core/portable-simd/crates/core_simd/src/simd/num/int.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
use super::sealed::Sealed;
use crate::simd::{
cmp::SimdPartialOrd, num::SimdUint, LaneCount, Mask, Simd, SimdCast, SimdElement,
SupportedLaneCount,
};
/// Operations on SIMD vectors of signed integers.
pub trait SimdInt: Copy + Sealed {
/// Mask type used for manipulating this SIMD vector type.
type Mask;
/// Scalar type contained by this SIMD vector type.
type Scalar;
/// A SIMD vector of unsigned integers with the same element size.
type Unsigned;
/// A SIMD vector with a different element type.
type Cast<T: SimdElement>;
/// Performs elementwise conversion of this vector's elements to another SIMD-valid type.
///
/// This follows the semantics of Rust's `as` conversion for casting integers (wrapping to
/// other integer types, and saturating to float types).
#[must_use]
fn cast<T: SimdCast>(self) -> Self::Cast<T>;
/// Lanewise saturating add.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::i32::{MIN, MAX};
/// let x = Simd::from_array([MIN, 0, 1, MAX]);
/// let max = Simd::splat(MAX);
/// let unsat = x + max;
/// let sat = x.saturating_add(max);
/// assert_eq!(unsat, Simd::from_array([-1, MAX, MIN, -2]));
/// assert_eq!(sat, Simd::from_array([-1, MAX, MAX, MAX]));
/// ```
fn saturating_add(self, second: Self) -> Self;
/// Lanewise saturating subtract.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::i32::{MIN, MAX};
/// let x = Simd::from_array([MIN, -2, -1, MAX]);
/// let max = Simd::splat(MAX);
/// let unsat = x - max;
/// let sat = x.saturating_sub(max);
/// assert_eq!(unsat, Simd::from_array([1, MAX, MIN, 0]));
/// assert_eq!(sat, Simd::from_array([MIN, MIN, MIN, 0]));
fn saturating_sub(self, second: Self) -> Self;
/// Lanewise absolute value, implemented in Rust.
/// Every element becomes its absolute value.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::i32::{MIN, MAX};
/// let xs = Simd::from_array([MIN, MIN +1, -5, 0]);
/// assert_eq!(xs.abs(), Simd::from_array([MIN, MAX, 5, 0]));
/// ```
fn abs(self) -> Self;
/// Lanewise saturating absolute value, implemented in Rust.
/// As abs(), except the MIN value becomes MAX instead of itself.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::i32::{MIN, MAX};
/// let xs = Simd::from_array([MIN, -2, 0, 3]);
/// let unsat = xs.abs();
/// let sat = xs.saturating_abs();
/// assert_eq!(unsat, Simd::from_array([MIN, 2, 0, 3]));
/// assert_eq!(sat, Simd::from_array([MAX, 2, 0, 3]));
/// ```
fn saturating_abs(self) -> Self;
/// Lanewise saturating negation, implemented in Rust.
/// As neg(), except the MIN value becomes MAX instead of itself.
///
/// # Examples
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// use core::i32::{MIN, MAX};
/// let x = Simd::from_array([MIN, -2, 3, MAX]);
/// let unsat = -x;
/// let sat = x.saturating_neg();
/// assert_eq!(unsat, Simd::from_array([MIN, 2, -3, MIN + 1]));
/// assert_eq!(sat, Simd::from_array([MAX, 2, -3, MIN + 1]));
/// ```
fn saturating_neg(self) -> Self;
/// Returns true for each positive element and false if it is zero or negative.
fn is_positive(self) -> Self::Mask;
/// Returns true for each negative element and false if it is zero or positive.
fn is_negative(self) -> Self::Mask;
/// Returns numbers representing the sign of each element.
/// * `0` if the number is zero
/// * `1` if the number is positive
/// * `-1` if the number is negative
fn signum(self) -> Self;
/// Returns the sum of the elements of the vector, with wrapping addition.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// let v = i32x4::from_array([1, 2, 3, 4]);
/// assert_eq!(v.reduce_sum(), 10);
///
/// // SIMD integer addition is always wrapping
/// let v = i32x4::from_array([i32::MAX, 1, 0, 0]);
/// assert_eq!(v.reduce_sum(), i32::MIN);
/// ```
fn reduce_sum(self) -> Self::Scalar;
/// Returns the product of the elements of the vector, with wrapping multiplication.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// let v = i32x4::from_array([1, 2, 3, 4]);
/// assert_eq!(v.reduce_product(), 24);
///
/// // SIMD integer multiplication is always wrapping
/// let v = i32x4::from_array([i32::MAX, 2, 1, 1]);
/// assert!(v.reduce_product() < i32::MAX);
/// ```
fn reduce_product(self) -> Self::Scalar;
/// Returns the maximum element in the vector.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// let v = i32x4::from_array([1, 2, 3, 4]);
/// assert_eq!(v.reduce_max(), 4);
/// ```
fn reduce_max(self) -> Self::Scalar;
/// Returns the minimum element in the vector.
///
/// # Examples
///
/// ```
/// # #![feature(portable_simd)]
/// # #[cfg(feature = "as_crate")] use core_simd::simd;
/// # #[cfg(not(feature = "as_crate"))] use core::simd;
/// # use simd::prelude::*;
/// let v = i32x4::from_array([1, 2, 3, 4]);
/// assert_eq!(v.reduce_min(), 1);
/// ```
fn reduce_min(self) -> Self::Scalar;
/// Returns the cumulative bitwise "and" across the elements of the vector.
fn reduce_and(self) -> Self::Scalar;
/// Returns the cumulative bitwise "or" across the elements of the vector.
fn reduce_or(self) -> Self::Scalar;
/// Returns the cumulative bitwise "xor" across the elements of the vector.
fn reduce_xor(self) -> Self::Scalar;
/// Reverses the byte order of each element.
fn swap_bytes(self) -> Self;
/// Reverses the order of bits in each elemnent.
/// The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
fn reverse_bits(self) -> Self;
/// Returns the number of leading zeros in the binary representation of each element.
fn leading_zeros(self) -> Self::Unsigned;
/// Returns the number of trailing zeros in the binary representation of each element.
fn trailing_zeros(self) -> Self::Unsigned;
/// Returns the number of leading ones in the binary representation of each element.
fn leading_ones(self) -> Self::Unsigned;
/// Returns the number of trailing ones in the binary representation of each element.
fn trailing_ones(self) -> Self::Unsigned;
}
macro_rules! impl_trait {
{ $($ty:ident ($unsigned:ident)),* } => {
$(
impl<const N: usize> Sealed for Simd<$ty, N>
where
LaneCount<N>: SupportedLaneCount,
{
}
impl<const N: usize> SimdInt for Simd<$ty, N>
where
LaneCount<N>: SupportedLaneCount,
{
type Mask = Mask<<$ty as SimdElement>::Mask, N>;
type Scalar = $ty;
type Unsigned = Simd<$unsigned, N>;
type Cast<T: SimdElement> = Simd<T, N>;
#[inline]
fn cast<T: SimdCast>(self) -> Self::Cast<T> {
// Safety: supported types are guaranteed by SimdCast
unsafe { core::intrinsics::simd::simd_as(self) }
}
#[inline]
fn saturating_add(self, second: Self) -> Self {
// Safety: `self` is a vector
unsafe { core::intrinsics::simd::simd_saturating_add(self, second) }
}
#[inline]
fn saturating_sub(self, second: Self) -> Self {
// Safety: `self` is a vector
unsafe { core::intrinsics::simd::simd_saturating_sub(self, second) }
}
#[inline]
fn abs(self) -> Self {
const SHR: $ty = <$ty>::BITS as $ty - 1;
let m = self >> Simd::splat(SHR);
(self^m) - m
}
#[inline]
fn saturating_abs(self) -> Self {
// arith shift for -1 or 0 mask based on sign bit, giving 2s complement
const SHR: $ty = <$ty>::BITS as $ty - 1;
let m = self >> Simd::splat(SHR);
(self^m).saturating_sub(m)
}
#[inline]
fn saturating_neg(self) -> Self {
Self::splat(0).saturating_sub(self)
}
#[inline]
fn is_positive(self) -> Self::Mask {
self.simd_gt(Self::splat(0))
}
#[inline]
fn is_negative(self) -> Self::Mask {
self.simd_lt(Self::splat(0))
}
#[inline]
fn signum(self) -> Self {
self.is_positive().select(
Self::splat(1),
self.is_negative().select(Self::splat(-1), Self::splat(0))
)
}
#[inline]
fn reduce_sum(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_add_ordered(self, 0) }
}
#[inline]
fn reduce_product(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_mul_ordered(self, 1) }
}
#[inline]
fn reduce_max(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_max(self) }
}
#[inline]
fn reduce_min(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_min(self) }
}
#[inline]
fn reduce_and(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_and(self) }
}
#[inline]
fn reduce_or(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_or(self) }
}
#[inline]
fn reduce_xor(self) -> Self::Scalar {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_reduce_xor(self) }
}
#[inline]
fn swap_bytes(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_bswap(self) }
}
#[inline]
fn reverse_bits(self) -> Self {
// Safety: `self` is an integer vector
unsafe { core::intrinsics::simd::simd_bitreverse(self) }
}
#[inline]
fn leading_zeros(self) -> Self::Unsigned {
self.cast::<$unsigned>().leading_zeros()
}
#[inline]
fn trailing_zeros(self) -> Self::Unsigned {
self.cast::<$unsigned>().trailing_zeros()
}
#[inline]
fn leading_ones(self) -> Self::Unsigned {
self.cast::<$unsigned>().leading_ones()
}
#[inline]
fn trailing_ones(self) -> Self::Unsigned {
self.cast::<$unsigned>().trailing_ones()
}
}
)*
}
}
impl_trait! { i8 (u8), i16 (u16), i32 (u32), i64 (u64), isize (usize) }