1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
// implements the unary operator "op &T"
// based on "op T" where T is expected to be `Copy`able
macro_rules! forward_ref_unop {
(impl $imp:ident, $method:ident for $t:ty) => {
forward_ref_unop!(impl $imp, $method for $t,
#[stable(feature = "rust1", since = "1.0.0")]);
};
(impl $imp:ident, $method:ident for $t:ty, #[$attr:meta]) => {
#[$attr]
impl $imp for &$t {
type Output = <$t as $imp>::Output;
#[inline]
fn $method(self) -> <$t as $imp>::Output {
$imp::$method(*self)
}
}
}
}
// implements binary operators "&T op U", "T op &U", "&T op &U"
// based on "T op U" where T and U are expected to be `Copy`able
macro_rules! forward_ref_binop {
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
forward_ref_binop!(impl $imp, $method for $t, $u,
#[stable(feature = "rust1", since = "1.0.0")]);
};
(impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => {
#[$attr]
impl<'a> $imp<$u> for &'a $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
#[track_caller]
fn $method(self, other: $u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, other)
}
}
#[$attr]
impl $imp<&$u> for $t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
#[track_caller]
fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output {
$imp::$method(self, *other)
}
}
#[$attr]
impl $imp<&$u> for &$t {
type Output = <$t as $imp<$u>>::Output;
#[inline]
#[track_caller]
fn $method(self, other: &$u) -> <$t as $imp<$u>>::Output {
$imp::$method(*self, *other)
}
}
}
}
// implements "T op= &U", based on "T op= U"
// where U is expected to be `Copy`able
macro_rules! forward_ref_op_assign {
(impl $imp:ident, $method:ident for $t:ty, $u:ty) => {
forward_ref_op_assign!(impl $imp, $method for $t, $u,
#[stable(feature = "op_assign_builtins_by_ref", since = "1.22.0")]);
};
(impl $imp:ident, $method:ident for $t:ty, $u:ty, #[$attr:meta]) => {
#[$attr]
impl $imp<&$u> for $t {
#[inline]
#[track_caller]
fn $method(&mut self, other: &$u) {
$imp::$method(self, *other);
}
}
}
}
/// Creates a zero-size type similar to a closure type, but named.
macro_rules! impl_fn_for_zst {
($(
$( #[$attr: meta] )*
struct $Name: ident impl$( <$( $lifetime : lifetime ),+> )? Fn =
|$( $arg: ident: $ArgTy: ty ),*| -> $ReturnTy: ty
$body: block;
)+) => {
$(
$( #[$attr] )*
struct $Name;
impl $( <$( $lifetime ),+> )? Fn<($( $ArgTy, )*)> for $Name {
#[inline]
extern "rust-call" fn call(&self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy {
$body
}
}
impl $( <$( $lifetime ),+> )? FnMut<($( $ArgTy, )*)> for $Name {
#[inline]
extern "rust-call" fn call_mut(
&mut self,
($( $arg, )*): ($( $ArgTy, )*)
) -> $ReturnTy {
Fn::call(&*self, ($( $arg, )*))
}
}
impl $( <$( $lifetime ),+> )? FnOnce<($( $ArgTy, )*)> for $Name {
type Output = $ReturnTy;
#[inline]
extern "rust-call" fn call_once(self, ($( $arg, )*): ($( $ArgTy, )*)) -> $ReturnTy {
Fn::call(&self, ($( $arg, )*))
}
}
)+
}
}
/// A macro for defining `#[cfg]` if-else statements.
///
/// `cfg_if` is similar to the `if/elif` C preprocessor macro by allowing definition of a cascade
/// of `#[cfg]` cases, emitting the implementation which matches first.
///
/// This allows you to conveniently provide a long list `#[cfg]`'d blocks of code without having to
/// rewrite each clause multiple times.
///
/// # Example
///
/// ```ignore(cannot-test-this-because-non-exported-macro)
/// cfg_if! {
/// if #[cfg(unix)] {
/// fn foo() { /* unix specific functionality */ }
/// } else if #[cfg(target_pointer_width = "32")] {
/// fn foo() { /* non-unix, 32-bit functionality */ }
/// } else {
/// fn foo() { /* fallback implementation */ }
/// }
/// }
///
/// # fn main() {}
/// ```
// This is a copy of `cfg_if!` from the `cfg_if` crate.
// The recursive invocations should use $crate if this is ever exported.
macro_rules! cfg_if {
// match if/else chains with a final `else`
(
$(
if #[cfg( $i_meta:meta )] { $( $i_tokens:tt )* }
) else+
else { $( $e_tokens:tt )* }
) => {
cfg_if! {
@__items () ;
$(
(( $i_meta ) ( $( $i_tokens )* )) ,
)+
(() ( $( $e_tokens )* )) ,
}
};
// Internal and recursive macro to emit all the items
//
// Collects all the previous cfgs in a list at the beginning, so they can be
// negated. After the semicolon is all the remaining items.
(@__items ( $( $_:meta , )* ) ; ) => {};
(
@__items ( $( $no:meta , )* ) ;
(( $( $yes:meta )? ) ( $( $tokens:tt )* )) ,
$( $rest:tt , )*
) => {
// Emit all items within one block, applying an appropriate #[cfg]. The
// #[cfg] will require all `$yes` matchers specified and must also negate
// all previous matchers.
#[cfg(all(
$( $yes , )?
not(any( $( $no ),* ))
))]
cfg_if! { @__identity $( $tokens )* }
// Recurse to emit all other items in `$rest`, and when we do so add all
// our `$yes` matchers to the list of `$no` matchers as future emissions
// will have to negate everything we just matched as well.
cfg_if! {
@__items ( $( $no , )* $( $yes , )? ) ;
$( $rest , )*
}
};
// Internal macro to make __apply work out right for different match types,
// because of how macros match/expand stuff.
(@__identity $( $tokens:tt )* ) => {
$( $tokens )*
};
}