1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use super::sealed::Sealed;
use crate::simd::{LaneCount, Simd, SimdCast, SimdElement, SupportedLaneCount};

/// Operations on SIMD vectors of unsigned integers.
pub trait SimdUint: Copy + Sealed {
    /// Scalar type contained by this SIMD vector type.
    type Scalar;

    /// A SIMD vector with a different element type.
    type Cast<T: SimdElement>;

    /// Performs elementwise conversion of this vector's elements to another SIMD-valid type.
    ///
    /// This follows the semantics of Rust's `as` conversion for casting integers (wrapping to
    /// other integer types, and saturating to float types).
    #[must_use]
    fn cast<T: SimdCast>(self) -> Self::Cast<T>;

    /// Wrapping negation.
    ///
    /// Like [`u32::wrapping_neg`], all applications of this function will wrap, with the exception
    /// of `-0`.
    fn wrapping_neg(self) -> Self;

    /// Lanewise saturating add.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::prelude::*;
    /// use core::u32::MAX;
    /// let x = Simd::from_array([2, 1, 0, MAX]);
    /// let max = Simd::splat(MAX);
    /// let unsat = x + max;
    /// let sat = x.saturating_add(max);
    /// assert_eq!(unsat, Simd::from_array([1, 0, MAX, MAX - 1]));
    /// assert_eq!(sat, max);
    /// ```
    fn saturating_add(self, second: Self) -> Self;

    /// Lanewise saturating subtract.
    ///
    /// # Examples
    /// ```
    /// # #![feature(portable_simd)]
    /// # #[cfg(feature = "as_crate")] use core_simd::simd;
    /// # #[cfg(not(feature = "as_crate"))] use core::simd;
    /// # use simd::prelude::*;
    /// use core::u32::MAX;
    /// let x = Simd::from_array([2, 1, 0, MAX]);
    /// let max = Simd::splat(MAX);
    /// let unsat = x - max;
    /// let sat = x.saturating_sub(max);
    /// assert_eq!(unsat, Simd::from_array([3, 2, 1, 0]));
    /// assert_eq!(sat, Simd::splat(0));
    fn saturating_sub(self, second: Self) -> Self;

    /// Returns the sum of the elements of the vector, with wrapping addition.
    fn reduce_sum(self) -> Self::Scalar;

    /// Returns the product of the elements of the vector, with wrapping multiplication.
    fn reduce_product(self) -> Self::Scalar;

    /// Returns the maximum element in the vector.
    fn reduce_max(self) -> Self::Scalar;

    /// Returns the minimum element in the vector.
    fn reduce_min(self) -> Self::Scalar;

    /// Returns the cumulative bitwise "and" across the elements of the vector.
    fn reduce_and(self) -> Self::Scalar;

    /// Returns the cumulative bitwise "or" across the elements of the vector.
    fn reduce_or(self) -> Self::Scalar;

    /// Returns the cumulative bitwise "xor" across the elements of the vector.
    fn reduce_xor(self) -> Self::Scalar;

    /// Reverses the byte order of each element.
    fn swap_bytes(self) -> Self;

    /// Reverses the order of bits in each elemnent.
    /// The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.
    fn reverse_bits(self) -> Self;

    /// Returns the number of leading zeros in the binary representation of each element.
    fn leading_zeros(self) -> Self;

    /// Returns the number of trailing zeros in the binary representation of each element.
    fn trailing_zeros(self) -> Self;

    /// Returns the number of leading ones in the binary representation of each element.
    fn leading_ones(self) -> Self;

    /// Returns the number of trailing ones in the binary representation of each element.
    fn trailing_ones(self) -> Self;
}

macro_rules! impl_trait {
    { $($ty:ident ($signed:ident)),* } => {
        $(
        impl<const N: usize> Sealed for Simd<$ty, N>
        where
            LaneCount<N>: SupportedLaneCount,
        {
        }

        impl<const N: usize> SimdUint for Simd<$ty, N>
        where
            LaneCount<N>: SupportedLaneCount,
        {
            type Scalar = $ty;
            type Cast<T: SimdElement> = Simd<T, N>;

            #[inline]
            fn cast<T: SimdCast>(self) -> Self::Cast<T> {
                // Safety: supported types are guaranteed by SimdCast
                unsafe { core::intrinsics::simd::simd_as(self) }
            }

            #[inline]
            fn wrapping_neg(self) -> Self {
                use crate::simd::num::SimdInt;
                (-self.cast::<$signed>()).cast()
            }

            #[inline]
            fn saturating_add(self, second: Self) -> Self {
                // Safety: `self` is a vector
                unsafe { core::intrinsics::simd::simd_saturating_add(self, second) }
            }

            #[inline]
            fn saturating_sub(self, second: Self) -> Self {
                // Safety: `self` is a vector
                unsafe { core::intrinsics::simd::simd_saturating_sub(self, second) }
            }

            #[inline]
            fn reduce_sum(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_add_ordered(self, 0) }
            }

            #[inline]
            fn reduce_product(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_mul_ordered(self, 1) }
            }

            #[inline]
            fn reduce_max(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_max(self) }
            }

            #[inline]
            fn reduce_min(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_min(self) }
            }

            #[inline]
            fn reduce_and(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_and(self) }
            }

            #[inline]
            fn reduce_or(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_or(self) }
            }

            #[inline]
            fn reduce_xor(self) -> Self::Scalar {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_reduce_xor(self) }
            }

            #[inline]
            fn swap_bytes(self) -> Self {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_bswap(self) }
            }

            #[inline]
            fn reverse_bits(self) -> Self {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_bitreverse(self) }
            }

            #[inline]
            fn leading_zeros(self) -> Self {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_ctlz(self) }
            }

            #[inline]
            fn trailing_zeros(self) -> Self {
                // Safety: `self` is an integer vector
                unsafe { core::intrinsics::simd::simd_cttz(self) }
            }

            #[inline]
            fn leading_ones(self) -> Self {
                (!self).leading_zeros()
            }

            #[inline]
            fn trailing_ones(self) -> Self {
                (!self).trailing_zeros()
            }
        }
        )*
    }
}

impl_trait! { u8 (i8), u16 (i16), u32 (i32), u64 (i64), usize (isize) }