core/slice/sort/unstable/heapsort.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
//! This module contains a branchless heapsort as fallback for unstable quicksort.
use crate::{cmp, intrinsics, ptr};
/// Sorts `v` using heapsort, which guarantees *O*(*n* \* log(*n*)) worst-case.
///
/// Never inline this, it sits the main hot-loop in `recurse` and is meant as unlikely algorithmic
/// fallback.
#[inline(never)]
pub(crate) fn heapsort<T, F>(v: &mut [T], is_less: &mut F)
where
F: FnMut(&T, &T) -> bool,
{
let len = v.len();
for i in (0..len + len / 2).rev() {
let sift_idx = if i >= len {
i - len
} else {
v.swap(0, i);
0
};
// SAFETY: The above calculation ensures that `sift_idx` is either 0 or
// `(len..(len + (len / 2))) - len`, which simplifies to `0..(len / 2)`.
// This guarantees the required `sift_idx <= len`.
unsafe {
sift_down(&mut v[..cmp::min(i, len)], sift_idx, is_less);
}
}
}
// This binary heap respects the invariant `parent >= child`.
//
// SAFETY: The caller has to guarantee that `node <= v.len()`.
#[inline(always)]
unsafe fn sift_down<T, F>(v: &mut [T], mut node: usize, is_less: &mut F)
where
F: FnMut(&T, &T) -> bool,
{
// SAFETY: See function safety.
unsafe {
intrinsics::assume(node <= v.len());
}
let len = v.len();
let v_base = v.as_mut_ptr();
loop {
// Children of `node`.
let mut child = 2 * node + 1;
if child >= len {
break;
}
// SAFETY: The invariants and checks guarantee that both node and child are in-bounds.
unsafe {
// Choose the greater child.
if child + 1 < len {
// We need a branch to be sure not to out-of-bounds index,
// but it's highly predictable. The comparison, however,
// is better done branchless, especially for primitives.
child += is_less(&*v_base.add(child), &*v_base.add(child + 1)) as usize;
}
// Stop if the invariant holds at `node`.
if !is_less(&*v_base.add(node), &*v_base.add(child)) {
break;
}
ptr::swap_nonoverlapping(v_base.add(node), v_base.add(child), 1);
}
node = child;
}
}