alloc/collections/btree/navigate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
use core::borrow::Borrow;
use core::ops::RangeBounds;
use core::{hint, ptr};
use super::node::ForceResult::*;
use super::node::{Handle, NodeRef, marker};
use super::search::SearchBound;
use crate::alloc::Allocator;
// `front` and `back` are always both `None` or both `Some`.
pub struct LeafRange<BorrowType, K, V> {
front: Option<Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>>,
back: Option<Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>>,
}
impl<'a, K: 'a, V: 'a> Clone for LeafRange<marker::Immut<'a>, K, V> {
fn clone(&self) -> Self {
LeafRange { front: self.front.clone(), back: self.back.clone() }
}
}
impl<B, K, V> Default for LeafRange<B, K, V> {
fn default() -> Self {
LeafRange { front: None, back: None }
}
}
impl<BorrowType, K, V> LeafRange<BorrowType, K, V> {
pub fn none() -> Self {
LeafRange { front: None, back: None }
}
fn is_empty(&self) -> bool {
self.front == self.back
}
/// Temporarily takes out another, immutable equivalent of the same range.
pub fn reborrow(&self) -> LeafRange<marker::Immut<'_>, K, V> {
LeafRange {
front: self.front.as_ref().map(|f| f.reborrow()),
back: self.back.as_ref().map(|b| b.reborrow()),
}
}
}
impl<'a, K, V> LeafRange<marker::Immut<'a>, K, V> {
#[inline]
pub fn next_checked(&mut self) -> Option<(&'a K, &'a V)> {
self.perform_next_checked(|kv| kv.into_kv())
}
#[inline]
pub fn next_back_checked(&mut self) -> Option<(&'a K, &'a V)> {
self.perform_next_back_checked(|kv| kv.into_kv())
}
}
impl<'a, K, V> LeafRange<marker::ValMut<'a>, K, V> {
#[inline]
pub fn next_checked(&mut self) -> Option<(&'a K, &'a mut V)> {
self.perform_next_checked(|kv| unsafe { ptr::read(kv) }.into_kv_valmut())
}
#[inline]
pub fn next_back_checked(&mut self) -> Option<(&'a K, &'a mut V)> {
self.perform_next_back_checked(|kv| unsafe { ptr::read(kv) }.into_kv_valmut())
}
}
impl<BorrowType: marker::BorrowType, K, V> LeafRange<BorrowType, K, V> {
/// If possible, extract some result from the following KV and move to the edge beyond it.
fn perform_next_checked<F, R>(&mut self, f: F) -> Option<R>
where
F: Fn(&Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV>) -> R,
{
if self.is_empty() {
None
} else {
super::mem::replace(self.front.as_mut().unwrap(), |front| {
let kv = front.next_kv().ok().unwrap();
let result = f(&kv);
(kv.next_leaf_edge(), Some(result))
})
}
}
/// If possible, extract some result from the preceding KV and move to the edge beyond it.
fn perform_next_back_checked<F, R>(&mut self, f: F) -> Option<R>
where
F: Fn(&Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV>) -> R,
{
if self.is_empty() {
None
} else {
super::mem::replace(self.back.as_mut().unwrap(), |back| {
let kv = back.next_back_kv().ok().unwrap();
let result = f(&kv);
(kv.next_back_leaf_edge(), Some(result))
})
}
}
}
enum LazyLeafHandle<BorrowType, K, V> {
Root(NodeRef<BorrowType, K, V, marker::LeafOrInternal>), // not yet descended
Edge(Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>),
}
impl<'a, K: 'a, V: 'a> Clone for LazyLeafHandle<marker::Immut<'a>, K, V> {
fn clone(&self) -> Self {
match self {
LazyLeafHandle::Root(root) => LazyLeafHandle::Root(*root),
LazyLeafHandle::Edge(edge) => LazyLeafHandle::Edge(*edge),
}
}
}
impl<BorrowType, K, V> LazyLeafHandle<BorrowType, K, V> {
fn reborrow(&self) -> LazyLeafHandle<marker::Immut<'_>, K, V> {
match self {
LazyLeafHandle::Root(root) => LazyLeafHandle::Root(root.reborrow()),
LazyLeafHandle::Edge(edge) => LazyLeafHandle::Edge(edge.reborrow()),
}
}
}
// `front` and `back` are always both `None` or both `Some`.
pub struct LazyLeafRange<BorrowType, K, V> {
front: Option<LazyLeafHandle<BorrowType, K, V>>,
back: Option<LazyLeafHandle<BorrowType, K, V>>,
}
impl<B, K, V> Default for LazyLeafRange<B, K, V> {
fn default() -> Self {
LazyLeafRange { front: None, back: None }
}
}
impl<'a, K: 'a, V: 'a> Clone for LazyLeafRange<marker::Immut<'a>, K, V> {
fn clone(&self) -> Self {
LazyLeafRange { front: self.front.clone(), back: self.back.clone() }
}
}
impl<BorrowType, K, V> LazyLeafRange<BorrowType, K, V> {
pub fn none() -> Self {
LazyLeafRange { front: None, back: None }
}
/// Temporarily takes out another, immutable equivalent of the same range.
pub fn reborrow(&self) -> LazyLeafRange<marker::Immut<'_>, K, V> {
LazyLeafRange {
front: self.front.as_ref().map(|f| f.reborrow()),
back: self.back.as_ref().map(|b| b.reborrow()),
}
}
}
impl<'a, K, V> LazyLeafRange<marker::Immut<'a>, K, V> {
#[inline]
pub unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) {
unsafe { self.init_front().unwrap().next_unchecked() }
}
#[inline]
pub unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) {
unsafe { self.init_back().unwrap().next_back_unchecked() }
}
}
impl<'a, K, V> LazyLeafRange<marker::ValMut<'a>, K, V> {
#[inline]
pub unsafe fn next_unchecked(&mut self) -> (&'a K, &'a mut V) {
unsafe { self.init_front().unwrap().next_unchecked() }
}
#[inline]
pub unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a mut V) {
unsafe { self.init_back().unwrap().next_back_unchecked() }
}
}
impl<K, V> LazyLeafRange<marker::Dying, K, V> {
fn take_front(
&mut self,
) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::Leaf>, marker::Edge>> {
match self.front.take()? {
LazyLeafHandle::Root(root) => Some(root.first_leaf_edge()),
LazyLeafHandle::Edge(edge) => Some(edge),
}
}
#[inline]
pub unsafe fn deallocating_next_unchecked<A: Allocator + Clone>(
&mut self,
alloc: A,
) -> Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV> {
debug_assert!(self.front.is_some());
let front = self.init_front().unwrap();
unsafe { front.deallocating_next_unchecked(alloc) }
}
#[inline]
pub unsafe fn deallocating_next_back_unchecked<A: Allocator + Clone>(
&mut self,
alloc: A,
) -> Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV> {
debug_assert!(self.back.is_some());
let back = self.init_back().unwrap();
unsafe { back.deallocating_next_back_unchecked(alloc) }
}
#[inline]
pub fn deallocating_end<A: Allocator + Clone>(&mut self, alloc: A) {
if let Some(front) = self.take_front() {
front.deallocating_end(alloc)
}
}
}
impl<BorrowType: marker::BorrowType, K, V> LazyLeafRange<BorrowType, K, V> {
fn init_front(
&mut self,
) -> Option<&mut Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>> {
if let Some(LazyLeafHandle::Root(root)) = &self.front {
self.front = Some(LazyLeafHandle::Edge(unsafe { ptr::read(root) }.first_leaf_edge()));
}
match &mut self.front {
None => None,
Some(LazyLeafHandle::Edge(edge)) => Some(edge),
// SAFETY: the code above would have replaced it.
Some(LazyLeafHandle::Root(_)) => unsafe { hint::unreachable_unchecked() },
}
}
fn init_back(
&mut self,
) -> Option<&mut Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>> {
if let Some(LazyLeafHandle::Root(root)) = &self.back {
self.back = Some(LazyLeafHandle::Edge(unsafe { ptr::read(root) }.last_leaf_edge()));
}
match &mut self.back {
None => None,
Some(LazyLeafHandle::Edge(edge)) => Some(edge),
// SAFETY: the code above would have replaced it.
Some(LazyLeafHandle::Root(_)) => unsafe { hint::unreachable_unchecked() },
}
}
}
impl<BorrowType: marker::BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Finds the distinct leaf edges delimiting a specified range in a tree.
///
/// If such distinct edges exist, returns them in ascending order, meaning
/// that a non-zero number of calls to `next_unchecked` on the `front` of
/// the result and/or calls to `next_back_unchecked` on the `back` of the
/// result will eventually reach the same edge.
///
/// If there are no such edges, i.e., if the tree contains no key within
/// the range, returns an empty `front` and `back`.
///
/// # Safety
/// Unless `BorrowType` is `Immut`, do not use the handles to visit the same
/// KV twice.
unsafe fn find_leaf_edges_spanning_range<Q: ?Sized, R>(
self,
range: R,
) -> LeafRange<BorrowType, K, V>
where
Q: Ord,
K: Borrow<Q>,
R: RangeBounds<Q>,
{
match self.search_tree_for_bifurcation(&range) {
Err(_) => LeafRange::none(),
Ok((
node,
lower_edge_idx,
upper_edge_idx,
mut lower_child_bound,
mut upper_child_bound,
)) => {
let mut lower_edge = unsafe { Handle::new_edge(ptr::read(&node), lower_edge_idx) };
let mut upper_edge = unsafe { Handle::new_edge(node, upper_edge_idx) };
loop {
match (lower_edge.force(), upper_edge.force()) {
(Leaf(f), Leaf(b)) => return LeafRange { front: Some(f), back: Some(b) },
(Internal(f), Internal(b)) => {
(lower_edge, lower_child_bound) =
f.descend().find_lower_bound_edge(lower_child_bound);
(upper_edge, upper_child_bound) =
b.descend().find_upper_bound_edge(upper_child_bound);
}
_ => unreachable!("BTreeMap has different depths"),
}
}
}
}
}
}
fn full_range<BorrowType: marker::BorrowType, K, V>(
root1: NodeRef<BorrowType, K, V, marker::LeafOrInternal>,
root2: NodeRef<BorrowType, K, V, marker::LeafOrInternal>,
) -> LazyLeafRange<BorrowType, K, V> {
LazyLeafRange {
front: Some(LazyLeafHandle::Root(root1)),
back: Some(LazyLeafHandle::Root(root2)),
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal> {
/// Finds the pair of leaf edges delimiting a specific range in a tree.
///
/// The result is meaningful only if the tree is ordered by key, like the tree
/// in a `BTreeMap` is.
pub fn range_search<Q, R>(self, range: R) -> LeafRange<marker::Immut<'a>, K, V>
where
Q: ?Sized + Ord,
K: Borrow<Q>,
R: RangeBounds<Q>,
{
// SAFETY: our borrow type is immutable.
unsafe { self.find_leaf_edges_spanning_range(range) }
}
/// Finds the pair of leaf edges delimiting an entire tree.
pub fn full_range(self) -> LazyLeafRange<marker::Immut<'a>, K, V> {
full_range(self, self)
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::ValMut<'a>, K, V, marker::LeafOrInternal> {
/// Splits a unique reference into a pair of leaf edges delimiting a specified range.
/// The result are non-unique references allowing (some) mutation, which must be used
/// carefully.
///
/// The result is meaningful only if the tree is ordered by key, like the tree
/// in a `BTreeMap` is.
///
/// # Safety
/// Do not use the duplicate handles to visit the same KV twice.
pub fn range_search<Q, R>(self, range: R) -> LeafRange<marker::ValMut<'a>, K, V>
where
Q: ?Sized + Ord,
K: Borrow<Q>,
R: RangeBounds<Q>,
{
unsafe { self.find_leaf_edges_spanning_range(range) }
}
/// Splits a unique reference into a pair of leaf edges delimiting the full range of the tree.
/// The results are non-unique references allowing mutation (of values only), so must be used
/// with care.
pub fn full_range(self) -> LazyLeafRange<marker::ValMut<'a>, K, V> {
// We duplicate the root NodeRef here -- we will never visit the same KV
// twice, and never end up with overlapping value references.
let self2 = unsafe { ptr::read(&self) };
full_range(self, self2)
}
}
impl<K, V> NodeRef<marker::Dying, K, V, marker::LeafOrInternal> {
/// Splits a unique reference into a pair of leaf edges delimiting the full range of the tree.
/// The results are non-unique references allowing massively destructive mutation, so must be
/// used with the utmost care.
pub fn full_range(self) -> LazyLeafRange<marker::Dying, K, V> {
// We duplicate the root NodeRef here -- we will never access it in a way
// that overlaps references obtained from the root.
let self2 = unsafe { ptr::read(&self) };
full_range(self, self2)
}
}
impl<BorrowType: marker::BorrowType, K, V>
Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>
{
/// Given a leaf edge handle, returns [`Result::Ok`] with a handle to the neighboring KV
/// on the right side, which is either in the same leaf node or in an ancestor node.
/// If the leaf edge is the last one in the tree, returns [`Result::Err`] with the root node.
pub fn next_kv(
self,
) -> Result<
Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV>,
NodeRef<BorrowType, K, V, marker::LeafOrInternal>,
> {
let mut edge = self.forget_node_type();
loop {
edge = match edge.right_kv() {
Ok(kv) => return Ok(kv),
Err(last_edge) => match last_edge.into_node().ascend() {
Ok(parent_edge) => parent_edge.forget_node_type(),
Err(root) => return Err(root),
},
}
}
}
/// Given a leaf edge handle, returns [`Result::Ok`] with a handle to the neighboring KV
/// on the left side, which is either in the same leaf node or in an ancestor node.
/// If the leaf edge is the first one in the tree, returns [`Result::Err`] with the root node.
pub fn next_back_kv(
self,
) -> Result<
Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV>,
NodeRef<BorrowType, K, V, marker::LeafOrInternal>,
> {
let mut edge = self.forget_node_type();
loop {
edge = match edge.left_kv() {
Ok(kv) => return Ok(kv),
Err(last_edge) => match last_edge.into_node().ascend() {
Ok(parent_edge) => parent_edge.forget_node_type(),
Err(root) => return Err(root),
},
}
}
}
}
impl<BorrowType: marker::BorrowType, K, V>
Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>
{
/// Given an internal edge handle, returns [`Result::Ok`] with a handle to the neighboring KV
/// on the right side, which is either in the same internal node or in an ancestor node.
/// If the internal edge is the last one in the tree, returns [`Result::Err`] with the root node.
fn next_kv(
self,
) -> Result<
Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::KV>,
NodeRef<BorrowType, K, V, marker::Internal>,
> {
let mut edge = self;
loop {
edge = match edge.right_kv() {
Ok(internal_kv) => return Ok(internal_kv),
Err(last_edge) => match last_edge.into_node().ascend() {
Ok(parent_edge) => parent_edge,
Err(root) => return Err(root),
},
}
}
}
}
impl<K, V> Handle<NodeRef<marker::Dying, K, V, marker::Leaf>, marker::Edge> {
/// Given a leaf edge handle into a dying tree, returns the next leaf edge
/// on the right side, and the key-value pair in between, if they exist.
///
/// If the given edge is the last one in a leaf, this method deallocates
/// the leaf, as well as any ancestor nodes whose last edge was reached.
/// This implies that if no more key-value pair follows, the entire tree
/// will have been deallocated and there is nothing left to return.
///
/// # Safety
/// - The given edge must not have been previously returned by counterpart
/// `deallocating_next_back`.
/// - The returned KV handle is only valid to access the key and value,
/// and only valid until the next call to a `deallocating_` method.
unsafe fn deallocating_next<A: Allocator + Clone>(
self,
alloc: A,
) -> Option<(Self, Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>)>
{
let mut edge = self.forget_node_type();
loop {
edge = match edge.right_kv() {
Ok(kv) => return Some((unsafe { ptr::read(&kv) }.next_leaf_edge(), kv)),
Err(last_edge) => {
match unsafe { last_edge.into_node().deallocate_and_ascend(alloc.clone()) } {
Some(parent_edge) => parent_edge.forget_node_type(),
None => return None,
}
}
}
}
}
/// Given a leaf edge handle into a dying tree, returns the next leaf edge
/// on the left side, and the key-value pair in between, if they exist.
///
/// If the given edge is the first one in a leaf, this method deallocates
/// the leaf, as well as any ancestor nodes whose first edge was reached.
/// This implies that if no more key-value pair follows, the entire tree
/// will have been deallocated and there is nothing left to return.
///
/// # Safety
/// - The given edge must not have been previously returned by counterpart
/// `deallocating_next`.
/// - The returned KV handle is only valid to access the key and value,
/// and only valid until the next call to a `deallocating_` method.
unsafe fn deallocating_next_back<A: Allocator + Clone>(
self,
alloc: A,
) -> Option<(Self, Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>)>
{
let mut edge = self.forget_node_type();
loop {
edge = match edge.left_kv() {
Ok(kv) => return Some((unsafe { ptr::read(&kv) }.next_back_leaf_edge(), kv)),
Err(last_edge) => {
match unsafe { last_edge.into_node().deallocate_and_ascend(alloc.clone()) } {
Some(parent_edge) => parent_edge.forget_node_type(),
None => return None,
}
}
}
}
}
/// Deallocates a pile of nodes from the leaf up to the root.
/// This is the only way to deallocate the remainder of a tree after
/// `deallocating_next` and `deallocating_next_back` have been nibbling at
/// both sides of the tree, and have hit the same edge. As it is intended
/// only to be called when all keys and values have been returned,
/// no cleanup is done on any of the keys or values.
fn deallocating_end<A: Allocator + Clone>(self, alloc: A) {
let mut edge = self.forget_node_type();
while let Some(parent_edge) =
unsafe { edge.into_node().deallocate_and_ascend(alloc.clone()) }
{
edge = parent_edge.forget_node_type();
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Moves the leaf edge handle to the next leaf edge and returns references to the
/// key and value in between.
///
/// # Safety
/// There must be another KV in the direction travelled.
unsafe fn next_unchecked(&mut self) -> (&'a K, &'a V) {
super::mem::replace(self, |leaf_edge| {
let kv = leaf_edge.next_kv().ok().unwrap();
(kv.next_leaf_edge(), kv.into_kv())
})
}
/// Moves the leaf edge handle to the previous leaf edge and returns references to the
/// key and value in between.
///
/// # Safety
/// There must be another KV in the direction travelled.
unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a V) {
super::mem::replace(self, |leaf_edge| {
let kv = leaf_edge.next_back_kv().ok().unwrap();
(kv.next_back_leaf_edge(), kv.into_kv())
})
}
}
impl<'a, K, V> Handle<NodeRef<marker::ValMut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Moves the leaf edge handle to the next leaf edge and returns references to the
/// key and value in between.
///
/// # Safety
/// There must be another KV in the direction travelled.
unsafe fn next_unchecked(&mut self) -> (&'a K, &'a mut V) {
let kv = super::mem::replace(self, |leaf_edge| {
let kv = leaf_edge.next_kv().ok().unwrap();
(unsafe { ptr::read(&kv) }.next_leaf_edge(), kv)
});
// Doing this last is faster, according to benchmarks.
kv.into_kv_valmut()
}
/// Moves the leaf edge handle to the previous leaf and returns references to the
/// key and value in between.
///
/// # Safety
/// There must be another KV in the direction travelled.
unsafe fn next_back_unchecked(&mut self) -> (&'a K, &'a mut V) {
let kv = super::mem::replace(self, |leaf_edge| {
let kv = leaf_edge.next_back_kv().ok().unwrap();
(unsafe { ptr::read(&kv) }.next_back_leaf_edge(), kv)
});
// Doing this last is faster, according to benchmarks.
kv.into_kv_valmut()
}
}
impl<K, V> Handle<NodeRef<marker::Dying, K, V, marker::Leaf>, marker::Edge> {
/// Moves the leaf edge handle to the next leaf edge and returns the key and value
/// in between, deallocating any node left behind while leaving the corresponding
/// edge in its parent node dangling.
///
/// # Safety
/// - There must be another KV in the direction travelled.
/// - That KV was not previously returned by counterpart
/// `deallocating_next_back_unchecked` on any copy of the handles
/// being used to traverse the tree.
///
/// The only safe way to proceed with the updated handle is to compare it, drop it,
/// or call this method or counterpart `deallocating_next_back_unchecked` again.
unsafe fn deallocating_next_unchecked<A: Allocator + Clone>(
&mut self,
alloc: A,
) -> Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV> {
super::mem::replace(self, |leaf_edge| unsafe {
leaf_edge.deallocating_next(alloc).unwrap()
})
}
/// Moves the leaf edge handle to the previous leaf edge and returns the key and value
/// in between, deallocating any node left behind while leaving the corresponding
/// edge in its parent node dangling.
///
/// # Safety
/// - There must be another KV in the direction travelled.
/// - That leaf edge was not previously returned by counterpart
/// `deallocating_next_unchecked` on any copy of the handles
/// being used to traverse the tree.
///
/// The only safe way to proceed with the updated handle is to compare it, drop it,
/// or call this method or counterpart `deallocating_next_unchecked` again.
unsafe fn deallocating_next_back_unchecked<A: Allocator + Clone>(
&mut self,
alloc: A,
) -> Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV> {
super::mem::replace(self, |leaf_edge| unsafe {
leaf_edge.deallocating_next_back(alloc).unwrap()
})
}
}
impl<BorrowType: marker::BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Returns the leftmost leaf edge in or underneath a node - in other words, the edge
/// you need first when navigating forward (or last when navigating backward).
#[inline]
pub fn first_leaf_edge(self) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
let mut node = self;
loop {
match node.force() {
Leaf(leaf) => return leaf.first_edge(),
Internal(internal) => node = internal.first_edge().descend(),
}
}
}
/// Returns the rightmost leaf edge in or underneath a node - in other words, the edge
/// you need last when navigating forward (or first when navigating backward).
#[inline]
pub fn last_leaf_edge(self) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
let mut node = self;
loop {
match node.force() {
Leaf(leaf) => return leaf.last_edge(),
Internal(internal) => node = internal.last_edge().descend(),
}
}
}
}
pub enum Position<BorrowType, K, V> {
Leaf(NodeRef<BorrowType, K, V, marker::Leaf>),
Internal(NodeRef<BorrowType, K, V, marker::Internal>),
InternalKV,
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal> {
/// Visits leaf nodes and internal KVs in order of ascending keys, and also
/// visits internal nodes as a whole in a depth first order, meaning that
/// internal nodes precede their individual KVs and their child nodes.
pub fn visit_nodes_in_order<F>(self, mut visit: F)
where
F: FnMut(Position<marker::Immut<'a>, K, V>),
{
match self.force() {
Leaf(leaf) => visit(Position::Leaf(leaf)),
Internal(internal) => {
visit(Position::Internal(internal));
let mut edge = internal.first_edge();
loop {
edge = match edge.descend().force() {
Leaf(leaf) => {
visit(Position::Leaf(leaf));
match edge.next_kv() {
Ok(kv) => {
visit(Position::InternalKV);
kv.right_edge()
}
Err(_) => return,
}
}
Internal(internal) => {
visit(Position::Internal(internal));
internal.first_edge()
}
}
}
}
}
}
/// Calculates the number of elements in a (sub)tree.
pub fn calc_length(self) -> usize {
let mut result = 0;
self.visit_nodes_in_order(|pos| match pos {
Position::Leaf(node) => result += node.len(),
Position::Internal(node) => result += node.len(),
Position::InternalKV => (),
});
result
}
}
impl<BorrowType: marker::BorrowType, K, V>
Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV>
{
/// Returns the leaf edge closest to a KV for forward navigation.
pub fn next_leaf_edge(self) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
match self.force() {
Leaf(leaf_kv) => leaf_kv.right_edge(),
Internal(internal_kv) => {
let next_internal_edge = internal_kv.right_edge();
next_internal_edge.descend().first_leaf_edge()
}
}
}
/// Returns the leaf edge closest to a KV for backward navigation.
pub fn next_back_leaf_edge(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
match self.force() {
Leaf(leaf_kv) => leaf_kv.left_edge(),
Internal(internal_kv) => {
let next_internal_edge = internal_kv.left_edge();
next_internal_edge.descend().last_leaf_edge()
}
}
}
}
impl<BorrowType: marker::BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Returns the leaf edge corresponding to the first point at which the
/// given bound is true.
pub fn lower_bound<Q: ?Sized>(
self,
mut bound: SearchBound<&Q>,
) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>
where
Q: Ord,
K: Borrow<Q>,
{
let mut node = self;
loop {
let (edge, new_bound) = node.find_lower_bound_edge(bound);
match edge.force() {
Leaf(edge) => return edge,
Internal(edge) => {
node = edge.descend();
bound = new_bound;
}
}
}
}
/// Returns the leaf edge corresponding to the last point at which the
/// given bound is true.
pub fn upper_bound<Q: ?Sized>(
self,
mut bound: SearchBound<&Q>,
) -> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge>
where
Q: Ord,
K: Borrow<Q>,
{
let mut node = self;
loop {
let (edge, new_bound) = node.find_upper_bound_edge(bound);
match edge.force() {
Leaf(edge) => return edge,
Internal(edge) => {
node = edge.descend();
bound = new_bound;
}
}
}
}
}