std/sys/pal/unix/
time.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
use crate::time::Duration;
use crate::{fmt, io};

const NSEC_PER_SEC: u64 = 1_000_000_000;
pub const UNIX_EPOCH: SystemTime = SystemTime { t: Timespec::zero() };
#[allow(dead_code)] // Used for pthread condvar timeouts
pub const TIMESPEC_MAX: libc::timespec =
    libc::timespec { tv_sec: <libc::time_t>::MAX, tv_nsec: 1_000_000_000 - 1 };

// This additional constant is only used when calling
// `libc::pthread_cond_timedwait`.
#[cfg(target_os = "nto")]
pub(in crate::sys) const TIMESPEC_MAX_CAPPED: libc::timespec = libc::timespec {
    tv_sec: (u64::MAX / NSEC_PER_SEC) as i64,
    tv_nsec: (u64::MAX % NSEC_PER_SEC) as i64,
};

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(0)]
#[rustc_layout_scalar_valid_range_end(999_999_999)]
struct Nanoseconds(u32);

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SystemTime {
    pub(crate) t: Timespec,
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub(crate) struct Timespec {
    tv_sec: i64,
    tv_nsec: Nanoseconds,
}

impl SystemTime {
    #[cfg_attr(any(target_os = "horizon", target_os = "hurd"), allow(unused))]
    pub fn new(tv_sec: i64, tv_nsec: i64) -> Result<SystemTime, io::Error> {
        Ok(SystemTime { t: Timespec::new(tv_sec, tv_nsec)? })
    }

    pub fn now() -> SystemTime {
        SystemTime { t: Timespec::now(libc::CLOCK_REALTIME) }
    }

    pub fn sub_time(&self, other: &SystemTime) -> Result<Duration, Duration> {
        self.t.sub_timespec(&other.t)
    }

    pub fn checked_add_duration(&self, other: &Duration) -> Option<SystemTime> {
        Some(SystemTime { t: self.t.checked_add_duration(other)? })
    }

    pub fn checked_sub_duration(&self, other: &Duration) -> Option<SystemTime> {
        Some(SystemTime { t: self.t.checked_sub_duration(other)? })
    }
}

impl fmt::Debug for SystemTime {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SystemTime")
            .field("tv_sec", &self.t.tv_sec)
            .field("tv_nsec", &self.t.tv_nsec.0)
            .finish()
    }
}

impl Timespec {
    const unsafe fn new_unchecked(tv_sec: i64, tv_nsec: i64) -> Timespec {
        Timespec { tv_sec, tv_nsec: unsafe { Nanoseconds(tv_nsec as u32) } }
    }

    pub const fn zero() -> Timespec {
        unsafe { Self::new_unchecked(0, 0) }
    }

    const fn new(tv_sec: i64, tv_nsec: i64) -> Result<Timespec, io::Error> {
        // On Apple OS, dates before epoch are represented differently than on other
        // Unix platforms: e.g. 1/10th of a second before epoch is represented as `seconds=-1`
        // and `nanoseconds=100_000_000` on other platforms, but is `seconds=0` and
        // `nanoseconds=-900_000_000` on Apple OS.
        //
        // To compensate, we first detect this special case by checking if both
        // seconds and nanoseconds are in range, and then correct the value for seconds
        // and nanoseconds to match the common unix representation.
        //
        // Please note that Apple OS nonetheless accepts the standard unix format when
        // setting file times, which makes this compensation round-trippable and generally
        // transparent.
        #[cfg(target_vendor = "apple")]
        let (tv_sec, tv_nsec) =
            if (tv_sec <= 0 && tv_sec > i64::MIN) && (tv_nsec < 0 && tv_nsec > -1_000_000_000) {
                (tv_sec - 1, tv_nsec + 1_000_000_000)
            } else {
                (tv_sec, tv_nsec)
            };
        if tv_nsec >= 0 && tv_nsec < NSEC_PER_SEC as i64 {
            Ok(unsafe { Self::new_unchecked(tv_sec, tv_nsec) })
        } else {
            Err(io::const_io_error!(io::ErrorKind::InvalidData, "Invalid timestamp"))
        }
    }

    pub fn now(clock: libc::clockid_t) -> Timespec {
        use crate::mem::MaybeUninit;
        use crate::sys::cvt;

        // Try to use 64-bit time in preparation for Y2038.
        #[cfg(all(
            target_os = "linux",
            target_env = "gnu",
            target_pointer_width = "32",
            not(target_arch = "riscv32")
        ))]
        {
            use crate::sys::weak::weak;

            // __clock_gettime64 was added to 32-bit arches in glibc 2.34,
            // and it handles both vDSO calls and ENOSYS fallbacks itself.
            weak!(fn __clock_gettime64(libc::clockid_t, *mut __timespec64) -> libc::c_int);

            if let Some(clock_gettime64) = __clock_gettime64.get() {
                let mut t = MaybeUninit::uninit();
                cvt(unsafe { clock_gettime64(clock, t.as_mut_ptr()) }).unwrap();
                let t = unsafe { t.assume_init() };
                return Timespec::new(t.tv_sec as i64, t.tv_nsec as i64).unwrap();
            }
        }

        let mut t = MaybeUninit::uninit();
        cvt(unsafe { libc::clock_gettime(clock, t.as_mut_ptr()) }).unwrap();
        let t = unsafe { t.assume_init() };
        Timespec::new(t.tv_sec as i64, t.tv_nsec as i64).unwrap()
    }

    pub fn sub_timespec(&self, other: &Timespec) -> Result<Duration, Duration> {
        if self >= other {
            // NOTE(eddyb) two aspects of this `if`-`else` are required for LLVM
            // to optimize it into a branchless form (see also #75545):
            //
            // 1. `self.tv_sec - other.tv_sec` shows up as a common expression
            //    in both branches, i.e. the `else` must have its `- 1`
            //    subtraction after the common one, not interleaved with it
            //    (it used to be `self.tv_sec - 1 - other.tv_sec`)
            //
            // 2. the `Duration::new` call (or any other additional complexity)
            //    is outside of the `if`-`else`, not duplicated in both branches
            //
            // Ideally this code could be rearranged such that it more
            // directly expresses the lower-cost behavior we want from it.
            let (secs, nsec) = if self.tv_nsec.0 >= other.tv_nsec.0 {
                ((self.tv_sec - other.tv_sec) as u64, self.tv_nsec.0 - other.tv_nsec.0)
            } else {
                (
                    (self.tv_sec - other.tv_sec - 1) as u64,
                    self.tv_nsec.0 + (NSEC_PER_SEC as u32) - other.tv_nsec.0,
                )
            };

            Ok(Duration::new(secs, nsec))
        } else {
            match other.sub_timespec(self) {
                Ok(d) => Err(d),
                Err(d) => Ok(d),
            }
        }
    }

    pub fn checked_add_duration(&self, other: &Duration) -> Option<Timespec> {
        let mut secs = self.tv_sec.checked_add_unsigned(other.as_secs())?;

        // Nano calculations can't overflow because nanos are <1B which fit
        // in a u32.
        let mut nsec = other.subsec_nanos() + self.tv_nsec.0;
        if nsec >= NSEC_PER_SEC as u32 {
            nsec -= NSEC_PER_SEC as u32;
            secs = secs.checked_add(1)?;
        }
        Some(unsafe { Timespec::new_unchecked(secs, nsec.into()) })
    }

    pub fn checked_sub_duration(&self, other: &Duration) -> Option<Timespec> {
        let mut secs = self.tv_sec.checked_sub_unsigned(other.as_secs())?;

        // Similar to above, nanos can't overflow.
        let mut nsec = self.tv_nsec.0 as i32 - other.subsec_nanos() as i32;
        if nsec < 0 {
            nsec += NSEC_PER_SEC as i32;
            secs = secs.checked_sub(1)?;
        }
        Some(unsafe { Timespec::new_unchecked(secs, nsec.into()) })
    }

    #[allow(dead_code)]
    pub fn to_timespec(&self) -> Option<libc::timespec> {
        Some(libc::timespec {
            tv_sec: self.tv_sec.try_into().ok()?,
            tv_nsec: self.tv_nsec.0.try_into().ok()?,
        })
    }

    // On QNX Neutrino, the maximum timespec for e.g. pthread_cond_timedwait
    // is 2^64 nanoseconds
    #[cfg(target_os = "nto")]
    pub(in crate::sys) fn to_timespec_capped(&self) -> Option<libc::timespec> {
        // Check if timeout in nanoseconds would fit into an u64
        if (self.tv_nsec.0 as u64)
            .checked_add((self.tv_sec as u64).checked_mul(NSEC_PER_SEC)?)
            .is_none()
        {
            return None;
        }
        self.to_timespec()
    }

    #[cfg(all(
        target_os = "linux",
        target_env = "gnu",
        target_pointer_width = "32",
        not(target_arch = "riscv32")
    ))]
    pub fn to_timespec64(&self) -> __timespec64 {
        __timespec64::new(self.tv_sec, self.tv_nsec.0 as _)
    }
}

#[cfg(all(
    target_os = "linux",
    target_env = "gnu",
    target_pointer_width = "32",
    not(target_arch = "riscv32")
))]
#[repr(C)]
pub(crate) struct __timespec64 {
    pub(crate) tv_sec: i64,
    #[cfg(target_endian = "big")]
    _padding: i32,
    pub(crate) tv_nsec: i32,
    #[cfg(target_endian = "little")]
    _padding: i32,
}

#[cfg(all(
    target_os = "linux",
    target_env = "gnu",
    target_pointer_width = "32",
    not(target_arch = "riscv32")
))]
impl __timespec64 {
    pub(crate) fn new(tv_sec: i64, tv_nsec: i32) -> Self {
        Self { tv_sec, tv_nsec, _padding: 0 }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct Instant {
    t: Timespec,
}

impl Instant {
    pub fn now() -> Instant {
        // https://www.manpagez.com/man/3/clock_gettime/
        //
        // CLOCK_UPTIME_RAW   clock that increments monotonically, in the same man-
        //                    ner as CLOCK_MONOTONIC_RAW, but that does not incre-
        //                    ment while the system is asleep.  The returned value
        //                    is identical to the result of mach_absolute_time()
        //                    after the appropriate mach_timebase conversion is
        //                    applied.
        //
        // Instant on macos was historically implemented using mach_absolute_time;
        // we preserve this value domain out of an abundance of caution.
        #[cfg(target_vendor = "apple")]
        const clock_id: libc::clockid_t = libc::CLOCK_UPTIME_RAW;
        #[cfg(not(target_vendor = "apple"))]
        const clock_id: libc::clockid_t = libc::CLOCK_MONOTONIC;
        Instant { t: Timespec::now(clock_id) }
    }

    pub fn checked_sub_instant(&self, other: &Instant) -> Option<Duration> {
        self.t.sub_timespec(&other.t).ok()
    }

    pub fn checked_add_duration(&self, other: &Duration) -> Option<Instant> {
        Some(Instant { t: self.t.checked_add_duration(other)? })
    }

    pub fn checked_sub_duration(&self, other: &Duration) -> Option<Instant> {
        Some(Instant { t: self.t.checked_sub_duration(other)? })
    }
}

impl fmt::Debug for Instant {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Instant")
            .field("tv_sec", &self.t.tv_sec)
            .field("tv_nsec", &self.t.tv_nsec.0)
            .finish()
    }
}