std/sys/pal/unix/kernel_copy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
//! This module contains specializations that can offload `io::copy()` operations on file descriptor
//! containing types (`File`, `TcpStream`, etc.) to more efficient syscalls than `read(2)` and `write(2)`.
//!
//! Specialization is only applied to wholly std-owned types so that user code can't observe
//! that the `Read` and `Write` traits are not used.
//!
//! Since a copy operation involves a reader and writer side where each can consist of different types
//! and also involve generic wrappers (e.g. `Take`, `BufReader`) it is not practical to specialize
//! a single method on all possible combinations.
//!
//! Instead readers and writers are handled separately by the `CopyRead` and `CopyWrite` specialization
//! traits and then specialized on by the `Copier::copy` method.
//!
//! `Copier` uses the specialization traits to unpack the underlying file descriptors and
//! additional prerequisites and constraints imposed by the wrapper types.
//!
//! Once it has obtained all necessary pieces and brought any wrapper types into a state where they
//! can be safely bypassed it will attempt to use the `copy_file_range(2)`,
//! `sendfile(2)` or `splice(2)` syscalls to move data directly between file descriptors.
//! Since those syscalls have requirements that cannot be fully checked in advance it attempts
//! to use them one after another (guided by hints) to figure out which one works and
//! falls back to the generic read-write copy loop if none of them does.
//! Once a working syscall is found for a pair of file descriptors it will be called in a loop
//! until the copy operation is completed.
//!
//! Advantages of using these syscalls:
//!
//! * fewer context switches since reads and writes are coalesced into a single syscall
//! and more bytes are transferred per syscall. This translates to higher throughput
//! and fewer CPU cycles, at least for sufficiently large transfers to amortize the initial probing.
//! * `copy_file_range` creates reflink copies on CoW filesystems, thus moving less data and
//! consuming less disk space
//! * `sendfile` and `splice` can perform zero-copy IO under some circumstances while
//! a naive copy loop would move every byte through the CPU.
//!
//! Drawbacks:
//!
//! * copy operations smaller than the default buffer size can under some circumstances, especially
//! on older kernels, incur more syscalls than the naive approach would. As mentioned above
//! the syscall selection is guided by hints to minimize this possibility but they are not perfect.
//! * optimizations only apply to std types. If a user adds a custom wrapper type, e.g. to report
//! progress, they can hit a performance cliff.
//! * complexity
#[cfg(not(any(all(target_os = "linux", target_env = "gnu"), target_os = "hurd")))]
use libc::sendfile as sendfile64;
#[cfg(any(all(target_os = "linux", target_env = "gnu"), target_os = "hurd"))]
use libc::sendfile64;
use libc::{EBADF, EINVAL, ENOSYS, EOPNOTSUPP, EOVERFLOW, EPERM, EXDEV};
use crate::cmp::min;
use crate::fs::{File, Metadata};
use crate::io::copy::generic_copy;
use crate::io::{
BufRead, BufReader, BufWriter, Error, Read, Result, StderrLock, StdinLock, StdoutLock, Take,
Write,
};
use crate::mem::ManuallyDrop;
use crate::net::TcpStream;
use crate::os::unix::fs::FileTypeExt;
use crate::os::unix::io::{AsRawFd, FromRawFd, RawFd};
use crate::os::unix::net::UnixStream;
use crate::pipe::{PipeReader, PipeWriter};
use crate::process::{ChildStderr, ChildStdin, ChildStdout};
use crate::ptr;
use crate::sync::atomic::{AtomicBool, AtomicU8, Ordering};
use crate::sys::cvt;
use crate::sys::weak::syscall;
#[cfg(test)]
mod tests;
pub(crate) fn copy_spec<R: Read + ?Sized, W: Write + ?Sized>(
read: &mut R,
write: &mut W,
) -> Result<u64> {
let copier = Copier { read, write };
SpecCopy::copy(copier)
}
/// This type represents either the inferred `FileType` of a `RawFd` based on the source
/// type from which it was extracted or the actual metadata
///
/// The methods on this type only provide hints, due to `AsRawFd` and `FromRawFd` the inferred
/// type may be wrong.
enum FdMeta {
Metadata(Metadata),
Socket,
Pipe,
/// We don't have any metadata because the stat syscall failed
NoneObtained,
}
#[derive(PartialEq)]
enum FdHandle {
Input,
Output,
}
impl FdMeta {
fn maybe_fifo(&self) -> bool {
match self {
FdMeta::Metadata(meta) => meta.file_type().is_fifo(),
FdMeta::Socket => false,
FdMeta::Pipe => true,
FdMeta::NoneObtained => true,
}
}
fn potential_sendfile_source(&self) -> bool {
match self {
// procfs erroneously shows 0 length on non-empty readable files.
// and if a file is truly empty then a `read` syscall will determine that and skip the write syscall
// thus there would be benefit from attempting sendfile
FdMeta::Metadata(meta)
if meta.file_type().is_file() && meta.len() > 0
|| meta.file_type().is_block_device() =>
{
true
}
_ => false,
}
}
fn copy_file_range_candidate(&self, f: FdHandle) -> bool {
match self {
// copy_file_range will fail on empty procfs files. `read` can determine whether EOF has been reached
// without extra cost and skip the write, thus there is no benefit in attempting copy_file_range
FdMeta::Metadata(meta) if f == FdHandle::Input && meta.is_file() && meta.len() > 0 => {
true
}
FdMeta::Metadata(meta) if f == FdHandle::Output && meta.is_file() => true,
_ => false,
}
}
}
/// Returns true either if changes made to the source after a sendfile/splice call won't become
/// visible in the sink or the source has explicitly opted into such behavior (e.g. by splicing
/// a file into a pipe, the pipe being the source in this case).
///
/// This will prevent File -> Pipe and File -> Socket splicing/sendfile optimizations to uphold
/// the Read/Write API semantics of io::copy.
///
/// Note: This is not 100% airtight, the caller can use the RawFd conversion methods to turn a
/// regular file into a TcpSocket which will be treated as a socket here without checking.
fn safe_kernel_copy(source: &FdMeta, sink: &FdMeta) -> bool {
match (source, sink) {
// Data arriving from a socket is safe because the sender can't modify the socket buffer.
// Data arriving from a pipe is safe(-ish) because either the sender *copied*
// the bytes into the pipe OR explicitly performed an operation that enables zero-copy,
// thus promising not to modify the data later.
(FdMeta::Socket, _) => true,
(FdMeta::Pipe, _) => true,
(FdMeta::Metadata(meta), _)
if meta.file_type().is_fifo() || meta.file_type().is_socket() =>
{
true
}
// Data going into non-pipes/non-sockets is safe because the "later changes may become visible" issue
// only happens for pages sitting in send buffers or pipes.
(_, FdMeta::Metadata(meta))
if !meta.file_type().is_fifo() && !meta.file_type().is_socket() =>
{
true
}
_ => false,
}
}
struct CopyParams(FdMeta, Option<RawFd>);
struct Copier<'a, 'b, R: Read + ?Sized, W: Write + ?Sized> {
read: &'a mut R,
write: &'b mut W,
}
trait SpecCopy {
fn copy(self) -> Result<u64>;
}
impl<R: Read + ?Sized, W: Write + ?Sized> SpecCopy for Copier<'_, '_, R, W> {
default fn copy(self) -> Result<u64> {
generic_copy(self.read, self.write)
}
}
impl<R: CopyRead, W: CopyWrite> SpecCopy for Copier<'_, '_, R, W> {
fn copy(self) -> Result<u64> {
let (reader, writer) = (self.read, self.write);
let r_cfg = reader.properties();
let w_cfg = writer.properties();
// before direct operations on file descriptors ensure that all source and sink buffers are empty
let mut flush = || -> crate::io::Result<u64> {
let bytes = reader.drain_to(writer, u64::MAX)?;
// BufWriter buffered bytes have already been accounted for in earlier write() calls
writer.flush()?;
Ok(bytes)
};
let mut written = 0u64;
if let (CopyParams(input_meta, Some(readfd)), CopyParams(output_meta, Some(writefd))) =
(r_cfg, w_cfg)
{
written += flush()?;
let max_write = reader.min_limit();
if input_meta.copy_file_range_candidate(FdHandle::Input)
&& output_meta.copy_file_range_candidate(FdHandle::Output)
{
let result = copy_regular_files(readfd, writefd, max_write);
result.update_take(reader);
match result {
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
CopyResult::Error(e, _) => return Err(e),
CopyResult::Fallback(bytes) => written += bytes,
}
}
// on modern kernels sendfile can copy from any mmapable type (some but not all regular files and block devices)
// to any writable file descriptor. On older kernels the writer side can only be a socket.
// So we just try and fallback if needed.
// If current file offsets + write sizes overflow it may also fail, we do not try to fix that and instead
// fall back to the generic copy loop.
if input_meta.potential_sendfile_source() && safe_kernel_copy(&input_meta, &output_meta)
{
let result = sendfile_splice(SpliceMode::Sendfile, readfd, writefd, max_write);
result.update_take(reader);
match result {
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
CopyResult::Error(e, _) => return Err(e),
CopyResult::Fallback(bytes) => written += bytes,
}
}
if (input_meta.maybe_fifo() || output_meta.maybe_fifo())
&& safe_kernel_copy(&input_meta, &output_meta)
{
let result = sendfile_splice(SpliceMode::Splice, readfd, writefd, max_write);
result.update_take(reader);
match result {
CopyResult::Ended(bytes_copied) => return Ok(bytes_copied + written),
CopyResult::Error(e, _) => return Err(e),
CopyResult::Fallback(0) => { /* use the fallback below */ }
CopyResult::Fallback(_) => {
unreachable!("splice should not return > 0 bytes on the fallback path")
}
}
}
}
// fallback if none of the more specialized syscalls wants to work with these file descriptors
match generic_copy(reader, writer) {
Ok(bytes) => Ok(bytes + written),
err => err,
}
}
}
#[rustc_specialization_trait]
trait CopyRead: Read {
/// Implementations that contain buffers (i.e. `BufReader`) must transfer data from their internal
/// buffers into `writer` until either the buffers are emptied or `limit` bytes have been
/// transferred, whichever occurs sooner.
/// If nested buffers are present the outer buffers must be drained first.
///
/// This is necessary to directly bypass the wrapper types while preserving the data order
/// when operating directly on the underlying file descriptors.
fn drain_to<W: Write>(&mut self, _writer: &mut W, _limit: u64) -> Result<u64> {
Ok(0)
}
/// Updates `Take` wrappers to remove the number of bytes copied.
fn taken(&mut self, _bytes: u64) {}
/// The minimum of the limit of all `Take<_>` wrappers, `u64::MAX` otherwise.
/// This method does not account for data `BufReader` buffers and would underreport
/// the limit of a `Take<BufReader<Take<_>>>` type. Thus its result is only valid
/// after draining the buffers via `drain_to`.
fn min_limit(&self) -> u64 {
u64::MAX
}
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
fn properties(&self) -> CopyParams;
}
#[rustc_specialization_trait]
trait CopyWrite: Write {
/// Extracts the file descriptor and hints/metadata, delegating through wrappers if necessary.
fn properties(&self) -> CopyParams;
}
impl<T> CopyRead for &mut T
where
T: CopyRead,
{
fn drain_to<W: Write>(&mut self, writer: &mut W, limit: u64) -> Result<u64> {
(**self).drain_to(writer, limit)
}
fn taken(&mut self, bytes: u64) {
(**self).taken(bytes);
}
fn min_limit(&self) -> u64 {
(**self).min_limit()
}
fn properties(&self) -> CopyParams {
(**self).properties()
}
}
impl<T> CopyWrite for &mut T
where
T: CopyWrite,
{
fn properties(&self) -> CopyParams {
(**self).properties()
}
}
impl CopyRead for File {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
}
}
impl CopyRead for &File {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
}
}
impl CopyWrite for File {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
}
}
impl CopyWrite for &File {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(*self), Some(self.as_raw_fd()))
}
}
impl CopyRead for TcpStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyRead for &TcpStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyWrite for TcpStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyWrite for &TcpStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyRead for UnixStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyRead for &UnixStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyWrite for UnixStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyWrite for &UnixStream {
fn properties(&self) -> CopyParams {
// avoid the stat syscall since we can be fairly sure it's a socket
CopyParams(FdMeta::Socket, Some(self.as_raw_fd()))
}
}
impl CopyRead for PipeReader {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyRead for &PipeReader {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyWrite for PipeWriter {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyWrite for &PipeWriter {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyWrite for ChildStdin {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyRead for ChildStdout {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyRead for ChildStderr {
fn properties(&self) -> CopyParams {
CopyParams(FdMeta::Pipe, Some(self.as_raw_fd()))
}
}
impl CopyRead for StdinLock<'_> {
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
let buf_reader = self.as_mut_buf();
let buf = buf_reader.buffer();
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
let bytes_drained = buf.len();
writer.write_all(buf)?;
buf_reader.consume(bytes_drained);
Ok(bytes_drained as u64)
}
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
}
}
impl CopyWrite for StdoutLock<'_> {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
}
}
impl CopyWrite for StderrLock<'_> {
fn properties(&self) -> CopyParams {
CopyParams(fd_to_meta(self), Some(self.as_raw_fd()))
}
}
impl<T: CopyRead> CopyRead for Take<T> {
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
let local_limit = self.limit();
let combined_limit = min(outer_limit, local_limit);
let bytes_drained = self.get_mut().drain_to(writer, combined_limit)?;
// update limit since read() was bypassed
self.set_limit(local_limit - bytes_drained);
Ok(bytes_drained)
}
fn taken(&mut self, bytes: u64) {
self.set_limit(self.limit() - bytes);
self.get_mut().taken(bytes);
}
fn min_limit(&self) -> u64 {
min(Take::limit(self), self.get_ref().min_limit())
}
fn properties(&self) -> CopyParams {
self.get_ref().properties()
}
}
impl<T: ?Sized + CopyRead> CopyRead for BufReader<T> {
fn drain_to<W: Write>(&mut self, writer: &mut W, outer_limit: u64) -> Result<u64> {
let buf = self.buffer();
let buf = &buf[0..min(buf.len(), outer_limit.try_into().unwrap_or(usize::MAX))];
let bytes = buf.len();
writer.write_all(buf)?;
self.consume(bytes);
let remaining = outer_limit - bytes as u64;
// in case of nested bufreaders we also need to drain the ones closer to the source
let inner_bytes = self.get_mut().drain_to(writer, remaining)?;
Ok(bytes as u64 + inner_bytes)
}
fn taken(&mut self, bytes: u64) {
self.get_mut().taken(bytes);
}
fn min_limit(&self) -> u64 {
self.get_ref().min_limit()
}
fn properties(&self) -> CopyParams {
self.get_ref().properties()
}
}
impl<T: ?Sized + CopyWrite> CopyWrite for BufWriter<T> {
fn properties(&self) -> CopyParams {
self.get_ref().properties()
}
}
fn fd_to_meta<T: AsRawFd>(fd: &T) -> FdMeta {
let fd = fd.as_raw_fd();
let file: ManuallyDrop<File> = ManuallyDrop::new(unsafe { File::from_raw_fd(fd) });
match file.metadata() {
Ok(meta) => FdMeta::Metadata(meta),
Err(_) => FdMeta::NoneObtained,
}
}
pub(super) enum CopyResult {
Ended(u64),
Error(Error, u64),
Fallback(u64),
}
impl CopyResult {
fn update_take(&self, reader: &mut impl CopyRead) {
match *self {
CopyResult::Fallback(bytes)
| CopyResult::Ended(bytes)
| CopyResult::Error(_, bytes) => reader.taken(bytes),
}
}
}
/// Invalid file descriptor.
///
/// Valid file descriptors are guaranteed to be positive numbers (see `open()` manpage)
/// while negative values are used to indicate errors.
/// Thus -1 will never be overlap with a valid open file.
const INVALID_FD: RawFd = -1;
/// Linux-specific implementation that will attempt to use copy_file_range for copy offloading.
/// As the name says, it only works on regular files.
///
/// Callers must handle fallback to a generic copy loop.
/// `Fallback` may indicate non-zero number of bytes already written
/// if one of the files' cursor +`max_len` would exceed u64::MAX (`EOVERFLOW`).
pub(super) fn copy_regular_files(reader: RawFd, writer: RawFd, max_len: u64) -> CopyResult {
use crate::cmp;
const NOT_PROBED: u8 = 0;
const UNAVAILABLE: u8 = 1;
const AVAILABLE: u8 = 2;
// Kernel prior to 4.5 don't have copy_file_range
// We store the availability in a global to avoid unnecessary syscalls
static HAS_COPY_FILE_RANGE: AtomicU8 = AtomicU8::new(NOT_PROBED);
let mut have_probed = match HAS_COPY_FILE_RANGE.load(Ordering::Relaxed) {
NOT_PROBED => false,
UNAVAILABLE => return CopyResult::Fallback(0),
_ => true,
};
syscall! {
fn copy_file_range(
fd_in: libc::c_int,
off_in: *mut libc::loff_t,
fd_out: libc::c_int,
off_out: *mut libc::loff_t,
len: libc::size_t,
flags: libc::c_uint
) -> libc::ssize_t
}
fn probe_copy_file_range_support() -> u8 {
// In some cases, we cannot determine availability from the first
// `copy_file_range` call. In this case, we probe with an invalid file
// descriptor so that the results are easily interpretable.
match unsafe {
cvt(copy_file_range(INVALID_FD, ptr::null_mut(), INVALID_FD, ptr::null_mut(), 1, 0))
.map_err(|e| e.raw_os_error())
} {
Err(Some(EPERM | ENOSYS)) => UNAVAILABLE,
Err(Some(EBADF)) => AVAILABLE,
Ok(_) => panic!("unexpected copy_file_range probe success"),
// Treat other errors as the syscall
// being unavailable.
Err(_) => UNAVAILABLE,
}
}
let mut written = 0u64;
while written < max_len {
let bytes_to_copy = cmp::min(max_len - written, usize::MAX as u64);
// cap to 1GB chunks in case u64::MAX is passed as max_len and the file has a non-zero seek position
// this allows us to copy large chunks without hitting EOVERFLOW,
// unless someone sets a file offset close to u64::MAX - 1GB, in which case a fallback would be required
let bytes_to_copy = cmp::min(bytes_to_copy as usize, 0x4000_0000usize);
let copy_result = unsafe {
// We actually don't have to adjust the offsets,
// because copy_file_range adjusts the file offset automatically
cvt(copy_file_range(reader, ptr::null_mut(), writer, ptr::null_mut(), bytes_to_copy, 0))
};
if !have_probed && copy_result.is_ok() {
have_probed = true;
HAS_COPY_FILE_RANGE.store(AVAILABLE, Ordering::Relaxed);
}
match copy_result {
Ok(0) if written == 0 => {
// fallback to work around several kernel bugs where copy_file_range will fail to
// copy any bytes and return 0 instead of an error if
// - reading virtual files from the proc filesystem which appear to have 0 size
// but are not empty. noted in coreutils to affect kernels at least up to 5.6.19.
// - copying from an overlay filesystem in docker. reported to occur on fedora 32.
return CopyResult::Fallback(0);
}
Ok(0) => return CopyResult::Ended(written), // reached EOF
Ok(ret) => written += ret as u64,
Err(err) => {
return match err.raw_os_error() {
// when file offset + max_length > u64::MAX
Some(EOVERFLOW) => CopyResult::Fallback(written),
Some(raw_os_error @ (ENOSYS | EXDEV | EINVAL | EPERM | EOPNOTSUPP | EBADF))
if written == 0 =>
{
if !have_probed {
let available = if matches!(raw_os_error, ENOSYS | EOPNOTSUPP | EPERM) {
// EPERM can indicate seccomp filters or an
// immutable file. To distinguish these
// cases we probe with invalid file
// descriptors which should result in EBADF
// if the syscall is supported and EPERM or
// ENOSYS if it's not available.
//
// For EOPNOTSUPP, see below. In the case of
// ENOSYS, we try to cover for faulty FUSE
// drivers.
probe_copy_file_range_support()
} else {
AVAILABLE
};
HAS_COPY_FILE_RANGE.store(available, Ordering::Relaxed);
}
// Try fallback io::copy if either:
// - Kernel version is < 4.5 (ENOSYS¹)
// - Files are mounted on different fs (EXDEV)
// - copy_file_range is broken in various ways on RHEL/CentOS 7 (EOPNOTSUPP)
// - copy_file_range file is immutable or syscall is blocked by seccomp¹ (EPERM)
// - copy_file_range cannot be used with pipes or device nodes (EINVAL)
// - the writer fd was opened with O_APPEND (EBADF²)
// and no bytes were written successfully yet. (All these errnos should
// not be returned if something was already written, but they happen in
// the wild, see #91152.)
//
// ¹ these cases should be detected by the initial probe but we handle them here
// anyway in case syscall interception changes during runtime
// ² actually invalid file descriptors would cause this too, but in that case
// the fallback code path is expected to encounter the same error again
CopyResult::Fallback(0)
}
_ => CopyResult::Error(err, written),
};
}
}
}
CopyResult::Ended(written)
}
#[derive(PartialEq)]
enum SpliceMode {
Sendfile,
Splice,
}
/// performs splice or sendfile between file descriptors
/// Does _not_ fall back to a generic copy loop.
fn sendfile_splice(mode: SpliceMode, reader: RawFd, writer: RawFd, len: u64) -> CopyResult {
static HAS_SENDFILE: AtomicBool = AtomicBool::new(true);
static HAS_SPLICE: AtomicBool = AtomicBool::new(true);
// Android builds use feature level 14, but the libc wrapper for splice is
// gated on feature level 21+, so we have to invoke the syscall directly.
#[cfg(target_os = "android")]
syscall! {
fn splice(
srcfd: libc::c_int,
src_offset: *const i64,
dstfd: libc::c_int,
dst_offset: *const i64,
len: libc::size_t,
flags: libc::c_int
) -> libc::ssize_t
}
#[cfg(target_os = "linux")]
use libc::splice;
match mode {
SpliceMode::Sendfile if !HAS_SENDFILE.load(Ordering::Relaxed) => {
return CopyResult::Fallback(0);
}
SpliceMode::Splice if !HAS_SPLICE.load(Ordering::Relaxed) => {
return CopyResult::Fallback(0);
}
_ => (),
}
let mut written = 0u64;
while written < len {
// according to its manpage that's the maximum size sendfile() will copy per invocation
let chunk_size = crate::cmp::min(len - written, 0x7ffff000_u64) as usize;
let result = match mode {
SpliceMode::Sendfile => {
cvt(unsafe { sendfile64(writer, reader, ptr::null_mut(), chunk_size) })
}
SpliceMode::Splice => cvt(unsafe {
splice(reader, ptr::null_mut(), writer, ptr::null_mut(), chunk_size, 0)
}),
};
match result {
Ok(0) => break, // EOF
Ok(ret) => written += ret as u64,
Err(err) => {
return match err.raw_os_error() {
Some(ENOSYS | EPERM) => {
// syscall not supported (ENOSYS)
// syscall is disallowed, e.g. by seccomp (EPERM)
match mode {
SpliceMode::Sendfile => HAS_SENDFILE.store(false, Ordering::Relaxed),
SpliceMode::Splice => HAS_SPLICE.store(false, Ordering::Relaxed),
}
assert_eq!(written, 0);
CopyResult::Fallback(0)
}
Some(EINVAL) => {
// splice/sendfile do not support this particular file descriptor (EINVAL)
assert_eq!(written, 0);
CopyResult::Fallback(0)
}
Some(os_err) if mode == SpliceMode::Sendfile && os_err == EOVERFLOW => {
CopyResult::Fallback(written)
}
_ => CopyResult::Error(err, written),
};
}
}
}
CopyResult::Ended(written)
}