarantees equivalence for the exact same
2914        // set of calls to its methods.
2915        self.iter().for_each(|elem| elem.hash(state));
2916    }
2917}
2918
2919#[stable(feature = "rust1", since = "1.0.0")]
2920impl<T, A: Allocator> Index<usize> for VecDeque<T, A> {
2921    type Output = T;
2922
2923    #[inline]
2924    fn index(&self, index: usize) -> &T {
2925        self.get(index).expect("Out of bounds access")
2926    }
2927}
2928
2929#[stable(feature = "rust1", since = "1.0.0")]
2930impl<T, A: Allocator> IndexMut<usize> for VecDeque<T, A> {
2931    #[inline]
2932    fn index_mut(&mut self, index: usize) -> &mut T {
2933        self.get_mut(index).expect("Out of bounds access")
2934    }
2935}
2936
2937#[stable(feature = "rust1", since = "1.0.0")]
2938impl<T> FromIterator<T> for VecDeque<T> {
2939    #[track_caller]
2940    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> VecDeque<T> {
2941        SpecFromIter::spec_from_iter(iter.into_iter())
2942    }
2943}
2944
2945#[stable(feature = "rust1", since = "1.0.0")]
2946impl<T, A: Allocator> IntoIterator for VecDeque<T, A> {
2947    type Item = T;
2948    type IntoIter = IntoIter<T, A>;
2949
2950    /// Consumes the deque into a front-to-back iterator yielding elements by
2951    /// value.
2952    fn into_iter(self) -> IntoIter<T, A> {
2953        IntoIter::new(self)
2954    }
2955}
2956
2957#[stable(feature = "rust1", since = "1.0.0")]
2958impl<'a, T, A: Allocator> IntoIterator for &'a VecDeque<T, A> {
2959    type Item = &'a T;
2960    type IntoIter = Iter<'a, T>;
2961
2962    fn into_iter(self) -> Iter<'a, T> {
2963        self.iter()
2964    }
2965}
2966
2967#[stable(feature = "rust1", since = "1.0.0")]
2968impl<'a, T, A: Allocator> IntoIterator for &'a mut VecDeque<T, A> {
2969    type Item = &'a mut T;
2970    type IntoIter = IterMut<'a, T>;
2971
2972    fn into_iter(self) -> IterMut<'a, T> {
2973        self.iter_mut()
2974    }
2975}
2976
2977#[stable(feature = "rust1", since = "1.0.0")]
2978impl<T, A: Allocator> Extend<T> for VecDeque<T, A> {
2979    #[track_caller]
2980    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2981        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter());
2982    }
2983
2984    #[inline]
2985    #[track_caller]
2986    fn extend_one(&mut self, elem: T) {
2987        self.push_back(elem);
2988    }
2989
2990    #[inline]
2991    #[track_caller]
2992    fn extend_reserve(&mut self, additional: usize) {
2993        self.reserve(additional);
2994    }
2995
2996    #[inline]
2997    unsafe fn extend_one_unchecked(&mut self, item: T) {
2998        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
2999        unsafe {
3000            self.push_unchecked(item);
3001        }
3002    }
3003}
3004
3005#[stable(feature = "extend_ref", since = "1.2.0")]
3006impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for VecDeque<T, A> {
3007    #[track_caller]
3008    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3009        self.spec_extend(iter.into_iter());
3010    }
3011
3012    #[inline]
3013    #[track_caller]
3014    fn extend_one(&mut self, &elem: &'a T) {
3015        self.push_back(elem);
3016    }
3017
3018    #[inline]
3019    #[track_caller]
3020    fn extend_reserve(&mut self, additional: usize) {
3021        self.reserve(additional);
3022    }
3023
3024    #[inline]
3025    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
3026        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3027        unsafe {
3028            self.push_unchecked(item);
3029        }
3030    }
3031}
3032
3033#[stable(feature = "rust1", since = "1.0.0")]
3034impl<T: fmt::Debug, A: Allocator> fmt::Debug for VecDeque<T, A> {
3035    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3036        f.debug_list().entries(self.iter()).finish()
3037    }
3038}
3039
3040#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
3041impl<T, A: Allocator> From<Vec<T, A>> for VecDeque<T, A> {
3042    /// Turn a [`Vec<T>`] into a [`VecDeque<T>`].
3043    ///
3044    /// [`Vec<T>`]: crate::vec::Vec
3045    /// [`VecDeque<T>`]: crate::collections::VecDeque
3046    ///
3047    /// This conversion is guaranteed to run in *O*(1) time
3048    /// and to not re-allocate the `Vec`'s buffer or allocate
3049    /// any additional memory.
3050    #[inline]
3051    fn from(other: Vec<T, A>) -> Self {
3052        let (ptr, len, cap, alloc) = other.into_raw_parts_with_alloc();
3053        Self { head: 0, len, buf: unsafe { RawVec::from_raw_parts_in(ptr, cap, alloc) } }
3054    }
3055}
3056
3057#[stable(feature = "vecdeque_vec_conversions", since = "1.10.0")]
3058impl<T, A: Allocator> From<VecDeque<T, A>> for Vec<T, A> {
3059    /// Turn a [`VecDeque<T>`] into a [`Vec<T>`].
3060    ///
3061    /// [`Vec<T>`]: crate::vec::Vec
3062    /// [`VecDeque<T>`]: crate::collections::VecDeque
3063    ///
3064    /// This never needs to re-allocate, but does need to do *O*(*n*) data movement if
3065    /// the circular buffer doesn't happen to be at the beginning of the allocation.
3066    ///
3067    /// # Examples
3068    ///
3069    /// ```
3070    /// use std::collections::VecDeque;
3071    ///
3072    /// // This one is *O*(1).
3073    /// let deque: VecDeque<_> = (1..5).collect();
3074    /// let ptr = deque.as_slices().0.as_ptr();
3075    /// let vec = Vec::from(deque);
3076    /// assert_eq!(vec, [1, 2, 3, 4]);
3077    /// assert_eq!(vec.as_ptr(), ptr);
3078    ///
3079    /// // This one needs data rearranging.
3080    /// let mut deque: VecDeque<_> = (1..5).collect();
3081    /// deque.push_front(9);
3082    /// deque.push_front(8);
3083    /// let ptr = deque.as_slices().1.as_ptr();
3084    /// let vec = Vec::from(deque);
3085    /// assert_eq!(vec, [8, 9, 1, 2, 3, 4]);
3086    /// assert_eq!(vec.as_ptr(), ptr);
3087    /// ```
3088    fn from(mut other: VecDeque<T, A>) -> Self {
3089        other.make_contiguous();
3090
3091        unsafe {
3092            let other = ManuallyDrop::new(other);
3093            let buf = other.buf.ptr();
3094            let len = other.len();
3095            let cap = other.capacity();
3096            let alloc = ptr::read(other.allocator());
3097
3098            if other.head != 0 {
3099                ptr::copy(buf.add(other.head), buf, len);
3100            }
3101            Vec::from_raw_parts_in(buf, len, cap, alloc)
3102        }
3103    }
3104}
3105
3106#[stable(feature = "std_collections_from_array", since = "1.56.0")]
3107impl<T, const N: usize> From<[T; N]> for VecDeque<T> {
3108    /// Converts a `[T; N]` into a `VecDeque<T>`.
3109    ///
3110    /// ```
3111    /// use std::collections::VecDeque;
3112    ///
3113    /// let deq1 = VecDeque::from([1, 2, 3, 4]);
3114    /// let deq2: VecDeque<_> = [1, 2, 3, 4].into();
3115    /// assert_eq!(deq1, deq2);
3116    /// ```
3117    #[track_caller]
3118    fn from(arr: [T; N]) -> Self {
3119        let mut deq = VecDeque::with_capacity(N);
3120        let arr = ManuallyDrop::new(arr);
3121        if !<T>::IS_ZST {
3122            // SAFETY: VecDeque::with_capacity ensures that there is enough capacity.
3123            unsafe {
3124                ptr::copy_nonoverlapping(arr.as_ptr(), deq.ptr(), N);
3125            }
3126        }
3127        deq.head = 0;
3128        deq.len = N;
3129        deq
3130    }
3131}