core/iter/adapters/
filter.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
use core::array;
use core::mem::MaybeUninit;
use core::ops::ControlFlow;

use crate::fmt;
use crate::iter::adapters::SourceIter;
use crate::iter::{FusedIterator, InPlaceIterable, TrustedFused};
use crate::num::NonZero;
use crate::ops::Try;

/// An iterator that filters the elements of `iter` with `predicate`.
///
/// This `struct` is created by the [`filter`] method on [`Iterator`]. See its
/// documentation for more.
///
/// [`filter`]: Iterator::filter
/// [`Iterator`]: trait.Iterator.html
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct Filter<I, P> {
    // Used for `SplitWhitespace` and `SplitAsciiWhitespace` `as_str` methods
    pub(crate) iter: I,
    predicate: P,
}
impl<I, P> Filter<I, P> {
    pub(in crate::iter) fn new(iter: I, predicate: P) -> Filter<I, P> {
        Filter { iter, predicate }
    }
}

impl<I, P> Filter<I, P>
where
    I: Iterator,
    P: FnMut(&I::Item) -> bool,
{
    #[inline]
    fn next_chunk_dropless<const N: usize>(
        &mut self,
    ) -> Result<[I::Item; N], array::IntoIter<I::Item, N>> {
        let mut array: [MaybeUninit<I::Item>; N] = [const { MaybeUninit::uninit() }; N];
        let mut initialized = 0;

        let result = self.iter.try_for_each(|element| {
            let idx = initialized;
            // branchless index update combined with unconditionally copying the value even when
            // it is filtered reduces branching and dependencies in the loop.
            initialized = idx + (self.predicate)(&element) as usize;
            // SAFETY: Loop conditions ensure the index is in bounds.
            unsafe { array.get_unchecked_mut(idx) }.write(element);

            if initialized < N { ControlFlow::Continue(()) } else { ControlFlow::Break(()) }
        });

        match result {
            ControlFlow::Break(()) => {
                // SAFETY: The loop above is only explicitly broken when the array has been fully initialized
                Ok(unsafe { MaybeUninit::array_assume_init(array) })
            }
            ControlFlow::Continue(()) => {
                // SAFETY: The range is in bounds since the loop breaks when reaching N elements.
                Err(unsafe { array::IntoIter::new_unchecked(array, 0..initialized) })
            }
        }
    }
}

#[stable(feature = "core_impl_debug", since = "1.9.0")]
impl<I: fmt::Debug, P> fmt::Debug for Filter<I, P> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Filter").field("iter", &self.iter).finish()
    }
}

fn filter_fold<T, Acc>(
    mut predicate: impl FnMut(&T) -> bool,
    mut fold: impl FnMut(Acc, T) -> Acc,
) -> impl FnMut(Acc, T) -> Acc {
    move |acc, item| if predicate(&item) { fold(acc, item) } else { acc }
}

fn filter_try_fold<'a, T, Acc, R: Try<Output = Acc>>(
    predicate: &'a mut impl FnMut(&T) -> bool,
    mut fold: impl FnMut(Acc, T) -> R + 'a,
) -> impl FnMut(Acc, T) -> R + 'a {
    move |acc, item| if predicate(&item) { fold(acc, item) } else { try { acc } }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator, P> Iterator for Filter<I, P>
where
    P: FnMut(&I::Item) -> bool,
{
    type Item = I::Item;

    #[inline]
    fn next(&mut self) -> Option<I::Item> {
        self.iter.find(&mut self.predicate)
    }

    #[inline]
    fn next_chunk<const N: usize>(
        &mut self,
    ) -> Result<[Self::Item; N], array::IntoIter<Self::Item, N>> {
        // avoid codegen for the dead branch
        let fun = const {
            if crate::mem::needs_drop::<I::Item>() {
                array::iter_next_chunk::<I::Item, N>
            } else {
                Self::next_chunk_dropless::<N>
            }
        };

        fun(self)
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let (_, upper) = self.iter.size_hint();
        (0, upper) // can't know a lower bound, due to the predicate
    }

    // this special case allows the compiler to make `.filter(_).count()`
    // branchless. Barring perfect branch prediction (which is unattainable in
    // the general case), this will be much faster in >90% of cases (containing
    // virtually all real workloads) and only a tiny bit slower in the rest.
    //
    // Having this specialization thus allows us to write `.filter(p).count()`
    // where we would otherwise write `.map(|x| p(x) as usize).sum()`, which is
    // less readable and also less backwards-compatible to Rust before 1.10.
    //
    // Using the branchless version will also simplify the LLVM byte code, thus
    // leaving more budget for LLVM optimizations.
    #[inline]
    fn count(self) -> usize {
        #[inline]
        fn to_usize<T>(mut predicate: impl FnMut(&T) -> bool) -> impl FnMut(T) -> usize {
            move |x| predicate(&x) as usize
        }

        self.iter.map(to_usize(self.predicate)).sum()
    }

    #[inline]
    fn try_fold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
    where
        Self: Sized,
        Fold: FnMut(Acc, Self::Item) -> R,
        R: Try<Output = Acc>,
    {
        self.iter.try_fold(init, filter_try_fold(&mut self.predicate, fold))
    }

    #[inline]
    fn fold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        self.iter.fold(init, filter_fold(self.predicate, fold))
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: DoubleEndedIterator, P> DoubleEndedIterator for Filter<I, P>
where
    P: FnMut(&I::Item) -> bool,
{
    #[inline]
    fn next_back(&mut self) -> Option<I::Item> {
        self.iter.rfind(&mut self.predicate)
    }

    #[inline]
    fn try_rfold<Acc, Fold, R>(&mut self, init: Acc, fold: Fold) -> R
    where
        Self: Sized,
        Fold: FnMut(Acc, Self::Item) -> R,
        R: Try<Output = Acc>,
    {
        self.iter.try_rfold(init, filter_try_fold(&mut self.predicate, fold))
    }

    #[inline]
    fn rfold<Acc, Fold>(self, init: Acc, fold: Fold) -> Acc
    where
        Fold: FnMut(Acc, Self::Item) -> Acc,
    {
        self.iter.rfold(init, filter_fold(self.predicate, fold))
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<I: FusedIterator, P> FusedIterator for Filter<I, P> where P: FnMut(&I::Item) -> bool {}

#[unstable(issue = "none", feature = "trusted_fused")]
unsafe impl<I: TrustedFused, F> TrustedFused for Filter<I, F> {}

#[unstable(issue = "none", feature = "inplace_iteration")]
unsafe impl<P, I> SourceIter for Filter<I, P>
where
    I: SourceIter,
{
    type Source = I::Source;

    #[inline]
    unsafe fn as_inner(&mut self) -> &mut I::Source {
        // SAFETY: unsafe function forwarding to unsafe function with the same requirements
        unsafe { SourceIter::as_inner(&mut self.iter) }
    }
}

#[unstable(issue = "none", feature = "inplace_iteration")]
unsafe impl<I: InPlaceIterable, P> InPlaceIterable for Filter<I, P> {
    const EXPAND_BY: Option<NonZero<usize>> = I::EXPAND_BY;
    const MERGE_BY: Option<NonZero<usize>> = I::MERGE_BY;
}