std/sys/pal/unix/
kernel_copy.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
//! This module contains specializations that can offload `io::copy()` operations on file descriptor
//! containing types (`File`, `TcpStream`, etc.) to more efficient syscalls than `read(2)` and `write(2)`.
//!
//! Specialization is only applied to wholly std-owned types so that user code can't observe
//! that the `Read` and `Write` traits are not used.
//!
//! Since a copy operation involves a reader and writer side where each can consist of different types
//! and also involve generic wrappers (e.g. `Take`, `BufReader`) it is not practical to specialize
//! a single method on all possible combinations.
//!
//! Instead readers and writers are handled separately by the `CopyRead` and `CopyWrite` specialization
//! traits and then specialized on by the `Copier::copy` method.
//!
//! `Copier` uses the specialization traits to unpack the underlying file descriptors and
//! additional prerequisites and constraints imposed by the wrapper types.
//!
//! Once it has obtained all necessary pieces and brought any wrapper types into a state where they
//! can be safely bypassed it will attempt to use the `copy_file_range(2)`,
//! `sendfile(2)` or `splice(2)` syscalls to move data directly between file descriptors.
//! Since those syscalls have requirements that cannot be fully checked in advance it attempts
//! to use them one after another (guided by hints) to figure out which one works and
//! falls back to the generic read-write copy loop if none of them does.
//! Once a working syscall is found for a pair of file descriptors it will be called in a loop
//! until the copy operation is completed.
//!
//! Advantages of using these syscalls:
//!
//! * fewer context switches since reads and writes are coalesced into a single syscall
//!   and more bytes are transferred per syscall. This translates to higher throughput
//!   and fewer CPU cycles, at least for sufficiently large transfers to amortize the initial probing.
//! * `copy_file_range` creates reflink copies on CoW filesystems, thus moving less data and
//!   consuming less disk space
//! * `sendfile` and `splice` can perform zero-copy IO under some circumstances while
//!   a naive copy loop would move every byte through the CPU.
//!
//! Drawbacks:
//!
//! * copy operations smaller than the default buffer size can under some circumstances, especially
//!   on older kernels, incur more syscalls than the naive approach would. As mentioned above
//!   the syscall selection is guided by hints to minimize this possibility but they are not perfect.
//! * optimizations only apply to std types. If a user adds a custom wrapper type, e.g. to report
//!   progress, they can hit a performance cliff.
//! * complexity

#[cfg(not(any(all(target_os = "linux", target_env = "gnu"), target_os = "hurd")))]
use libc::sendfile as sendfile64;
#[cfg(any(all(target_os = "linux", target_env = "gnu"), target_os = "hurd"))]
use libc::sendfile64;
use libc::{EBADF, EINVAL, ENOSYS, EOPNOTSUPP, EOVERFLOW, EPERM, EXDEV};

use crate::cmp::min;
use crate::fs::{File, Metadata};
use crate::io::copy::generic_copy;
use crate::io::{
    BufRead, BufReader, BufWriter, Error, Read, Result, StderrLock, StdinLock, StdoutLock, Take,
    Write,
};
use crate::mem::ManuallyDrop;
use crate::net::TcpStream;
use crate::os::unix::fs::FileTypeExt;
use crate::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use crate::os::unix::net::UnixStream;
use crate::pipe::{PipeReader, PipeWriter};
use crate::process::{ChildStderr, ChildStdin, ChildStdout};
use crate::ptr;
use crate::sync::atomic::{AtomicBool, AtomicU8, Ordering};
use crate::sys::cvt;
use crate::sys::weak::syscall;

#[cfg(test)]
mod tests;

pub(crate) fn copy_spec<R: Read + ?Sized, W: Write + ?Sized>(
    read: &mut R,
    write: &mut W,
) -> Result<u64> {
    let copier = Copier { read, write };
    SpecCopy::copy(copier)
}

/// This type represents either the inferred `FileType` of a `RawFd` based on the source
/// type from which it was extracted or the actual metadata
///
/// The methods on this type only provide hints, due to `AsRawFd` and `FromRawFd` the inferred
/// type may be wrong.
enum FdMeta {
    Metadata(Metadata),
    Socket,
    Pipe,
    /// We don't have any metadata because the stat syscall failed
    NoneObtained,
}

#[derive(PartialEq)]
enum FdHandle {
    Input,
    Output,
}

impl FdMeta {
    fn maybe_fifo(&self) -> bool {
        match self {
            FdMeta::Metadata(meta) => meta.file_type().is_fifo(),
            FdMeta::Socket => false,
            FdMeta::Pipe => true,
            FdMeta::NoneObtained => true,
        }
    }

    fn potential_sendfile_source(&self) -> bool {
        match self {
            // procfs erroneously shows 0 length on non-empty readable files.
            // and if a file is truly empty then a `read` syscall will determine that and skip the write syscall
            // thus there would be benefit from attempting sendfile
            FdMeta::Metadata(meta)
                if meta.file_type().is_file() && meta.len() > 0
                    || meta.file_type().is_block_device() =>
            {
                true
            }
            _ => false,
        }
    }

    fn copy_file_range_candidate(&self, f: FdHandle) -> bool {
        match self {
            // copy_file_range will fail on empty procfs files. `read` can determine whether EOF has been reached
            // without extra cost and skip the write, thus there is no benefit in attempting copy_file_range
            FdMeta::Metadata(meta) if f == FdHandle::Input && meta.is_file() && meta.len() > 0 => {
                true
            }
            FdMeta::Metadata(meta) if f == FdHandle::Output && meta.is_file() => true,
            _ => false,
        }
    }
}

/// Returns true either if changes made to the source after a sendfile/splice call won't become
/// visible in the sink or the source has explicitly opted into such behavior (e.g. by splicing
/// a file into a pipe, the pipe being the source in this case).
///
/// This will prevent File -> Pipe and File -> Socket splicing/sendfile optimizations to uphold
/// the Read/Write API semantics of io::copy.
///
/// Note: This is not 100% airtight, the caller can use the RawFd conversion methods to turn a
/// regular file into a TcpSocket which will be treated as a socket here without checking.
fn safe_kernel_copy(source: &FdMeta, sink: &FdMeta) -> bool {
    match (source, sink) {
        // Data arriving from a socket is safe because the sender can't modify the socket buffer.
        // Data arriving from a pipe is safe(-ish) because either the sender *copied*
        // the bytes into the pipe OR explicitly performed an operation that enables zero-copy,
        // thus promising not to modify the data later.
        (FdMeta::Socket, _) => true,
        (FdMeta::Pipe, _) => true,
        (FdMeta::Metadata(meta), _)
            if meta.file_type().is_fifo() || meta.file_type().is_socket() =>
        {
            true
        }
        // Data going into non-pipes/non-sockets is safe because the "later changes may become visible" issue
        // only happens for pages sitting in send buffers or pipes.
        (_, FdMeta::Metadata(meta))
            if !meta.file_type().is_fifo() && !meta.file_type().is_socket() =>
        {
            true
        }
        _ => false,
    }
}

struct CopyParams(FdMeta, Option<RawFd>);

struct Copier<'a, 'b, R: Read + ?Sized, W: Write + ?Sized> {
    read: &'a mut R,
    write: &'b mut W,
}

trait SpecCopy {
    fn copy(self) -> Result<u64>;
}

impl<R: Read + ?Sized, W: Write + ?Sized> SpecCopy for Copier<'_, '_, R, W> {
    default fn copy(self) -> Result<u64> {
        generic_copy(self.read, self.write)
    }
}

impl<R: CopyRead, W: CopyWrite> SpecCopy for Copier<'_, '_, R, W> {
    fn copy(self) -> Result<u64> {
        let (reader, writer) = (self.read, self.write);
        let r_cfg = reader.properties();
        let w_cfg = writer.properties();

        // before direct operations on file descriptors ensure that all source and sink buffers are empty
        let mut flush = || -> crate::io::Result<u64> {
            let bytes = reader.drain_to(writer, u64::MAX)?;
            // BufWriter buffered bytes have already been accounted for in earlier write() calls
            writer.flush()?;
            Ok(bytes)
        };

        let mut written = 0u64;

        if let (CopyParams(input_meta, Some(readfd)), CopyParams(output_meta, Some(writefd))) =
            (r_cfg, w_cfg)
        {
            written += flush()?;
            let max_write = reader.min_limit();

            if input_meta.copy_file_range_candidate(FdHandle::Input)
                && output_meta.copy_file_range_candidate(FdHandle::Output)
            {
                let result = copy_regular_files(readfd, writefd, max_write);
                result.update_take(reader);

                match result {
                    CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
                    CopyResult::Error(e, _) => return Err(e),
                    CopyResult::Fallback(bytes) => written += bytes,
                }
            }

            // on modern kernels sendfile can copy from any mmapable type (some but not all regular files and block devices)
            // to any writable file descriptor. On older kernels the writer side can only be a socket.
            // So we just try and fallback if needed.
            // If current file offsets + write sizes overflow it may also fail, we do not try to fix that and instead
            // fall back to the generic copy loop.
            if input_meta.potential_sendfile_source() && safe_kernel_copy(&input_meta, &output_meta)
            {
                let result = sendfile_splice(SpliceMode::Sendfile, readfd, writefd, max_write);
                result.update_take(reader);

                match result {
                    CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
                    CopyResult::Error(e, _) => return Err(e),
                    CopyResult::Fallback(bytes) => written += bytes,
                }
            }

            if (input_meta.maybe_fifo() || output_meta.maybe_fifo())
                && safe_kernel_copy(&input_meta, &output_meta)
            {
                let result = sendfile_splice(SpliceMode::Splice, readfd, writefd, max_write);
                result.update_take(reader);

                match result {
                    CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
                    CopyResult::Error(e, _) => return Err(e),
                    CopyResult::Fallback(0) => { /* use the fallback below */ }
                    CopyResult::Fallback(_) => {
                        unreachable!("splice should not return > 0 bytes on the fallback path")
                    }
                }
            }
        }

        // fallback if none of the more specialized syscalls wants to work with these file descriptors
        match generic_copy(reader, writer) {
            Ok(bytes) => Ok(bytes + written),
            err => err,
        }
    }
}

#[rustc_specialization_trait]
trait CopyRead: Read {
    /// Implementations that contain buffers (i.e. `BufReader`) must transfer data from their internal
    /// buffers into `writer` until either the buffers are emptied or `limit` bytes have been
    /// transferred, whichever occurs sooner.
    /// If nested buffers are present the outer buffers must be drained first.
    ///
    /// This is necessary to directly bypass the wrapper types while preserving the data order
    /// when operating directly on the underlying file descriptors.
    fn drain_to<W: Write>(&mut self, _writer: &mut W, _limit: u64) -> Result<u64> {
        Ok(0)
    }

    /// Updates `Take` wrappers to remove the number of bytes copied.
    fn taken(&mut self, _bytes: u64) {}

    /// The minimum of the limit of all `Take<_>` wrappers, `u64::MAX` otherwise.
    /// This method does not account for data `BufReader` buffers and would underreport
    /// the limit of a `Take<BufReader<Take<_>>>` type. Thus its result is only valid
    /// after draining the buffers via `drain_to`.
    fn min_limit(&self) -> u64 {
        u64::MAX
    }

    /// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
    fn properties(&self) -> CopyParams;
}

#[rustc_specialization_trait]
trait CopyWrite: Write {
    /// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
    fn properties(&self) -> CopyParams;
}

impl<T> CopyRead for &mut T
where
    T: CopyRead,
{
    fn drain_to<W: Write>(&mut self, writer: &mut W, limit: u64) -> Result<u64> {
        (**self).drain_to(writer, limit)
    }

    fn taken(&mut self, bytes: u64) {
        (**self).taken(bytes);
    }

    fn min_limit(&self) -> u64 {
        (**self).min_limit()
    }

    fn properties(&self) -> CopyParams {
        (**self).properties()
    }
}

impl<T> CopyWrite for &mut T
where
    T: CopyWrite,
{
    fn properties(&self) -> CopyParams {
        (**self).properties()
    }
}

impl CopyRead for File {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
    }
}

impl CopyRead for &File {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
    }
}

impl CopyWrite for File {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
    }
}

impl CopyWrite for &File {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
    }
}

impl CopyRead for TcpStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyRead for &TcpStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for TcpStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for &TcpStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyRead for UnixStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyRead for &UnixStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for UnixStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for &UnixStream {
    fn properties(&self) -> CopyParams {
        // avoid the stat syscall since we can be fairly sure it's a socket
        CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
    }
}

impl CopyRead for PipeReader {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyRead for &PipeReader {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for PipeWriter {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for &PipeWriter {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyWrite for ChildStdin {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyRead for ChildStdout {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyRead for ChildStderr {
    fn properties(&self) -> CopyParams {
        CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
    }
}

impl CopyRead for StdinLock<'_> {
    fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
        let buf_reader = self.as_mut_buf();
        let buf = buf_reader.buffer();
        let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
        let bytes_drained = buf.len();
        writer.write_all(buf)?;
        buf_reader.consume(bytes_drained);

        Ok(bytes_drained as u64)
    }

    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
    }
}

impl CopyWrite for StdoutLock<'_> {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
    }
}

impl CopyWrite for StderrLock<'_> {
    fn properties(&self) -> CopyParams {
        CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
    }
}

impl<T: CopyRead> CopyRead for Take<T> {
    fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
        let local_limit = self.limit();
        let combined_limit = min(outer_limit, local_limit);
        let bytes_drained = self.get_mut().drain_to(writer, combined_limit)?;
        // update limit since read() was bypassed
        self.set_limit(local_limit - bytes_drained);

        Ok(bytes_drained)
    }

    fn taken(&mut self, bytes: u64) {
        self.set_limit(self.limit() - bytes);
        self.get_mut().taken(bytes);
    }

    fn min_limit(&self) -> u64 {
        min(Take::limit(self), self.get_ref().min_limit())
    }

    fn properties(&self) -> CopyParams {
        self.get_ref().properties()
    }
}

impl<T: ?Sized + CopyRead> CopyRead for BufReader<T> {
    fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
        let buf = self.buffer();
        let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
        let bytes = buf.len();
        writer.write_all(buf)?;
        self.consume(bytes);

        let remaining = outer_limit - bytes as u64;

        // in case of nested bufreaders we also need to drain the ones closer to the source
        let inner_bytes = self.get_mut().drain_to(writer, remaining)?;

        Ok(bytes as u64 + inner_bytes)
    }

    fn taken(&mut self, bytes: u64) {
        self.get_mut().taken(bytes);
    }

    fn min_limit(&self) -> u64 {
        self.get_ref().min_limit()
    }

    fn properties(&self) -> CopyParams {
        self.get_ref().properties()
    }
}

impl<T: ?Sized + CopyWrite> CopyWrite for BufWriter<T> {
    fn properties(&self) -> CopyParams {
        self.get_ref().properties()
    }
}

fn fd_to_meta<T: AsRawFd>(fd: &T) -> FdMeta {
    let fd = fd.as_raw_fd();
    let file: ManuallyDrop<File> = ManuallyDrop::new(unsafe { File::from_raw_fd(fd) });
    match file.metadata() {
        Ok(meta) => FdMeta::Metadata(meta),
        Err(_) => FdMeta::NoneObtained,
    }
}

pub(super) enum CopyResult {
    Ended(u64),
    Error(Error, u64),
    Fallback(u64),
}

impl CopyResult {
    fn update_take(&self, reader: &mut impl CopyRead) {
        match *self {
            CopyResult::Fallback(bytes)
            | CopyResult::Ended(bytes)
            | CopyResult::Error(_, bytes) => reader.taken(bytes),
        }
    }
}

/// Invalid file descriptor.
///
/// Valid file descriptors are guaranteed to be positive numbers (see `open()` manpage)
/// while negative values are used to indicate errors.
/// Thus -1 will never be overlap with a valid open file.
const INVALID_FD: RawFd = -1;

/// Linux-specific implementation that will attempt to use copy_file_range for copy offloading.
/// As the name says, it only works on regular files.
///
/// Callers must handle fallback to a generic copy loop.
/// `Fallback` may indicate non-zero number of bytes already written
/// if one of the files' cursor +`max_len` would exceed u64::MAX (`EOVERFLOW`).
pub(super) fn copy_regular_files(reader: RawFd, writer: RawFd, max_len: u64) -> CopyResult {
    use crate::cmp;

    const NOT_PROBED: u8 = 0;
    const UNAVAILABLE: u8 = 1;
    const AVAILABLE: u8 = 2;

    // Kernel prior to 4.5 don't have copy_file_range
    // We store the availability in a global to avoid unnecessary syscalls
    static HAS_COPY_FILE_RANGE: AtomicU8 = AtomicU8::new(NOT_PROBED);

    let mut have_probed = match HAS_COPY_FILE_RANGE.load(Ordering::Relaxed) {
        NOT_PROBED => false,
        UNAVAILABLE => return CopyResult::Fallback(0),
        _ => true,
    };

    syscall! {
        fn copy_file_range(
            fd_in: libc::c_int,
            off_in: *mut libc::loff_t,
            fd_out: libc::c_int,
            off_out: *mut libc::loff_t,
            len: libc::size_t,
            flags: libc::c_uint
        ) -> libc::ssize_t
    }

    fn probe_copy_file_range_support() -> u8 {
        // In some cases, we cannot determine availability from the first
        // `copy_file_range` call. In this case, we probe with an invalid file
        // descriptor so that the results are easily interpretable.
        match unsafe {
            cvt(copy_file_range(INVALID_FD, ptr::null_mut(), INVALID_FD, ptr::null_mut(), 1, 0))
                .map_err(|e| e.raw_os_error())
        } {
            Err(Some(EPERM | ENOSYS)) => UNAVAILABLE,
            Err(Some(EBADF)) => AVAILABLE,
            Ok(_) => panic!("unexpected copy_file_range probe success"),
            // Treat other errors as the syscall
            // being unavailable.
            Err(_) => UNAVAILABLE,
        }
    }

    let mut written = 0u64;
    while written < max_len {
        let bytes_to_copy = cmp::min(max_len - written, usize::MAX as u64);
        // cap to 1GB chunks in case u64::MAX is passed as max_len and the file has a non-zero seek position
        // this allows us to copy large chunks without hitting EOVERFLOW,
        // unless someone sets a file offset close to u64::MAX - 1GB, in which case a fallback would be required
        let bytes_to_copy = cmp::min(bytes_to_copy as usize, 0x4000_0000usize);
        let copy_result = unsafe {
            // We actually don't have to adjust the offsets,
            // because copy_file_range adjusts the file offset automatically
            cvt(copy_file_range(reader, ptr::null_mut(), writer, ptr::null_mut(), bytes_to_copy, 0))
        };

        if !have_probed && copy_result.is_ok() {
            have_probed = true;
            HAS_COPY_FILE_RANGE.store(AVAILABLE, Ordering::Relaxed);
        }

        match copy_result {
            Ok(0) if written == 0 => {
                // fallback to work around several kernel bugs where copy_file_range will fail to
                // copy any bytes and return 0 instead of an error if
                // - reading virtual files from the proc filesystem which appear to have 0 size
                //   but are not empty. noted in coreutils to affect kernels at least up to 5.6.19.
                // - copying from an overlay filesystem in docker. reported to occur on fedora 32.
                return CopyResult::Fallback(0);
            }
            Ok(0) => return CopyResult::Ended(written), // reached EOF
            Ok(ret) => written += ret as u64,
            Err(err) => {
                return match err.raw_os_error() {
                    // when file offset + max_length > u64::MAX
                    Some(EOVERFLOW) => CopyResult::Fallback(written),
                    Some(raw_os_error @ (ENOSYS | EXDEV | EINVAL | EPERM | EOPNOTSUPP | EBADF))
                        if written == 0 =>
                    {
                        if !have_probed {
                            let available = if matches!(raw_os_error, ENOSYS | EOPNOTSUPP | EPERM) {
                                // EPERM can indicate seccomp filters or an
                                // immutable file. To distinguish these
                                // cases we probe with invalid file
                                // descriptors which should result in EBADF
                                // if the syscall is supported and EPERM or
                                // ENOSYS if it's not available.
                                //
                                // For EOPNOTSUPP, see below. In the case of
                                // ENOSYS, we try to cover for faulty FUSE
                                // drivers.
                                probe_copy_file_range_support()
                            } else {
                                AVAILABLE
                            };
                            HAS_COPY_FILE_RANGE.store(available, Ordering::Relaxed);
                        }

                        // Try fallback io::copy if either:
                        // - Kernel version is < 4.5 (ENOSYS¹)
                        // - Files are mounted on different fs (EXDEV)
                        // - copy_file_range is broken in various ways on RHEL/CentOS 7 (EOPNOTSUPP)
                        // - copy_file_range file is immutable or syscall is blocked by seccomp¹ (EPERM)
                        // - copy_file_range cannot be used with pipes or device nodes (EINVAL)
                        // - the writer fd was opened with O_APPEND (EBADF²)
                        // and no bytes were written successfully yet. (All these errnos should
                        // not be returned if something was already written, but they happen in
                        // the wild, see #91152.)
                        //
                        // ¹ these cases should be detected by the initial probe but we handle them here
                        //   anyway in case syscall interception changes during runtime
                        // ² actually invalid file descriptors would cause this too, but in that case
                        //   the fallback code path is expected to encounter the same error again
                        CopyResult::Fallback(0)
                    }
                    _ => CopyResult::Error(err, written),
                };
            }
        }
    }
    CopyResult::Ended(written)
}

#[derive(PartialEq)]
enum SpliceMode {
    Sendfile,
    Splice,
}

/// performs splice or sendfile between file descriptors
/// Does _not_ fall back to a generic copy loop.
fn sendfile_splice(mode: SpliceMode, reader: RawFd, writer: RawFd, len: u64) -> CopyResult {
    static HAS_SENDFILE: AtomicBool = AtomicBool::new(true);
    static HAS_SPLICE: AtomicBool = AtomicBool::new(true);

    // Android builds use feature level 14, but the libc wrapper for splice is
    // gated on feature level 21+, so we have to invoke the syscall directly.
    #[cfg(target_os = "android")]
    syscall! {
        fn splice(
            srcfd: libc::c_int,
            src_offset: *const i64,
            dstfd: libc::c_int,
            dst_offset: *const i64,
            len: libc::size_t,
            flags: libc::c_int
        ) -> libc::ssize_t
    }

    #[cfg(target_os = "linux")]
    use libc::splice;

    match mode {
        SpliceMode::Sendfile if !HAS_SENDFILE.load(Ordering::Relaxed) => {
            return CopyResult::Fallback(0);
        }
        SpliceMode::Splice if !HAS_SPLICE.load(Ordering::Relaxed) => {
            return CopyResult::Fallback(0);
        }
        _ => (),
    }

    let mut written = 0u64;
    while written < len {
        // according to its manpage that's the maximum size sendfile() will copy per invocation
        let chunk_size = crate::cmp::min(len - written, 0x7ffff000_u64) as usize;

        let result = match mode {
            SpliceMode::Sendfile => {
                cvt(unsafe { sendfile64(writer, reader, ptr::null_mut(), chunk_size) })
            }
            SpliceMode::Splice => cvt(unsafe {
                splice(reader, ptr::null_mut(), writer, ptr::null_mut(), chunk_size, 0)
            }),
        };

        match result {
            Ok(0) => break, // EOF
            Ok(ret) => written += ret as u64,
            Err(err) => {
                return match err.raw_os_error() {
                    Some(ENOSYS | EPERM) => {
                        // syscall not supported (ENOSYS)
                        // syscall is disallowed, e.g. by seccomp (EPERM)
                        match mode {
                            SpliceMode::Sendfile => HAS_SENDFILE.store(false, Ordering::Relaxed),
                            SpliceMode::Splice => HAS_SPLICE.store(false, Ordering::Relaxed),
                        }
                        assert_eq!(written, 0);
                        CopyResult::Fallback(0)
                    }
                    Some(EINVAL) => {
                        // splice/sendfile do not support this particular file descriptor (EINVAL)
                        assert_eq!(written, 0);
                        CopyResult::Fallback(0)
                    }
                    Some(os_err) if mode == SpliceMode::Sendfile && os_err == EOVERFLOW => {
                        CopyResult::Fallback(written)
                    }
                    _ => CopyResult::Error(err, written),
                };
            }
        }
    }
    CopyResult::Ended(written)
}