std/sync/mpmc/
list.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
//! Unbounded channel implemented as a linked list.

use super::context::Context;
use super::error::*;
use super::select::{Operation, Selected, Token};
use super::utils::{Backoff, CachePadded};
use super::waker::SyncWaker;
use crate::cell::UnsafeCell;
use crate::marker::PhantomData;
use crate::mem::MaybeUninit;
use crate::ptr;
use crate::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use crate::time::Instant;

// Bits indicating the state of a slot:
// * If a message has been written into the slot, `WRITE` is set.
// * If a message has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;

// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of messages a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Has two different purposes:
// * If set in head, indicates that the block is not the last one.
// * If set in tail, indicates that the channel is disconnected.
const MARK_BIT: usize = 1;

/// A slot in a block.
struct Slot<T> {
    /// The message.
    msg: UnsafeCell<MaybeUninit<T>>,

    /// The state of the slot.
    state: AtomicUsize,
}

impl<T> Slot<T> {
    /// Waits until a message is written into the slot.
    fn wait_write(&self) {
        let backoff = Backoff::new();
        while self.state.load(Ordering::Acquire) & WRITE == 0 {
            backoff.spin_heavy();
        }
    }
}

/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` messages.
struct Block<T> {
    /// The next block in the linked list.
    next: AtomicPtr<Block<T>>,

    /// Slots for messages.
    slots: [Slot<T>; BLOCK_CAP],
}

impl<T> Block<T> {
    /// Creates an empty block.
    fn new() -> Block<T> {
        // SAFETY: This is safe because:
        //  [1] `Block::next` (AtomicPtr) may be safely zero initialized.
        //  [2] `Block::slots` (Array) may be safely zero initialized because of [3, 4].
        //  [3] `Slot::msg` (UnsafeCell) may be safely zero initialized because it
        //       holds a MaybeUninit.
        //  [4] `Slot::state` (AtomicUsize) may be safely zero initialized.
        unsafe { MaybeUninit::zeroed().assume_init() }
    }

    /// Waits until the next pointer is set.
    fn wait_next(&self) -> *mut Block<T> {
        let backoff = Backoff::new();
        loop {
            let next = self.next.load(Ordering::Acquire);
            if !next.is_null() {
                return next;
            }
            backoff.spin_heavy();
        }
    }

    /// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
    unsafe fn destroy(this: *mut Block<T>, start: usize) {
        // It is not necessary to set the `DESTROY` bit in the last slot because that slot has
        // begun destruction of the block.
        for i in start..BLOCK_CAP - 1 {
            let slot = unsafe { (*this).slots.get_unchecked(i) };

            // Mark the `DESTROY` bit if a thread is still using the slot.
            if slot.state.load(Ordering::Acquire) & READ == 0
                && slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
            {
                // If a thread is still using the slot, it will continue destruction of the block.
                return;
            }
        }

        // No thread is using the block, now it is safe to destroy it.
        drop(unsafe { Box::from_raw(this) });
    }
}

/// A position in a channel.
#[derive(Debug)]
struct Position<T> {
    /// The index in the channel.
    index: AtomicUsize,

    /// The block in the linked list.
    block: AtomicPtr<Block<T>>,
}

/// The token type for the list flavor.
#[derive(Debug)]
pub(crate) struct ListToken {
    /// The block of slots.
    block: *const u8,

    /// The offset into the block.
    offset: usize,
}

impl Default for ListToken {
    #[inline]
    fn default() -> Self {
        ListToken { block: ptr::null(), offset: 0 }
    }
}

/// Unbounded channel implemented as a linked list.
///
/// Each message sent into the channel is assigned a sequence number, i.e. an index. Indices are
/// represented as numbers of type `usize` and wrap on overflow.
///
/// Consecutive messages are grouped into blocks in order to put less pressure on the allocator and
/// improve cache efficiency.
pub(crate) struct Channel<T> {
    /// The head of the channel.
    head: CachePadded<Position<T>>,

    /// The tail of the channel.
    tail: CachePadded<Position<T>>,

    /// Receivers waiting while the channel is empty and not disconnected.
    receivers: SyncWaker,

    /// Indicates that dropping a `Channel<T>` may drop messages of type `T`.
    _marker: PhantomData<T>,
}

impl<T> Channel<T> {
    /// Creates a new unbounded channel.
    pub(crate) fn new() -> Self {
        Channel {
            head: CachePadded::new(Position {
                block: AtomicPtr::new(ptr::null_mut()),
                index: AtomicUsize::new(0),
            }),
            tail: CachePadded::new(Position {
                block: AtomicPtr::new(ptr::null_mut()),
                index: AtomicUsize::new(0),
            }),
            receivers: SyncWaker::new(),
            _marker: PhantomData,
        }
    }

    /// Attempts to reserve a slot for sending a message.
    fn start_send(&self, token: &mut Token) -> bool {
        let backoff = Backoff::new();
        let mut tail = self.tail.index.load(Ordering::Acquire);
        let mut block = self.tail.block.load(Ordering::Acquire);
        let mut next_block = None;

        loop {
            // Check if the channel is disconnected.
            if tail & MARK_BIT != 0 {
                token.list.block = ptr::null();
                return true;
            }

            // Calculate the offset of the index into the block.
            let offset = (tail >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.spin_heavy();
                tail = self.tail.index.load(Ordering::Acquire);
                block = self.tail.block.load(Ordering::Acquire);
                continue;
            }

            // If we're going to have to install the next block, allocate it in advance in order to
            // make the wait for other threads as short as possible.
            if offset + 1 == BLOCK_CAP && next_block.is_none() {
                next_block = Some(Box::new(Block::<T>::new()));
            }

            // If this is the first message to be sent into the channel, we need to allocate the
            // first block and install it.
            if block.is_null() {
                let new = Box::into_raw(Box::new(Block::<T>::new()));

                if self
                    .tail
                    .block
                    .compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
                    .is_ok()
                {
                    self.head.block.store(new, Ordering::Release);
                    block = new;
                } else {
                    next_block = unsafe { Some(Box::from_raw(new)) };
                    tail = self.tail.index.load(Ordering::Acquire);
                    block = self.tail.block.load(Ordering::Acquire);
                    continue;
                }
            }

            let new_tail = tail + (1 << SHIFT);

            // Try advancing the tail forward.
            match self.tail.index.compare_exchange_weak(
                tail,
                new_tail,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, install the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next_block = Box::into_raw(next_block.unwrap());
                        self.tail.block.store(next_block, Ordering::Release);
                        self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
                        (*block).next.store(next_block, Ordering::Release);
                    }

                    token.list.block = block as *const u8;
                    token.list.offset = offset;
                    return true;
                },
                Err(_) => {
                    backoff.spin_light();
                    tail = self.tail.index.load(Ordering::Acquire);
                    block = self.tail.block.load(Ordering::Acquire);
                }
            }
        }
    }

    /// Writes a message into the channel.
    pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
        // If there is no slot, the channel is disconnected.
        if token.list.block.is_null() {
            return Err(msg);
        }

        // Write the message into the slot.
        let block = token.list.block as *mut Block<T>;
        let offset = token.list.offset;
        unsafe {
            let slot = (*block).slots.get_unchecked(offset);
            slot.msg.get().write(MaybeUninit::new(msg));
            slot.state.fetch_or(WRITE, Ordering::Release);
        }

        // Wake a sleeping receiver.
        self.receivers.notify();
        Ok(())
    }

    /// Attempts to reserve a slot for receiving a message.
    fn start_recv(&self, token: &mut Token) -> bool {
        let backoff = Backoff::new();
        let mut head = self.head.index.load(Ordering::Acquire);
        let mut block = self.head.block.load(Ordering::Acquire);

        loop {
            // Calculate the offset of the index into the block.
            let offset = (head >> SHIFT) % LAP;

            // If we reached the end of the block, wait until the next one is installed.
            if offset == BLOCK_CAP {
                backoff.spin_heavy();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            let mut new_head = head + (1 << SHIFT);

            if new_head & MARK_BIT == 0 {
                atomic::fence(Ordering::SeqCst);
                let tail = self.tail.index.load(Ordering::Relaxed);

                // If the tail equals the head, that means the channel is empty.
                if head >> SHIFT == tail >> SHIFT {
                    // If the channel is disconnected...
                    if tail & MARK_BIT != 0 {
                        // ...then receive an error.
                        token.list.block = ptr::null();
                        return true;
                    } else {
                        // Otherwise, the receive operation is not ready.
                        return false;
                    }
                }

                // If head and tail are not in the same block, set `MARK_BIT` in head.
                if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
                    new_head |= MARK_BIT;
                }
            }

            // The block can be null here only if the first message is being sent into the channel.
            // In that case, just wait until it gets initialized.
            if block.is_null() {
                backoff.spin_heavy();
                head = self.head.index.load(Ordering::Acquire);
                block = self.head.block.load(Ordering::Acquire);
                continue;
            }

            // Try moving the head index forward.
            match self.head.index.compare_exchange_weak(
                head,
                new_head,
                Ordering::SeqCst,
                Ordering::Acquire,
            ) {
                Ok(_) => unsafe {
                    // If we've reached the end of the block, move to the next one.
                    if offset + 1 == BLOCK_CAP {
                        let next = (*block).wait_next();
                        let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
                        if !(*next).next.load(Ordering::Relaxed).is_null() {
                            next_index |= MARK_BIT;
                        }

                        self.head.block.store(next, Ordering::Release);
                        self.head.index.store(next_index, Ordering::Release);
                    }

                    token.list.block = block as *const u8;
                    token.list.offset = offset;
                    return true;
                },
                Err(_) => {
                    backoff.spin_light();
                    head = self.head.index.load(Ordering::Acquire);
                    block = self.head.block.load(Ordering::Acquire);
                }
            }
        }
    }

    /// Reads a message from the channel.
    pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
        if token.list.block.is_null() {
            // The channel is disconnected.
            return Err(());
        }

        // Read the message.
        let block = token.list.block as *mut Block<T>;
        let offset = token.list.offset;
        unsafe {
            let slot = (*block).slots.get_unchecked(offset);
            slot.wait_write();
            let msg = slot.msg.get().read().assume_init();

            // Destroy the block if we've reached the end, or if another thread wanted to destroy but
            // couldn't because we were busy reading from the slot.
            if offset + 1 == BLOCK_CAP {
                Block::destroy(block, 0);
            } else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
                Block::destroy(block, offset + 1);
            }

            Ok(msg)
        }
    }

    /// Attempts to send a message into the channel.
    pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
        self.send(msg, None).map_err(|err| match err {
            SendTimeoutError::Disconnected(msg) => TrySendError::Disconnected(msg),
            SendTimeoutError::Timeout(_) => unreachable!(),
        })
    }

    /// Sends a message into the channel.
    pub(crate) fn send(
        &self,
        msg: T,
        _deadline: Option<Instant>,
    ) -> Result<(), SendTimeoutError<T>> {
        let token = &mut Token::default();
        assert!(self.start_send(token));
        unsafe { self.write(token, msg).map_err(SendTimeoutError::Disconnected) }
    }

    /// Attempts to receive a message without blocking.
    pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
        let token = &mut Token::default();

        if self.start_recv(token) {
            unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
        } else {
            Err(TryRecvError::Empty)
        }
    }

    /// Receives a message from the channel.
    pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
        let token = &mut Token::default();
        loop {
            if self.start_recv(token) {
                unsafe {
                    return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
                }
            }

            if let Some(d) = deadline {
                if Instant::now() >= d {
                    return Err(RecvTimeoutError::Timeout);
                }
            }

            // Prepare for blocking until a sender wakes us up.
            Context::with(|cx| {
                let oper = Operation::hook(token);
                self.receivers.register(oper, cx);

                // Has the channel become ready just now?
                if !self.is_empty() || self.is_disconnected() {
                    let _ = cx.try_select(Selected::Aborted);
                }

                // Block the current thread.
                let sel = cx.wait_until(deadline);

                match sel {
                    Selected::Waiting => unreachable!(),
                    Selected::Aborted | Selected::Disconnected => {
                        self.receivers.unregister(oper).unwrap();
                        // If the channel was disconnected, we still have to check for remaining
                        // messages.
                    }
                    Selected::Operation(_) => {}
                }
            });
        }
    }

    /// Returns the current number of messages inside the channel.
    pub(crate) fn len(&self) -> usize {
        loop {
            // Load the tail index, then load the head index.
            let mut tail = self.tail.index.load(Ordering::SeqCst);
            let mut head = self.head.index.load(Ordering::SeqCst);

            // If the tail index didn't change, we've got consistent indices to work with.
            if self.tail.index.load(Ordering::SeqCst) == tail {
                // Erase the lower bits.
                tail &= !((1 << SHIFT) - 1);
                head &= !((1 << SHIFT) - 1);

                // Fix up indices if they fall onto block ends.
                if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
                    tail = tail.wrapping_add(1 << SHIFT);
                }
                if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
                    head = head.wrapping_add(1 << SHIFT);
                }

                // Rotate indices so that head falls into the first block.
                let lap = (head >> SHIFT) / LAP;
                tail = tail.wrapping_sub((lap * LAP) << SHIFT);
                head = head.wrapping_sub((lap * LAP) << SHIFT);

                // Remove the lower bits.
                tail >>= SHIFT;
                head >>= SHIFT;

                // Return the difference minus the number of blocks between tail and head.
                return tail - head - tail / LAP;
            }
        }
    }

    /// Returns the capacity of the channel.
    pub(crate) fn capacity(&self) -> Option<usize> {
        None
    }

    /// Disconnects senders and wakes up all blocked receivers.
    ///
    /// Returns `true` if this call disconnected the channel.
    pub(crate) fn disconnect_senders(&self) -> bool {
        let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);

        if tail & MARK_BIT == 0 {
            self.receivers.disconnect();
            true
        } else {
            false
        }
    }

    /// Disconnects receivers.
    ///
    /// Returns `true` if this call disconnected the channel.
    pub(crate) fn disconnect_receivers(&self) -> bool {
        let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);

        if tail & MARK_BIT == 0 {
            // If receivers are dropped first, discard all messages to free
            // memory eagerly.
            self.discard_all_messages();
            true
        } else {
            false
        }
    }

    /// Discards all messages.
    ///
    /// This method should only be called when all receivers are dropped.
    fn discard_all_messages(&self) {
        let backoff = Backoff::new();
        let mut tail = self.tail.index.load(Ordering::Acquire);
        loop {
            let offset = (tail >> SHIFT) % LAP;
            if offset != BLOCK_CAP {
                break;
            }

            // New updates to tail will be rejected by MARK_BIT and aborted unless it's
            // at boundary. We need to wait for the updates take affect otherwise there
            // can be memory leaks.
            backoff.spin_heavy();
            tail = self.tail.index.load(Ordering::Acquire);
        }

        let mut head = self.head.index.load(Ordering::Acquire);
        // The channel may be uninitialized, so we have to swap to avoid overwriting any sender's attempts
        // to initialize the first block before noticing that the receivers disconnected. Late allocations
        // will be deallocated by the sender in Drop.
        let mut block = self.head.block.swap(ptr::null_mut(), Ordering::AcqRel);

        // If we're going to be dropping messages we need to synchronize with initialization
        if head >> SHIFT != tail >> SHIFT {
            // The block can be null here only if a sender is in the process of initializing the
            // channel while another sender managed to send a message by inserting it into the
            // semi-initialized channel and advanced the tail.
            // In that case, just wait until it gets initialized.
            while block.is_null() {
                backoff.spin_heavy();
                block = self.head.block.load(Ordering::Acquire);
            }
        }

        unsafe {
            // Drop all messages between head and tail and deallocate the heap-allocated blocks.
            while head >> SHIFT != tail >> SHIFT {
                let offset = (head >> SHIFT) % LAP;

                if offset < BLOCK_CAP {
                    // Drop the message in the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    slot.wait_write();
                    let p = &mut *slot.msg.get();
                    p.as_mut_ptr().drop_in_place();
                } else {
                    (*block).wait_next();
                    // Deallocate the block and move to the next one.
                    let next = (*block).next.load(Ordering::Acquire);
                    drop(Box::from_raw(block));
                    block = next;
                }

                head = head.wrapping_add(1 << SHIFT);
            }

            // Deallocate the last remaining block.
            if !block.is_null() {
                drop(Box::from_raw(block));
            }
        }

        head &= !MARK_BIT;
        self.head.index.store(head, Ordering::Release);
    }

    /// Returns `true` if the channel is disconnected.
    pub(crate) fn is_disconnected(&self) -> bool {
        self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
    }

    /// Returns `true` if the channel is empty.
    pub(crate) fn is_empty(&self) -> bool {
        let head = self.head.index.load(Ordering::SeqCst);
        let tail = self.tail.index.load(Ordering::SeqCst);
        head >> SHIFT == tail >> SHIFT
    }

    /// Returns `true` if the channel is full.
    pub(crate) fn is_full(&self) -> bool {
        false
    }
}

impl<T> Drop for Channel<T> {
    fn drop(&mut self) {
        let mut head = self.head.index.load(Ordering::Relaxed);
        let mut tail = self.tail.index.load(Ordering::Relaxed);
        let mut block = self.head.block.load(Ordering::Relaxed);

        // Erase the lower bits.
        head &= !((1 << SHIFT) - 1);
        tail &= !((1 << SHIFT) - 1);

        unsafe {
            // Drop all messages between head and tail and deallocate the heap-allocated blocks.
            while head != tail {
                let offset = (head >> SHIFT) % LAP;

                if offset < BLOCK_CAP {
                    // Drop the message in the slot.
                    let slot = (*block).slots.get_unchecked(offset);
                    let p = &mut *slot.msg.get();
                    p.as_mut_ptr().drop_in_place();
                } else {
                    // Deallocate the block and move to the next one.
                    let next = (*block).next.load(Ordering::Relaxed);
                    drop(Box::from_raw(block));
                    block = next;
                }

                head = head.wrapping_add(1 << SHIFT);
            }

            // Deallocate the last remaining block.
            if !block.is_null() {
                drop(Box::from_raw(block));
            }
        }
    }
}