core/num/int_sqrt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
//! These functions use the [Karatsuba square root algorithm][1] to compute the
//! [integer square root](https://en.wikipedia.org/wiki/Integer_square_root)
//! for the primitive integer types.
//!
//! The signed integer functions can only handle **nonnegative** inputs, so
//! that must be checked before calling those.
//!
//! [1]: <https://web.archive.org/web/20230511212802/https://inria.hal.science/inria-00072854v1/file/RR-3805.pdf>
//! "Paul Zimmermann. Karatsuba Square Root. \[Research Report\] RR-3805,
//! INRIA. 1999, pp.8. (inria-00072854)"
/// This array stores the [integer square roots](
/// https://en.wikipedia.org/wiki/Integer_square_root) and remainders of each
/// [`u8`](prim@u8) value. For example, `U8_ISQRT_WITH_REMAINDER[17]` will be
/// `(4, 1)` because the integer square root of 17 is 4 and because 17 is 1
/// higher than 4 squared.
const U8_ISQRT_WITH_REMAINDER: [(u8, u8); 256] = {
let mut result = [(0, 0); 256];
let mut n: usize = 0;
let mut isqrt_n: usize = 0;
while n < result.len() {
result[n] = (isqrt_n as u8, (n - isqrt_n.pow(2)) as u8);
n += 1;
if n == (isqrt_n + 1).pow(2) {
isqrt_n += 1;
}
}
result
};
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any [`u8`](prim@u8)
/// input.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn u8(n: u8) -> u8 {
U8_ISQRT_WITH_REMAINDER[n as usize].0
}
/// Generates an `i*` function that returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any **nonnegative**
/// input of a specific signed integer type.
macro_rules! signed_fn {
($SignedT:ident, $UnsignedT:ident) => {
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any
/// **nonnegative**
#[doc = concat!("[`", stringify!($SignedT), "`](prim@", stringify!($SignedT), ")")]
/// input.
///
/// # Safety
///
/// This results in undefined behavior when the input is negative.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const unsafe fn $SignedT(n: $SignedT) -> $SignedT {
debug_assert!(n >= 0, "Negative input inside `isqrt`.");
$UnsignedT(n as $UnsignedT) as $SignedT
}
};
}
signed_fn!(i8, u8);
signed_fn!(i16, u16);
signed_fn!(i32, u32);
signed_fn!(i64, u64);
signed_fn!(i128, u128);
/// Generates a `u*` function that returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any input of
/// a specific unsigned integer type.
macro_rules! unsigned_fn {
($UnsignedT:ident, $HalfBitsT:ident, $stages:ident) => {
/// Returns the [integer square root](
/// https://en.wikipedia.org/wiki/Integer_square_root) of any
#[doc = concat!("[`", stringify!($UnsignedT), "`](prim@", stringify!($UnsignedT), ")")]
/// input.
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn $UnsignedT(mut n: $UnsignedT) -> $UnsignedT {
if n <= <$HalfBitsT>::MAX as $UnsignedT {
$HalfBitsT(n as $HalfBitsT) as $UnsignedT
} else {
// The normalization shift satisfies the Karatsuba square root
// algorithm precondition "a₃ ≥ b/4" where a₃ is the most
// significant quarter of `n`'s bits and b is the number of
// values that can be represented by that quarter of the bits.
//
// b/4 would then be all 0s except the second most significant
// bit (010...0) in binary. Since a₃ must be at least b/4, a₃'s
// most significant bit or its neighbor must be a 1. Since a₃'s
// most significant bits are `n`'s most significant bits, the
// same applies to `n`.
//
// The reason to shift by an even number of bits is because an
// even number of bits produces the square root shifted to the
// left by half of the normalization shift:
//
// sqrt(n << (2 * p))
// sqrt(2.pow(2 * p) * n)
// sqrt(2.pow(2 * p)) * sqrt(n)
// 2.pow(p) * sqrt(n)
// sqrt(n) << p
//
// Shifting by an odd number of bits leaves an ugly sqrt(2)
// multiplied in:
//
// sqrt(n << (2 * p + 1))
// sqrt(2.pow(2 * p + 1) * n)
// sqrt(2 * 2.pow(2 * p) * n)
// sqrt(2) * sqrt(2.pow(2 * p)) * sqrt(n)
// sqrt(2) * 2.pow(p) * sqrt(n)
// sqrt(2) * (sqrt(n) << p)
const EVEN_MAKING_BITMASK: u32 = !1;
let normalization_shift = n.leading_zeros() & EVEN_MAKING_BITMASK;
n <<= normalization_shift;
let s = $stages(n);
let denormalization_shift = normalization_shift >> 1;
s >> denormalization_shift
}
}
};
}
/// Generates the first stage of the computation after normalization.
///
/// # Safety
///
/// `$n` must be nonzero.
macro_rules! first_stage {
($original_bits:literal, $n:ident) => {{
debug_assert!($n != 0, "`$n` is zero in `first_stage!`.");
const N_SHIFT: u32 = $original_bits - 8;
let n = $n >> N_SHIFT;
let (s, r) = U8_ISQRT_WITH_REMAINDER[n as usize];
// Inform the optimizer that `s` is nonzero. This will allow it to
// avoid generating code to handle division-by-zero panics in the next
// stage.
//
// SAFETY: If the original `$n` is zero, the top of the `unsigned_fn`
// macro recurses instead of continuing to this point, so the original
// `$n` wasn't a 0 if we've reached here.
//
// Then the `unsigned_fn` macro normalizes `$n` so that at least one of
// its two most-significant bits is a 1.
//
// Then this stage puts the eight most-significant bits of `$n` into
// `n`. This means that `n` here has at least one 1 bit in its two
// most-significant bits, making `n` nonzero.
//
// `U8_ISQRT_WITH_REMAINDER[n as usize]` will give a nonzero `s` when
// given a nonzero `n`.
unsafe { crate::hint::assert_unchecked(s != 0) };
(s, r)
}};
}
/// Generates a middle stage of the computation.
///
/// # Safety
///
/// `$s` must be nonzero.
macro_rules! middle_stage {
($original_bits:literal, $ty:ty, $n:ident, $s:ident, $r:ident) => {{
debug_assert!($s != 0, "`$s` is zero in `middle_stage!`.");
const N_SHIFT: u32 = $original_bits - <$ty>::BITS;
let n = ($n >> N_SHIFT) as $ty;
const HALF_BITS: u32 = <$ty>::BITS >> 1;
const QUARTER_BITS: u32 = <$ty>::BITS >> 2;
const LOWER_HALF_1_BITS: $ty = (1 << HALF_BITS) - 1;
const LOWEST_QUARTER_1_BITS: $ty = (1 << QUARTER_BITS) - 1;
let lo = n & LOWER_HALF_1_BITS;
let numerator = (($r as $ty) << QUARTER_BITS) | (lo >> QUARTER_BITS);
let denominator = ($s as $ty) << 1;
let q = numerator / denominator;
let u = numerator % denominator;
let mut s = ($s << QUARTER_BITS) as $ty + q;
let (mut r, overflow) =
((u << QUARTER_BITS) | (lo & LOWEST_QUARTER_1_BITS)).overflowing_sub(q * q);
if overflow {
r = r.wrapping_add(2 * s - 1);
s -= 1;
}
// Inform the optimizer that `s` is nonzero. This will allow it to
// avoid generating code to handle division-by-zero panics in the next
// stage.
//
// SAFETY: If the original `$n` is zero, the top of the `unsigned_fn`
// macro recurses instead of continuing to this point, so the original
// `$n` wasn't a 0 if we've reached here.
//
// Then the `unsigned_fn` macro normalizes `$n` so that at least one of
// its two most-significant bits is a 1.
//
// Then these stages take as many of the most-significant bits of `$n`
// as will fit in this stage's type. For example, the stage that
// handles `u32` deals with the 32 most-significant bits of `$n`. This
// means that each stage has at least one 1 bit in `n`'s two
// most-significant bits, making `n` nonzero.
//
// Then this stage will produce the correct integer square root for
// that `n` value. Since `n` is nonzero, `s` will also be nonzero.
unsafe { crate::hint::assert_unchecked(s != 0) };
(s, r)
}};
}
/// Generates the last stage of the computation before denormalization.
///
/// # Safety
///
/// `$s` must be nonzero.
macro_rules! last_stage {
($ty:ty, $n:ident, $s:ident, $r:ident) => {{
debug_assert!($s != 0, "`$s` is zero in `last_stage!`.");
const HALF_BITS: u32 = <$ty>::BITS >> 1;
const QUARTER_BITS: u32 = <$ty>::BITS >> 2;
const LOWER_HALF_1_BITS: $ty = (1 << HALF_BITS) - 1;
let lo = $n & LOWER_HALF_1_BITS;
let numerator = (($r as $ty) << QUARTER_BITS) | (lo >> QUARTER_BITS);
let denominator = ($s as $ty) << 1;
let q = numerator / denominator;
let mut s = ($s << QUARTER_BITS) as $ty + q;
let (s_squared, overflow) = s.overflowing_mul(s);
if overflow || s_squared > $n {
s -= 1;
}
s
}};
}
/// Takes the normalized [`u16`](prim@u16) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u16_stages(n: u16) -> u16 {
let (s, r) = first_stage!(16, n);
last_stage!(u16, n, s, r)
}
/// Takes the normalized [`u32`](prim@u32) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u32_stages(n: u32) -> u32 {
let (s, r) = first_stage!(32, n);
let (s, r) = middle_stage!(32, u16, n, s, r);
last_stage!(u32, n, s, r)
}
/// Takes the normalized [`u64`](prim@u64) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u64_stages(n: u64) -> u64 {
let (s, r) = first_stage!(64, n);
let (s, r) = middle_stage!(64, u16, n, s, r);
let (s, r) = middle_stage!(64, u32, n, s, r);
last_stage!(u64, n, s, r)
}
/// Takes the normalized [`u128`](prim@u128) input and gets its normalized
/// [integer square root](https://en.wikipedia.org/wiki/Integer_square_root).
///
/// # Safety
///
/// `n` must be nonzero.
#[inline]
const fn u128_stages(n: u128) -> u128 {
let (s, r) = first_stage!(128, n);
let (s, r) = middle_stage!(128, u16, n, s, r);
let (s, r) = middle_stage!(128, u32, n, s, r);
let (s, r) = middle_stage!(128, u64, n, s, r);
last_stage!(u128, n, s, r)
}
unsigned_fn!(u16, u8, u16_stages);
unsigned_fn!(u32, u16, u32_stages);
unsigned_fn!(u64, u32, u64_stages);
unsigned_fn!(u128, u64, u128_stages);
/// Instantiate this panic logic once, rather than for all the isqrt methods
/// on every single primitive type.
#[cold]
#[track_caller]
pub const fn panic_for_negative_argument() -> ! {
panic!("argument of integer square root cannot be negative")
}