1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846
// This is an attempt at an implementation following the ideal
//
// ```
// struct BTreeMap<K, V> {
// height: usize,
// root: Option<Box<Node<K, V, height>>>
// }
//
// struct Node<K, V, height: usize> {
// keys: [K; 2 * B - 1],
// vals: [V; 2 * B - 1],
// edges: [if height > 0 { Box<Node<K, V, height - 1>> } else { () }; 2 * B],
// parent: Option<(NonNull<Node<K, V, height + 1>>, u16)>,
// len: u16,
// }
// ```
//
// Since Rust doesn't actually have dependent types and polymorphic recursion,
// we make do with lots of unsafety.
// A major goal of this module is to avoid complexity by treating the tree as a generic (if
// weirdly shaped) container and avoiding dealing with most of the B-Tree invariants. As such,
// this module doesn't care whether the entries are sorted, which nodes can be underfull, or
// even what underfull means. However, we do rely on a few invariants:
//
// - Trees must have uniform depth/height. This means that every path down to a leaf from a
// given node has exactly the same length.
// - A node of length `n` has `n` keys, `n` values, and `n + 1` edges.
// This implies that even an empty node has at least one edge.
// For a leaf node, "having an edge" only means we can identify a position in the node,
// since leaf edges are empty and need no data representation. In an internal node,
// an edge both identifies a position and contains a pointer to a child node.
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
use core::ptr::{self, NonNull};
use core::slice::SliceIndex;
use crate::alloc::{Allocator, Layout};
use crate::boxed::Box;
const B: usize = 6;
pub const CAPACITY: usize = 2 * B - 1;
pub const MIN_LEN_AFTER_SPLIT: usize = B - 1;
const KV_IDX_CENTER: usize = B - 1;
const EDGE_IDX_LEFT_OF_CENTER: usize = B - 1;
const EDGE_IDX_RIGHT_OF_CENTER: usize = B;
/// The underlying representation of leaf nodes and part of the representation of internal nodes.
struct LeafNode<K, V> {
/// We want to be covariant in `K` and `V`.
parent: Option<NonNull<InternalNode<K, V>>>,
/// This node's index into the parent node's `edges` array.
/// `*node.parent.edges[node.parent_idx]` should be the same thing as `node`.
/// This is only guaranteed to be initialized when `parent` is non-null.
parent_idx: MaybeUninit<u16>,
/// The number of keys and values this node stores.
len: u16,
/// The arrays storing the actual data of the node. Only the first `len` elements of each
/// array are initialized and valid.
keys: [MaybeUninit<K>; CAPACITY],
vals: [MaybeUninit<V>; CAPACITY],
}
impl<K, V> LeafNode<K, V> {
/// Initializes a new `LeafNode` in-place.
unsafe fn init(this: *mut Self) {
// As a general policy, we leave fields uninitialized if they can be, as this should
// be both slightly faster and easier to track in Valgrind.
unsafe {
// parent_idx, keys, and vals are all MaybeUninit
ptr::addr_of_mut!((*this).parent).write(None);
ptr::addr_of_mut!((*this).len).write(0);
}
}
/// Creates a new boxed `LeafNode`.
fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
unsafe {
let mut leaf = Box::new_uninit_in(alloc);
LeafNode::init(leaf.as_mut_ptr());
leaf.assume_init()
}
}
}
/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
/// `InternalNode` can be directly cast to a pointer to the underlying `LeafNode` portion of the
/// node, allowing code to act on leaf and internal nodes generically without having to even check
/// which of the two a pointer is pointing at. This property is enabled by the use of `repr(C)`.
#[repr(C)]
// gdb_providers.py uses this type name for introspection.
struct InternalNode<K, V> {
data: LeafNode<K, V>,
/// The pointers to the children of this node. `len + 1` of these are considered
/// initialized and valid, except that near the end, while the tree is held
/// through borrow type `Dying`, some of these pointers are dangling.
edges: [MaybeUninit<BoxedNode<K, V>>; 2 * B],
}
impl<K, V> InternalNode<K, V> {
/// Creates a new boxed `InternalNode`.
///
/// # Safety
/// An invariant of internal nodes is that they have at least one
/// initialized and valid edge. This function does not set up
/// such an edge.
unsafe fn new<A: Allocator + Clone>(alloc: A) -> Box<Self, A> {
unsafe {
let mut node = Box::<Self, _>::new_uninit_in(alloc);
// We only need to initialize the data; the edges are MaybeUninit.
LeafNode::init(ptr::addr_of_mut!((*node.as_mut_ptr()).data));
node.assume_init()
}
}
}
/// A managed, non-null pointer to a node. This is either an owned pointer to
/// `LeafNode<K, V>` or an owned pointer to `InternalNode<K, V>`.
///
/// However, `BoxedNode` contains no information as to which of the two types
/// of nodes it actually contains, and, partially due to this lack of information,
/// is not a separate type and has no destructor.
type BoxedNode<K, V> = NonNull<LeafNode<K, V>>;
// N.B. `NodeRef` is always covariant in `K` and `V`, even when the `BorrowType`
// is `Mut`. This is technically wrong, but cannot result in any unsafety due to
// internal use of `NodeRef` because we stay completely generic over `K` and `V`.
// However, whenever a public type wraps `NodeRef`, make sure that it has the
// correct variance.
///
/// A reference to a node.
///
/// This type has a number of parameters that controls how it acts:
/// - `BorrowType`: A dummy type that describes the kind of borrow and carries a lifetime.
/// - When this is `Immut<'a>`, the `NodeRef` acts roughly like `&'a Node`.
/// - When this is `ValMut<'a>`, the `NodeRef` acts roughly like `&'a Node`
/// with respect to keys and tree structure, but also allows many
/// mutable references to values throughout the tree to coexist.
/// - When this is `Mut<'a>`, the `NodeRef` acts roughly like `&'a mut Node`,
/// although insert methods allow a mutable pointer to a value to coexist.
/// - When this is `Owned`, the `NodeRef` acts roughly like `Box<Node>`,
/// but does not have a destructor, and must be cleaned up manually.
/// - When this is `Dying`, the `NodeRef` still acts roughly like `Box<Node>`,
/// but has methods to destroy the tree bit by bit, and ordinary methods,
/// while not marked as unsafe to call, can invoke UB if called incorrectly.
/// Since any `NodeRef` allows navigating through the tree, `BorrowType`
/// effectively applies to the entire tree, not just to the node itself.
/// - `K` and `V`: These are the types of keys and values stored in the nodes.
/// - `Type`: This can be `Leaf`, `Internal`, or `LeafOrInternal`. When this is
/// `Leaf`, the `NodeRef` points to a leaf node, when this is `Internal` the
/// `NodeRef` points to an internal node, and when this is `LeafOrInternal` the
/// `NodeRef` could be pointing to either type of node.
/// `Type` is named `NodeType` when used outside `NodeRef`.
///
/// Both `BorrowType` and `NodeType` restrict what methods we implement, to
/// exploit static type safety. There are limitations in the way we can apply
/// such restrictions:
/// - For each type parameter, we can only define a method either generically
/// or for one particular type. For example, we cannot define a method like
/// `into_kv` generically for all `BorrowType`, or once for all types that
/// carry a lifetime, because we want it to return `&'a` references.
/// Therefore, we define it only for the least powerful type `Immut<'a>`.
/// - We cannot get implicit coercion from say `Mut<'a>` to `Immut<'a>`.
/// Therefore, we have to explicitly call `reborrow` on a more powerful
/// `NodeRef` in order to reach a method like `into_kv`.
///
/// All methods on `NodeRef` that return some kind of reference, either:
/// - Take `self` by value, and return the lifetime carried by `BorrowType`.
/// Sometimes, to invoke such a method, we need to call `reborrow_mut`.
/// - Take `self` by reference, and (implicitly) return that reference's
/// lifetime, instead of the lifetime carried by `BorrowType`. That way,
/// the borrow checker guarantees that the `NodeRef` remains borrowed as long
/// as the returned reference is used.
/// The methods supporting insert bend this rule by returning a raw pointer,
/// i.e., a reference without any lifetime.
pub struct NodeRef<BorrowType, K, V, Type> {
/// The number of levels that the node and the level of leaves are apart, a
/// constant of the node that cannot be entirely described by `Type`, and that
/// the node itself does not store. We only need to store the height of the root
/// node, and derive every other node's height from it.
/// Must be zero if `Type` is `Leaf` and non-zero if `Type` is `Internal`.
height: usize,
/// The pointer to the leaf or internal node. The definition of `InternalNode`
/// ensures that the pointer is valid either way.
node: NonNull<LeafNode<K, V>>,
_marker: PhantomData<(BorrowType, Type)>,
}
/// The root node of an owned tree.
///
/// Note that this does not have a destructor, and must be cleaned up manually.
pub type Root<K, V> = NodeRef<marker::Owned, K, V, marker::LeafOrInternal>;
impl<'a, K: 'a, V: 'a, Type> Copy for NodeRef<marker::Immut<'a>, K, V, Type> {}
impl<'a, K: 'a, V: 'a, Type> Clone for NodeRef<marker::Immut<'a>, K, V, Type> {
fn clone(&self) -> Self {
*self
}
}
unsafe impl<BorrowType, K: Sync, V: Sync, Type> Sync for NodeRef<BorrowType, K, V, Type> {}
unsafe impl<K: Sync, V: Sync, Type> Send for NodeRef<marker::Immut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Mut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::ValMut<'_>, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Owned, K, V, Type> {}
unsafe impl<K: Send, V: Send, Type> Send for NodeRef<marker::Dying, K, V, Type> {}
impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
pub fn new_leaf<A: Allocator + Clone>(alloc: A) -> Self {
Self::from_new_leaf(LeafNode::new(alloc))
}
fn from_new_leaf<A: Allocator + Clone>(leaf: Box<LeafNode<K, V>, A>) -> Self {
NodeRef { height: 0, node: NonNull::from(Box::leak(leaf)), _marker: PhantomData }
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::Internal> {
fn new_internal<A: Allocator + Clone>(child: Root<K, V>, alloc: A) -> Self {
let mut new_node = unsafe { InternalNode::new(alloc) };
new_node.edges[0].write(child.node);
unsafe { NodeRef::from_new_internal(new_node, child.height + 1) }
}
/// # Safety
/// `height` must not be zero.
unsafe fn from_new_internal<A: Allocator + Clone>(
internal: Box<InternalNode<K, V>, A>,
height: usize,
) -> Self {
debug_assert!(height > 0);
let node = NonNull::from(Box::leak(internal)).cast();
let mut this = NodeRef { height, node, _marker: PhantomData };
this.borrow_mut().correct_all_childrens_parent_links();
this
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Unpack a node reference that was packed as `NodeRef::parent`.
fn from_internal(node: NonNull<InternalNode<K, V>>, height: usize) -> Self {
debug_assert!(height > 0);
NodeRef { height, node: node.cast(), _marker: PhantomData }
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Exposes the data of an internal node.
///
/// Returns a raw ptr to avoid invalidating other references to this node.
fn as_internal_ptr(this: &Self) -> *mut InternalNode<K, V> {
// SAFETY: the static node type is `Internal`.
this.node.as_ptr() as *mut InternalNode<K, V>
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Borrows exclusive access to the data of an internal node.
fn as_internal_mut(&mut self) -> &mut InternalNode<K, V> {
let ptr = Self::as_internal_ptr(self);
unsafe { &mut *ptr }
}
}
impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Finds the length of the node. This is the number of keys or values.
/// The number of edges is `len() + 1`.
/// Note that, despite being safe, calling this function can have the side effect
/// of invalidating mutable references that unsafe code has created.
pub fn len(&self) -> usize {
// Crucially, we only access the `len` field here. If BorrowType is marker::ValMut,
// there might be outstanding mutable references to values that we must not invalidate.
unsafe { usize::from((*Self::as_leaf_ptr(self)).len) }
}
/// Returns the number of levels that the node and leaves are apart. Zero
/// height means the node is a leaf itself. If you picture trees with the
/// root on top, the number says at which elevation the node appears.
/// If you picture trees with leaves on top, the number says how high
/// the tree extends above the node.
pub fn height(&self) -> usize {
self.height
}
/// Temporarily takes out another, immutable reference to the same node.
pub fn reborrow(&self) -> NodeRef<marker::Immut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Exposes the leaf portion of any leaf or internal node.
///
/// Returns a raw ptr to avoid invalidating other references to this node.
fn as_leaf_ptr(this: &Self) -> *mut LeafNode<K, V> {
// The node must be valid for at least the LeafNode portion.
// This is not a reference in the NodeRef type because we don't know if
// it should be unique or shared.
this.node.as_ptr()
}
}
impl<BorrowType: marker::BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Finds the parent of the current node. Returns `Ok(handle)` if the current
/// node actually has a parent, where `handle` points to the edge of the parent
/// that points to the current node. Returns `Err(self)` if the current node has
/// no parent, giving back the original `NodeRef`.
///
/// The method name assumes you picture trees with the root node on top.
///
/// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
/// both, upon success, do nothing.
pub fn ascend(
self,
) -> Result<Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>, Self> {
const {
assert!(BorrowType::TRAVERSAL_PERMIT);
}
// We need to use raw pointers to nodes because, if BorrowType is marker::ValMut,
// there might be outstanding mutable references to values that we must not invalidate.
let leaf_ptr: *const _ = Self::as_leaf_ptr(&self);
unsafe { (*leaf_ptr).parent }
.as_ref()
.map(|parent| Handle {
node: NodeRef::from_internal(*parent, self.height + 1),
idx: unsafe { usize::from((*leaf_ptr).parent_idx.assume_init()) },
_marker: PhantomData,
})
.ok_or(self)
}
pub fn first_edge(self) -> Handle<Self, marker::Edge> {
unsafe { Handle::new_edge(self, 0) }
}
pub fn last_edge(self) -> Handle<Self, marker::Edge> {
let len = self.len();
unsafe { Handle::new_edge(self, len) }
}
/// Note that `self` must be nonempty.
pub fn first_kv(self) -> Handle<Self, marker::KV> {
let len = self.len();
assert!(len > 0);
unsafe { Handle::new_kv(self, 0) }
}
/// Note that `self` must be nonempty.
pub fn last_kv(self) -> Handle<Self, marker::KV> {
let len = self.len();
assert!(len > 0);
unsafe { Handle::new_kv(self, len - 1) }
}
}
impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
/// Could be a public implementation of PartialEq, but only used in this module.
fn eq(&self, other: &Self) -> bool {
let Self { node, height, _marker } = self;
if node.eq(&other.node) {
debug_assert_eq!(*height, other.height);
true
} else {
false
}
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
/// Exposes the leaf portion of any leaf or internal node in an immutable tree.
fn into_leaf(self) -> &'a LeafNode<K, V> {
let ptr = Self::as_leaf_ptr(&self);
// SAFETY: there can be no mutable references into this tree borrowed as `Immut`.
unsafe { &*ptr }
}
/// Borrows a view into the keys stored in the node.
pub fn keys(&self) -> &[K] {
let leaf = self.into_leaf();
unsafe {
MaybeUninit::slice_assume_init_ref(leaf.keys.get_unchecked(..usize::from(leaf.len)))
}
}
}
impl<K, V> NodeRef<marker::Dying, K, V, marker::LeafOrInternal> {
/// Similar to `ascend`, gets a reference to a node's parent node, but also
/// deallocates the current node in the process. This is unsafe because the
/// current node will still be accessible despite being deallocated.
pub unsafe fn deallocate_and_ascend<A: Allocator + Clone>(
self,
alloc: A,
) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::Internal>, marker::Edge>> {
let height = self.height;
let node = self.node;
let ret = self.ascend().ok();
unsafe {
alloc.deallocate(
node.cast(),
if height > 0 {
Layout::new::<InternalNode<K, V>>()
} else {
Layout::new::<LeafNode<K, V>>()
},
);
}
ret
}
}
impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Temporarily takes out another mutable reference to the same node. Beware, as
/// this method is very dangerous, doubly so since it might not immediately appear
/// dangerous.
///
/// Because mutable pointers can roam anywhere around the tree, the returned
/// pointer can easily be used to make the original pointer dangling, out of
/// bounds, or invalid under stacked borrow rules.
// FIXME(@gereeter) consider adding yet another type parameter to `NodeRef`
// that restricts the use of navigation methods on reborrowed pointers,
// preventing this unsafety.
unsafe fn reborrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Borrows exclusive access to the leaf portion of a leaf or internal node.
fn as_leaf_mut(&mut self) -> &mut LeafNode<K, V> {
let ptr = Self::as_leaf_ptr(self);
// SAFETY: we have exclusive access to the entire node.
unsafe { &mut *ptr }
}
/// Offers exclusive access to the leaf portion of a leaf or internal node.
fn into_leaf_mut(mut self) -> &'a mut LeafNode<K, V> {
let ptr = Self::as_leaf_ptr(&mut self);
// SAFETY: we have exclusive access to the entire node.
unsafe { &mut *ptr }
}
/// Returns a dormant copy of this node with its lifetime erased which can
/// be reawakened later.
pub fn dormant(&self) -> NodeRef<marker::DormantMut, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<K, V, Type> NodeRef<marker::DormantMut, K, V, Type> {
/// Revert to the unique borrow initially captured.
///
/// # Safety
///
/// The reborrow must have ended, i.e., the reference returned by `new` and
/// all pointers and references derived from it, must not be used anymore.
pub unsafe fn awaken<'a>(self) -> NodeRef<marker::Mut<'a>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<K, V, Type> NodeRef<marker::Dying, K, V, Type> {
/// Borrows exclusive access to the leaf portion of a dying leaf or internal node.
fn as_leaf_dying(&mut self) -> &mut LeafNode<K, V> {
let ptr = Self::as_leaf_ptr(self);
// SAFETY: we have exclusive access to the entire node.
unsafe { &mut *ptr }
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Borrows exclusive access to an element of the key storage area.
///
/// # Safety
/// `index` is in bounds of 0..CAPACITY
unsafe fn key_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
where
I: SliceIndex<[MaybeUninit<K>], Output = Output>,
{
// SAFETY: the caller will not be able to call further methods on self
// until the key slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
unsafe { self.as_leaf_mut().keys.as_mut_slice().get_unchecked_mut(index) }
}
/// Borrows exclusive access to an element or slice of the node's value storage area.
///
/// # Safety
/// `index` is in bounds of 0..CAPACITY
unsafe fn val_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
where
I: SliceIndex<[MaybeUninit<V>], Output = Output>,
{
// SAFETY: the caller will not be able to call further methods on self
// until the value slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
unsafe { self.as_leaf_mut().vals.as_mut_slice().get_unchecked_mut(index) }
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Borrows exclusive access to an element or slice of the node's storage area for edge contents.
///
/// # Safety
/// `index` is in bounds of 0..CAPACITY + 1
unsafe fn edge_area_mut<I, Output: ?Sized>(&mut self, index: I) -> &mut Output
where
I: SliceIndex<[MaybeUninit<BoxedNode<K, V>>], Output = Output>,
{
// SAFETY: the caller will not be able to call further methods on self
// until the edge slice reference is dropped, as we have unique access
// for the lifetime of the borrow.
unsafe { self.as_internal_mut().edges.as_mut_slice().get_unchecked_mut(index) }
}
}
impl<'a, K, V, Type> NodeRef<marker::ValMut<'a>, K, V, Type> {
/// # Safety
/// - The node has more than `idx` initialized elements.
unsafe fn into_key_val_mut_at(mut self, idx: usize) -> (&'a K, &'a mut V) {
// We only create a reference to the one element we are interested in,
// to avoid aliasing with outstanding references to other elements,
// in particular, those returned to the caller in earlier iterations.
let leaf = Self::as_leaf_ptr(&mut self);
let keys = unsafe { ptr::addr_of!((*leaf).keys) };
let vals = unsafe { ptr::addr_of_mut!((*leaf).vals) };
// We must coerce to unsized array pointers because of Rust issue #74679.
let keys: *const [_] = keys;
let vals: *mut [_] = vals;
let key = unsafe { (&*keys.get_unchecked(idx)).assume_init_ref() };
let val = unsafe { (&mut *vals.get_unchecked_mut(idx)).assume_init_mut() };
(key, val)
}
}
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
/// Borrows exclusive access to the length of the node.
pub fn len_mut(&mut self) -> &mut u16 {
&mut self.as_leaf_mut().len
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// # Safety
/// Every item returned by `range` is a valid edge index for the node.
unsafe fn correct_childrens_parent_links<R: Iterator<Item = usize>>(&mut self, range: R) {
for i in range {
debug_assert!(i <= self.len());
unsafe { Handle::new_edge(self.reborrow_mut(), i) }.correct_parent_link();
}
}
fn correct_all_childrens_parent_links(&mut self) {
let len = self.len();
unsafe { self.correct_childrens_parent_links(0..=len) };
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Sets the node's link to its parent edge,
/// without invalidating other references to the node.
fn set_parent_link(&mut self, parent: NonNull<InternalNode<K, V>>, parent_idx: usize) {
let leaf = Self::as_leaf_ptr(self);
unsafe { (*leaf).parent = Some(parent) };
unsafe { (*leaf).parent_idx.write(parent_idx as u16) };
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
/// Clears the root's link to its parent edge.
fn clear_parent_link(&mut self) {
let mut root_node = self.borrow_mut();
let leaf = root_node.as_leaf_mut();
leaf.parent = None;
}
}
impl<K, V> NodeRef<marker::Owned, K, V, marker::LeafOrInternal> {
/// Returns a new owned tree, with its own root node that is initially empty.
pub fn new<A: Allocator + Clone>(alloc: A) -> Self {
NodeRef::new_leaf(alloc).forget_type()
}
/// Adds a new internal node with a single edge pointing to the previous root node,
/// make that new node the root node, and return it. This increases the height by 1
/// and is the opposite of `pop_internal_level`.
pub fn push_internal_level<A: Allocator + Clone>(
&mut self,
alloc: A,
) -> NodeRef<marker::Mut<'_>, K, V, marker::Internal> {
super::mem::take_mut(self, |old_root| NodeRef::new_internal(old_root, alloc).forget_type());
// `self.borrow_mut()`, except that we just forgot we're internal now:
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Removes the internal root node, using its first child as the new root node.
/// As it is intended only to be called when the root node has only one child,
/// no cleanup is done on any of the keys, values and other children.
/// This decreases the height by 1 and is the opposite of `push_internal_level`.
///
/// Requires exclusive access to the `NodeRef` object but not to the root node;
/// it will not invalidate other handles or references to the root node.
///
/// Panics if there is no internal level, i.e., if the root node is a leaf.
pub fn pop_internal_level<A: Allocator + Clone>(&mut self, alloc: A) {
assert!(self.height > 0);
let top = self.node;
// SAFETY: we asserted to be internal.
let internal_self = unsafe { self.borrow_mut().cast_to_internal_unchecked() };
// SAFETY: we borrowed `self` exclusively and its borrow type is exclusive.
let internal_node = unsafe { &mut *NodeRef::as_internal_ptr(&internal_self) };
// SAFETY: the first edge is always initialized.
self.node = unsafe { internal_node.edges[0].assume_init_read() };
self.height -= 1;
self.clear_parent_link();
unsafe {
alloc.deallocate(top.cast(), Layout::new::<InternalNode<K, V>>());
}
}
}
impl<K, V, Type> NodeRef<marker::Owned, K, V, Type> {
/// Mutably borrows the owned root node. Unlike `reborrow_mut`, this is safe
/// because the return value cannot be used to destroy the root, and there
/// cannot be other references to the tree.
pub fn borrow_mut(&mut self) -> NodeRef<marker::Mut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Slightly mutably borrows the owned root node.
pub fn borrow_valmut(&mut self) -> NodeRef<marker::ValMut<'_>, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Irreversibly transitions to a reference that permits traversal and offers
/// destructive methods and little else.
pub fn into_dying(self) -> NodeRef<marker::Dying, K, V, Type> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
/// Adds a key-value pair to the end of the node, and returns
/// a handle to the inserted value.
///
/// # Safety
///
/// The returned handle has an unbound lifetime.
pub unsafe fn push_with_handle<'b>(
&mut self,
key: K,
val: V,
) -> Handle<NodeRef<marker::Mut<'b>, K, V, marker::Leaf>, marker::KV> {
let len = self.len_mut();
let idx = usize::from(*len);
assert!(idx < CAPACITY);
*len += 1;
unsafe {
self.key_area_mut(idx).write(key);
self.val_area_mut(idx).write(val);
Handle::new_kv(
NodeRef { height: self.height, node: self.node, _marker: PhantomData },
idx,
)
}
}
/// Adds a key-value pair to the end of the node, and returns
/// the mutable reference of the inserted value.
pub fn push(&mut self, key: K, val: V) -> *mut V {
// SAFETY: The unbound handle is no longer accessible.
unsafe { self.push_with_handle(key, val).into_val_mut() }
}
}
impl<'a, K: 'a, V: 'a> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
/// Adds a key-value pair, and an edge to go to the right of that pair,
/// to the end of the node.
pub fn push(&mut self, key: K, val: V, edge: Root<K, V>) {
assert!(edge.height == self.height - 1);
let len = self.len_mut();
let idx = usize::from(*len);
assert!(idx < CAPACITY);
*len += 1;
unsafe {
self.key_area_mut(idx).write(key);
self.val_area_mut(idx).write(val);
self.edge_area_mut(idx + 1).write(edge.node);
Handle::new_edge(self.reborrow_mut(), idx + 1).correct_parent_link();
}
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Leaf> {
/// Removes any static information asserting that this node is a `Leaf` node.
pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::Internal> {
/// Removes any static information asserting that this node is an `Internal` node.
pub fn forget_type(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
impl<BorrowType, K, V> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
/// Checks whether a node is an `Internal` node or a `Leaf` node.
pub fn force(
self,
) -> ForceResult<
NodeRef<BorrowType, K, V, marker::Leaf>,
NodeRef<BorrowType, K, V, marker::Internal>,
> {
if self.height == 0 {
ForceResult::Leaf(NodeRef {
height: self.height,
node: self.node,
_marker: PhantomData,
})
} else {
ForceResult::Internal(NodeRef {
height: self.height,
node: self.node,
_marker: PhantomData,
})
}
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Unsafely asserts to the compiler the static information that this node is a `Leaf`.
unsafe fn cast_to_leaf_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
debug_assert!(self.height == 0);
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
/// Unsafely asserts to the compiler the static information that this node is an `Internal`.
unsafe fn cast_to_internal_unchecked(self) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
debug_assert!(self.height > 0);
NodeRef { height: self.height, node: self.node, _marker: PhantomData }
}
}
/// A reference to a specific key-value pair or edge within a node. The `Node` parameter
/// must be a `NodeRef`, while the `Type` can either be `KV` (signifying a handle on a key-value
/// pair) or `Edge` (signifying a handle on an edge).
///
/// Note that even `Leaf` nodes can have `Edge` handles. Instead of representing a pointer to
/// a child node, these represent the spaces where child pointers would go between the key-value
/// pairs. For example, in a node with length 2, there would be 3 possible edge locations - one
/// to the left of the node, one between the two pairs, and one at the right of the node.
pub struct Handle<Node, Type> {
node: Node,
idx: usize,
_marker: PhantomData<Type>,
}
impl<Node: Copy, Type> Copy for Handle<Node, Type> {}
// We don't need the full generality of `#[derive(Clone)]`, as the only time `Node` will be
// `Clone`able is when it is an immutable reference and therefore `Copy`.
impl<Node: Copy, Type> Clone for Handle<Node, Type> {
fn clone(&self) -> Self {
*self
}
}
impl<Node, Type> Handle<Node, Type> {
/// Retrieves the node that contains the edge or key-value pair this handle points to.
pub fn into_node(self) -> Node {
self.node
}
/// Returns the position of this handle in the node.
pub fn idx(&self) -> usize {
self.idx
}
}
impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV> {
/// Creates a new handle to a key-value pair in `node`.
/// Unsafe because the caller must ensure that `idx < node.len()`.
pub unsafe fn new_kv(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
debug_assert!(idx < node.len());
Handle { node, idx, _marker: PhantomData }
}
pub fn left_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
unsafe { Handle::new_edge(self.node, self.idx) }
}
pub fn right_edge(self) -> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
unsafe { Handle::new_edge(self.node, self.idx + 1) }
}
}
impl<BorrowType, K, V, NodeType, HandleType> PartialEq
for Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
fn eq(&self, other: &Self) -> bool {
let Self { node, idx, _marker } = self;
node.eq(&other.node) && *idx == other.idx
}
}
impl<BorrowType, K, V, NodeType, HandleType>
Handle<NodeRef<BorrowType, K, V, NodeType>, HandleType>
{
/// Temporarily takes out another immutable handle on the same location.
pub fn reborrow(&self) -> Handle<NodeRef<marker::Immut<'_>, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle { node: self.node.reborrow(), idx: self.idx, _marker: PhantomData }
}
}
impl<'a, K, V, NodeType, HandleType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
/// Temporarily takes out another mutable handle on the same location. Beware, as
/// this method is very dangerous, doubly so since it might not immediately appear
/// dangerous.
///
/// For details, see `NodeRef::reborrow_mut`.
pub unsafe fn reborrow_mut(
&mut self,
) -> Handle<NodeRef<marker::Mut<'_>, K, V, NodeType>, HandleType> {
// We can't use Handle::new_kv or Handle::new_edge because we don't know our type
Handle { node: unsafe { self.node.reborrow_mut() }, idx: self.idx, _marker: PhantomData }
}
/// Returns a dormant copy of this handle which can be reawakened later.
///
/// See `DormantMutRef` for more details.
pub fn dormant(&self) -> Handle<NodeRef<marker::DormantMut, K, V, NodeType>, HandleType> {
Handle { node: self.node.dormant(), idx: self.idx, _marker: PhantomData }
}
}
impl<K, V, NodeType, HandleType> Handle<NodeRef<marker::DormantMut, K, V, NodeType>, HandleType> {
/// Revert to the unique borrow initially captured.
///
/// # Safety
///
/// The reborrow must have ended, i.e., the reference returned by `new` and
/// all pointers and references derived from it, must not be used anymore.
pub unsafe fn awaken<'a>(self) -> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, HandleType> {
Handle { node: unsafe { self.node.awaken() }, idx: self.idx, _marker: PhantomData }
}
}
impl<BorrowType, K, V, NodeType> Handle<NodeRef<BorrowType, K, V, NodeType>, marker::Edge> {
/// Creates a new handle to an edge in `node`.
/// Unsafe because the caller must ensure that `idx <= node.len()`.
pub unsafe fn new_edge(node: NodeRef<BorrowType, K, V, NodeType>, idx: usize) -> Self {
debug_assert!(idx <= node.len());
Handle { node, idx, _marker: PhantomData }
}
pub fn left_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx > 0 {
Ok(unsafe { Handle::new_kv(self.node, self.idx - 1) })
} else {
Err(self)
}
}
pub fn right_kv(self) -> Result<Handle<NodeRef<BorrowType, K, V, NodeType>, marker::KV>, Self> {
if self.idx < self.node.len() {
Ok(unsafe { Handle::new_kv(self.node, self.idx) })
} else {
Err(self)
}
}
}
pub enum LeftOrRight<T> {
Left(T),
Right(T),
}
/// Given an edge index where we want to insert into a node filled to capacity,
/// computes a sensible KV index of a split point and where to perform the insertion.
/// The goal of the split point is for its key and value to end up in a parent node;
/// the keys, values and edges to the left of the split point become the left child;
/// the keys, values and edges to the right of the split point become the right child.
fn splitpoint(edge_idx: usize) -> (usize, LeftOrRight<usize>) {
debug_assert!(edge_idx <= CAPACITY);
// Rust issue #74834 tries to explain these symmetric rules.
match edge_idx {
0..EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER - 1, LeftOrRight::Left(edge_idx)),
EDGE_IDX_LEFT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Left(edge_idx)),
EDGE_IDX_RIGHT_OF_CENTER => (KV_IDX_CENTER, LeftOrRight::Right(0)),
_ => (KV_IDX_CENTER + 1, LeftOrRight::Right(edge_idx - (KV_IDX_CENTER + 1 + 1))),
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key-value pair between the key-value pairs to the right and left of
/// this edge. This method assumes that there is enough space in the node for the new
/// pair to fit.
unsafe fn insert_fit(
mut self,
key: K,
val: V,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
debug_assert!(self.node.len() < CAPACITY);
let new_len = self.node.len() + 1;
unsafe {
slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
*self.node.len_mut() = new_len as u16;
Handle::new_kv(self.node, self.idx)
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key-value pair between the key-value pairs to the right and left of
/// this edge. This method splits the node if there isn't enough room.
///
/// Returns a dormant handle to the inserted node which can be reawakened
/// once splitting is complete.
fn insert<A: Allocator + Clone>(
self,
key: K,
val: V,
alloc: A,
) -> (
Option<SplitResult<'a, K, V, marker::Leaf>>,
Handle<NodeRef<marker::DormantMut, K, V, marker::Leaf>, marker::KV>,
) {
if self.node.len() < CAPACITY {
// SAFETY: There is enough space in the node for insertion.
let handle = unsafe { self.insert_fit(key, val) };
(None, handle.dormant())
} else {
let (middle_kv_idx, insertion) = splitpoint(self.idx);
let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
let mut result = middle.split(alloc);
let insertion_edge = match insertion {
LeftOrRight::Left(insert_idx) => unsafe {
Handle::new_edge(result.left.reborrow_mut(), insert_idx)
},
LeftOrRight::Right(insert_idx) => unsafe {
Handle::new_edge(result.right.borrow_mut(), insert_idx)
},
};
// SAFETY: We just split the node, so there is enough space for
// insertion.
let handle = unsafe { insertion_edge.insert_fit(key, val).dormant() };
(Some(result), handle)
}
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
/// Fixes the parent pointer and index in the child node that this edge
/// links to. This is useful when the ordering of edges has been changed,
fn correct_parent_link(self) {
// Create backpointer without invalidating other references to the node.
let ptr = unsafe { NonNull::new_unchecked(NodeRef::as_internal_ptr(&self.node)) };
let idx = self.idx;
let mut child = self.descend();
child.set_parent_link(ptr, idx);
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::Edge> {
/// Inserts a new key-value pair and an edge that will go to the right of that new pair
/// between this edge and the key-value pair to the right of this edge. This method assumes
/// that there is enough space in the node for the new pair to fit.
fn insert_fit(&mut self, key: K, val: V, edge: Root<K, V>) {
debug_assert!(self.node.len() < CAPACITY);
debug_assert!(edge.height == self.node.height - 1);
let new_len = self.node.len() + 1;
unsafe {
slice_insert(self.node.key_area_mut(..new_len), self.idx, key);
slice_insert(self.node.val_area_mut(..new_len), self.idx, val);
slice_insert(self.node.edge_area_mut(..new_len + 1), self.idx + 1, edge.node);
*self.node.len_mut() = new_len as u16;
self.node.correct_childrens_parent_links(self.idx + 1..new_len + 1);
}
}
/// Inserts a new key-value pair and an edge that will go to the right of that new pair
/// between this edge and the key-value pair to the right of this edge. This method splits
/// the node if there isn't enough room.
fn insert<A: Allocator + Clone>(
mut self,
key: K,
val: V,
edge: Root<K, V>,
alloc: A,
) -> Option<SplitResult<'a, K, V, marker::Internal>> {
assert!(edge.height == self.node.height - 1);
if self.node.len() < CAPACITY {
self.insert_fit(key, val, edge);
None
} else {
let (middle_kv_idx, insertion) = splitpoint(self.idx);
let middle = unsafe { Handle::new_kv(self.node, middle_kv_idx) };
let mut result = middle.split(alloc);
let mut insertion_edge = match insertion {
LeftOrRight::Left(insert_idx) => unsafe {
Handle::new_edge(result.left.reborrow_mut(), insert_idx)
},
LeftOrRight::Right(insert_idx) => unsafe {
Handle::new_edge(result.right.borrow_mut(), insert_idx)
},
};
insertion_edge.insert_fit(key, val, edge);
Some(result)
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge> {
/// Inserts a new key-value pair between the key-value pairs to the right and left of
/// this edge. This method splits the node if there isn't enough room, and tries to
/// insert the split off portion into the parent node recursively, until the root is reached.
///
/// If the returned result is some `SplitResult`, the `left` field will be the root node.
/// The returned pointer points to the inserted value, which in the case of `SplitResult`
/// is in the `left` or `right` tree.
pub fn insert_recursing<A: Allocator + Clone>(
self,
key: K,
value: V,
alloc: A,
split_root: impl FnOnce(SplitResult<'a, K, V, marker::LeafOrInternal>),
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
let (mut split, handle) = match self.insert(key, value, alloc.clone()) {
// SAFETY: we have finished splitting and can now re-awaken the
// handle to the inserted element.
(None, handle) => return unsafe { handle.awaken() },
(Some(split), handle) => (split.forget_node_type(), handle),
};
loop {
split = match split.left.ascend() {
Ok(parent) => {
match parent.insert(split.kv.0, split.kv.1, split.right, alloc.clone()) {
// SAFETY: we have finished splitting and can now re-awaken the
// handle to the inserted element.
None => return unsafe { handle.awaken() },
Some(split) => split.forget_node_type(),
}
}
Err(root) => {
split_root(SplitResult { left: root, ..split });
// SAFETY: we have finished splitting and can now re-awaken the
// handle to the inserted element.
return unsafe { handle.awaken() };
}
};
}
}
}
impl<BorrowType: marker::BorrowType, K, V>
Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge>
{
/// Finds the node pointed to by this edge.
///
/// The method name assumes you picture trees with the root node on top.
///
/// `edge.descend().ascend().unwrap()` and `node.ascend().unwrap().descend()` should
/// both, upon success, do nothing.
pub fn descend(self) -> NodeRef<BorrowType, K, V, marker::LeafOrInternal> {
const {
assert!(BorrowType::TRAVERSAL_PERMIT);
}
// We need to use raw pointers to nodes because, if BorrowType is
// marker::ValMut, there might be outstanding mutable references to
// values that we must not invalidate. There's no worry accessing the
// height field because that value is copied. Beware that, once the
// node pointer is dereferenced, we access the edges array with a
// reference (Rust issue #73987) and invalidate any other references
// to or inside the array, should any be around.
let parent_ptr = NodeRef::as_internal_ptr(&self.node);
let node = unsafe { (*parent_ptr).edges.get_unchecked(self.idx).assume_init_read() };
NodeRef { node, height: self.node.height - 1, _marker: PhantomData }
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Immut<'a>, K, V, NodeType>, marker::KV> {
pub fn into_kv(self) -> (&'a K, &'a V) {
debug_assert!(self.idx < self.node.len());
let leaf = self.node.into_leaf();
let k = unsafe { leaf.keys.get_unchecked(self.idx).assume_init_ref() };
let v = unsafe { leaf.vals.get_unchecked(self.idx).assume_init_ref() };
(k, v)
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
pub fn key_mut(&mut self) -> &mut K {
unsafe { self.node.key_area_mut(self.idx).assume_init_mut() }
}
pub fn into_val_mut(self) -> &'a mut V {
debug_assert!(self.idx < self.node.len());
let leaf = self.node.into_leaf_mut();
unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() }
}
pub fn into_kv_mut(self) -> (&'a mut K, &'a mut V) {
debug_assert!(self.idx < self.node.len());
let leaf = self.node.into_leaf_mut();
let k = unsafe { leaf.keys.get_unchecked_mut(self.idx).assume_init_mut() };
let v = unsafe { leaf.vals.get_unchecked_mut(self.idx).assume_init_mut() };
(k, v)
}
}
impl<'a, K, V, NodeType> Handle<NodeRef<marker::ValMut<'a>, K, V, NodeType>, marker::KV> {
pub fn into_kv_valmut(self) -> (&'a K, &'a mut V) {
unsafe { self.node.into_key_val_mut_at(self.idx) }
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
pub fn kv_mut(&mut self) -> (&mut K, &mut V) {
debug_assert!(self.idx < self.node.len());
// We cannot call separate key and value methods, because calling the second one
// invalidates the reference returned by the first.
unsafe {
let leaf = self.node.as_leaf_mut();
let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_mut();
let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_mut();
(key, val)
}
}
/// Replaces the key and value that the KV handle refers to.
pub fn replace_kv(&mut self, k: K, v: V) -> (K, V) {
let (key, val) = self.kv_mut();
(mem::replace(key, k), mem::replace(val, v))
}
}
impl<K, V, NodeType> Handle<NodeRef<marker::Dying, K, V, NodeType>, marker::KV> {
/// Extracts the key and value that the KV handle refers to.
/// # Safety
/// The node that the handle refers to must not yet have been deallocated.
pub unsafe fn into_key_val(mut self) -> (K, V) {
debug_assert!(self.idx < self.node.len());
let leaf = self.node.as_leaf_dying();
unsafe {
let key = leaf.keys.get_unchecked_mut(self.idx).assume_init_read();
let val = leaf.vals.get_unchecked_mut(self.idx).assume_init_read();
(key, val)
}
}
/// Drops the key and value that the KV handle refers to.
/// # Safety
/// The node that the handle refers to must not yet have been deallocated.
#[inline]
pub unsafe fn drop_key_val(mut self) {
debug_assert!(self.idx < self.node.len());
let leaf = self.node.as_leaf_dying();
unsafe {
leaf.keys.get_unchecked_mut(self.idx).assume_init_drop();
leaf.vals.get_unchecked_mut(self.idx).assume_init_drop();
}
}
}
impl<'a, K: 'a, V: 'a, NodeType> Handle<NodeRef<marker::Mut<'a>, K, V, NodeType>, marker::KV> {
/// Helps implementations of `split` for a particular `NodeType`,
/// by taking care of leaf data.
fn split_leaf_data(&mut self, new_node: &mut LeafNode<K, V>) -> (K, V) {
debug_assert!(self.idx < self.node.len());
let old_len = self.node.len();
let new_len = old_len - self.idx - 1;
new_node.len = new_len as u16;
unsafe {
let k = self.node.key_area_mut(self.idx).assume_init_read();
let v = self.node.val_area_mut(self.idx).assume_init_read();
move_to_slice(
self.node.key_area_mut(self.idx + 1..old_len),
&mut new_node.keys[..new_len],
);
move_to_slice(
self.node.val_area_mut(self.idx + 1..old_len),
&mut new_node.vals[..new_len],
);
*self.node.len_mut() = self.idx as u16;
(k, v)
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV> {
/// Splits the underlying node into three parts:
///
/// - The node is truncated to only contain the key-value pairs to the left of
/// this handle.
/// - The key and value pointed to by this handle are extracted.
/// - All the key-value pairs to the right of this handle are put into a newly
/// allocated node.
pub fn split<A: Allocator + Clone>(mut self, alloc: A) -> SplitResult<'a, K, V, marker::Leaf> {
let mut new_node = LeafNode::new(alloc);
let kv = self.split_leaf_data(&mut new_node);
let right = NodeRef::from_new_leaf(new_node);
SplitResult { left: self.node, kv, right }
}
/// Removes the key-value pair pointed to by this handle and returns it, along with the edge
/// that the key-value pair collapsed into.
pub fn remove(
mut self,
) -> ((K, V), Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>) {
let old_len = self.node.len();
unsafe {
let k = slice_remove(self.node.key_area_mut(..old_len), self.idx);
let v = slice_remove(self.node.val_area_mut(..old_len), self.idx);
*self.node.len_mut() = (old_len - 1) as u16;
((k, v), self.left_edge())
}
}
}
impl<'a, K: 'a, V: 'a> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
/// Splits the underlying node into three parts:
///
/// - The node is truncated to only contain the edges and key-value pairs to the
/// left of this handle.
/// - The key and value pointed to by this handle are extracted.
/// - All the edges and key-value pairs to the right of this handle are put into
/// a newly allocated node.
pub fn split<A: Allocator + Clone>(
mut self,
alloc: A,
) -> SplitResult<'a, K, V, marker::Internal> {
let old_len = self.node.len();
unsafe {
let mut new_node = InternalNode::new(alloc);
let kv = self.split_leaf_data(&mut new_node.data);
let new_len = usize::from(new_node.data.len);
move_to_slice(
self.node.edge_area_mut(self.idx + 1..old_len + 1),
&mut new_node.edges[..new_len + 1],
);
let height = self.node.height;
let right = NodeRef::from_new_internal(new_node, height);
SplitResult { left: self.node, kv, right }
}
}
}
/// Represents a session for evaluating and performing a balancing operation
/// around an internal key-value pair.
pub struct BalancingContext<'a, K, V> {
parent: Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV>,
left_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
right_child: NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Internal>, marker::KV> {
pub fn consider_for_balancing(self) -> BalancingContext<'a, K, V> {
let self1 = unsafe { ptr::read(&self) };
let self2 = unsafe { ptr::read(&self) };
BalancingContext {
parent: self,
left_child: self1.left_edge().descend(),
right_child: self2.right_edge().descend(),
}
}
}
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
/// Chooses a balancing context involving the node as a child, thus between
/// the KV immediately to the left or to the right in the parent node.
/// Returns an `Err` if there is no parent.
/// Panics if the parent is empty.
///
/// Prefers the left side, to be optimal if the given node is somehow
/// underfull, meaning here only that it has fewer elements than its left
/// sibling and than its right sibling, if they exist. In that case,
/// merging with the left sibling is faster, since we only need to move
/// the node's N elements, instead of shifting them to the right and moving
/// more than N elements in front. Stealing from the left sibling is also
/// typically faster, since we only need to shift the node's N elements to
/// the right, instead of shifting at least N of the sibling's elements to
/// the left.
pub fn choose_parent_kv(self) -> Result<LeftOrRight<BalancingContext<'a, K, V>>, Self> {
match unsafe { ptr::read(&self) }.ascend() {
Ok(parent_edge) => match parent_edge.left_kv() {
Ok(left_parent_kv) => Ok(LeftOrRight::Left(BalancingContext {
parent: unsafe { ptr::read(&left_parent_kv) },
left_child: left_parent_kv.left_edge().descend(),
right_child: self,
})),
Err(parent_edge) => match parent_edge.right_kv() {
Ok(right_parent_kv) => Ok(LeftOrRight::Right(BalancingContext {
parent: unsafe { ptr::read(&right_parent_kv) },
left_child: self,
right_child: right_parent_kv.right_edge().descend(),
})),
Err(_) => unreachable!("empty internal node"),
},
},
Err(root) => Err(root),
}
}
}
impl<'a, K, V> BalancingContext<'a, K, V> {
pub fn left_child_len(&self) -> usize {
self.left_child.len()
}
pub fn right_child_len(&self) -> usize {
self.right_child.len()
}
pub fn into_left_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
self.left_child
}
pub fn into_right_child(self) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
self.right_child
}
/// Returns whether merging is possible, i.e., whether there is enough room
/// in a node to combine the central KV with both adjacent child nodes.
pub fn can_merge(&self) -> bool {
self.left_child.len() + 1 + self.right_child.len() <= CAPACITY
}
}
impl<'a, K: 'a, V: 'a> BalancingContext<'a, K, V> {
/// Performs a merge and lets a closure decide what to return.
fn do_merge<
F: FnOnce(
NodeRef<marker::Mut<'a>, K, V, marker::Internal>,
NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
) -> R,
R,
A: Allocator,
>(
self,
result: F,
alloc: A,
) -> R {
let Handle { node: mut parent_node, idx: parent_idx, _marker } = self.parent;
let old_parent_len = parent_node.len();
let mut left_node = self.left_child;
let old_left_len = left_node.len();
let mut right_node = self.right_child;
let right_len = right_node.len();
let new_left_len = old_left_len + 1 + right_len;
assert!(new_left_len <= CAPACITY);
unsafe {
*left_node.len_mut() = new_left_len as u16;
let parent_key = slice_remove(parent_node.key_area_mut(..old_parent_len), parent_idx);
left_node.key_area_mut(old_left_len).write(parent_key);
move_to_slice(
right_node.key_area_mut(..right_len),
left_node.key_area_mut(old_left_len + 1..new_left_len),
);
let parent_val = slice_remove(parent_node.val_area_mut(..old_parent_len), parent_idx);
left_node.val_area_mut(old_left_len).write(parent_val);
move_to_slice(
right_node.val_area_mut(..right_len),
left_node.val_area_mut(old_left_len + 1..new_left_len),
);
slice_remove(&mut parent_node.edge_area_mut(..old_parent_len + 1), parent_idx + 1);
parent_node.correct_childrens_parent_links(parent_idx + 1..old_parent_len);
*parent_node.len_mut() -= 1;
if parent_node.height > 1 {
// SAFETY: the height of the nodes being merged is one below the height
// of the node of this edge, thus above zero, so they are internal.
let mut left_node = left_node.reborrow_mut().cast_to_internal_unchecked();
let mut right_node = right_node.cast_to_internal_unchecked();
move_to_slice(
right_node.edge_area_mut(..right_len + 1),
left_node.edge_area_mut(old_left_len + 1..new_left_len + 1),
);
left_node.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);
alloc.deallocate(right_node.node.cast(), Layout::new::<InternalNode<K, V>>());
} else {
alloc.deallocate(right_node.node.cast(), Layout::new::<LeafNode<K, V>>());
}
}
result(parent_node, left_node)
}
/// Merges the parent's key-value pair and both adjacent child nodes into
/// the left child node and returns the shrunk parent node.
///
/// Panics unless we `.can_merge()`.
pub fn merge_tracking_parent<A: Allocator + Clone>(
self,
alloc: A,
) -> NodeRef<marker::Mut<'a>, K, V, marker::Internal> {
self.do_merge(|parent, _child| parent, alloc)
}
/// Merges the parent's key-value pair and both adjacent child nodes into
/// the left child node and returns that child node.
///
/// Panics unless we `.can_merge()`.
pub fn merge_tracking_child<A: Allocator + Clone>(
self,
alloc: A,
) -> NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal> {
self.do_merge(|_parent, child| child, alloc)
}
/// Merges the parent's key-value pair and both adjacent child nodes into
/// the left child node and returns the edge handle in that child node
/// where the tracked child edge ended up,
///
/// Panics unless we `.can_merge()`.
pub fn merge_tracking_child_edge<A: Allocator + Clone>(
self,
track_edge_idx: LeftOrRight<usize>,
alloc: A,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
let old_left_len = self.left_child.len();
let right_len = self.right_child.len();
assert!(match track_edge_idx {
LeftOrRight::Left(idx) => idx <= old_left_len,
LeftOrRight::Right(idx) => idx <= right_len,
});
let child = self.merge_tracking_child(alloc);
let new_idx = match track_edge_idx {
LeftOrRight::Left(idx) => idx,
LeftOrRight::Right(idx) => old_left_len + 1 + idx,
};
unsafe { Handle::new_edge(child, new_idx) }
}
/// Removes a key-value pair from the left child and places it in the key-value storage
/// of the parent, while pushing the old parent key-value pair into the right child.
/// Returns a handle to the edge in the right child corresponding to where the original
/// edge specified by `track_right_edge_idx` ended up.
pub fn steal_left(
mut self,
track_right_edge_idx: usize,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
self.bulk_steal_left(1);
unsafe { Handle::new_edge(self.right_child, 1 + track_right_edge_idx) }
}
/// Removes a key-value pair from the right child and places it in the key-value storage
/// of the parent, while pushing the old parent key-value pair onto the left child.
/// Returns a handle to the edge in the left child specified by `track_left_edge_idx`,
/// which didn't move.
pub fn steal_right(
mut self,
track_left_edge_idx: usize,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
self.bulk_steal_right(1);
unsafe { Handle::new_edge(self.left_child, track_left_edge_idx) }
}
/// This does stealing similar to `steal_left` but steals multiple elements at once.
pub fn bulk_steal_left(&mut self, count: usize) {
assert!(count > 0);
unsafe {
let left_node = &mut self.left_child;
let old_left_len = left_node.len();
let right_node = &mut self.right_child;
let old_right_len = right_node.len();
// Make sure that we may steal safely.
assert!(old_right_len + count <= CAPACITY);
assert!(old_left_len >= count);
let new_left_len = old_left_len - count;
let new_right_len = old_right_len + count;
*left_node.len_mut() = new_left_len as u16;
*right_node.len_mut() = new_right_len as u16;
// Move leaf data.
{
// Make room for stolen elements in the right child.
slice_shr(right_node.key_area_mut(..new_right_len), count);
slice_shr(right_node.val_area_mut(..new_right_len), count);
// Move elements from the left child to the right one.
move_to_slice(
left_node.key_area_mut(new_left_len + 1..old_left_len),
right_node.key_area_mut(..count - 1),
);
move_to_slice(
left_node.val_area_mut(new_left_len + 1..old_left_len),
right_node.val_area_mut(..count - 1),
);
// Move the left-most stolen pair to the parent.
let k = left_node.key_area_mut(new_left_len).assume_init_read();
let v = left_node.val_area_mut(new_left_len).assume_init_read();
let (k, v) = self.parent.replace_kv(k, v);
// Move parent's key-value pair to the right child.
right_node.key_area_mut(count - 1).write(k);
right_node.val_area_mut(count - 1).write(v);
}
match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
(ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
// Make room for stolen edges.
slice_shr(right.edge_area_mut(..new_right_len + 1), count);
// Steal edges.
move_to_slice(
left.edge_area_mut(new_left_len + 1..old_left_len + 1),
right.edge_area_mut(..count),
);
right.correct_childrens_parent_links(0..new_right_len + 1);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
/// The symmetric clone of `bulk_steal_left`.
pub fn bulk_steal_right(&mut self, count: usize) {
assert!(count > 0);
unsafe {
let left_node = &mut self.left_child;
let old_left_len = left_node.len();
let right_node = &mut self.right_child;
let old_right_len = right_node.len();
// Make sure that we may steal safely.
assert!(old_left_len + count <= CAPACITY);
assert!(old_right_len >= count);
let new_left_len = old_left_len + count;
let new_right_len = old_right_len - count;
*left_node.len_mut() = new_left_len as u16;
*right_node.len_mut() = new_right_len as u16;
// Move leaf data.
{
// Move the right-most stolen pair to the parent.
let k = right_node.key_area_mut(count - 1).assume_init_read();
let v = right_node.val_area_mut(count - 1).assume_init_read();
let (k, v) = self.parent.replace_kv(k, v);
// Move parent's key-value pair to the left child.
left_node.key_area_mut(old_left_len).write(k);
left_node.val_area_mut(old_left_len).write(v);
// Move elements from the right child to the left one.
move_to_slice(
right_node.key_area_mut(..count - 1),
left_node.key_area_mut(old_left_len + 1..new_left_len),
);
move_to_slice(
right_node.val_area_mut(..count - 1),
left_node.val_area_mut(old_left_len + 1..new_left_len),
);
// Fill gap where stolen elements used to be.
slice_shl(right_node.key_area_mut(..old_right_len), count);
slice_shl(right_node.val_area_mut(..old_right_len), count);
}
match (left_node.reborrow_mut().force(), right_node.reborrow_mut().force()) {
(ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
// Steal edges.
move_to_slice(
right.edge_area_mut(..count),
left.edge_area_mut(old_left_len + 1..new_left_len + 1),
);
// Fill gap where stolen edges used to be.
slice_shl(right.edge_area_mut(..old_right_len + 1), count);
left.correct_childrens_parent_links(old_left_len + 1..new_left_len + 1);
right.correct_childrens_parent_links(0..new_right_len + 1);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::Edge> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Internal>, marker::Edge> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::Edge> {
unsafe { Handle::new_edge(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V> Handle<NodeRef<BorrowType, K, V, marker::Leaf>, marker::KV> {
pub fn forget_node_type(
self,
) -> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, marker::KV> {
unsafe { Handle::new_kv(self.node.forget_type(), self.idx) }
}
}
impl<BorrowType, K, V, Type> Handle<NodeRef<BorrowType, K, V, marker::LeafOrInternal>, Type> {
/// Checks whether the underlying node is an `Internal` node or a `Leaf` node.
pub fn force(
self,
) -> ForceResult<
Handle<NodeRef<BorrowType, K, V, marker::Leaf>, Type>,
Handle<NodeRef<BorrowType, K, V, marker::Internal>, Type>,
> {
match self.node.force() {
ForceResult::Leaf(node) => {
ForceResult::Leaf(Handle { node, idx: self.idx, _marker: PhantomData })
}
ForceResult::Internal(node) => {
ForceResult::Internal(Handle { node, idx: self.idx, _marker: PhantomData })
}
}
}
}
impl<'a, K, V, Type> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, Type> {
/// Unsafely asserts to the compiler the static information that the handle's node is a `Leaf`.
pub unsafe fn cast_to_leaf_unchecked(
self,
) -> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, Type> {
let node = unsafe { self.node.cast_to_leaf_unchecked() };
Handle { node, idx: self.idx, _marker: PhantomData }
}
}
impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>, marker::Edge> {
/// Move the suffix after `self` from one node to another one. `right` must be empty.
/// The first edge of `right` remains unchanged.
pub fn move_suffix(
&mut self,
right: &mut NodeRef<marker::Mut<'a>, K, V, marker::LeafOrInternal>,
) {
unsafe {
let new_left_len = self.idx;
let mut left_node = self.reborrow_mut().into_node();
let old_left_len = left_node.len();
let new_right_len = old_left_len - new_left_len;
let mut right_node = right.reborrow_mut();
assert!(right_node.len() == 0);
assert!(left_node.height == right_node.height);
if new_right_len > 0 {
*left_node.len_mut() = new_left_len as u16;
*right_node.len_mut() = new_right_len as u16;
move_to_slice(
left_node.key_area_mut(new_left_len..old_left_len),
right_node.key_area_mut(..new_right_len),
);
move_to_slice(
left_node.val_area_mut(new_left_len..old_left_len),
right_node.val_area_mut(..new_right_len),
);
match (left_node.force(), right_node.force()) {
(ForceResult::Internal(mut left), ForceResult::Internal(mut right)) => {
move_to_slice(
left.edge_area_mut(new_left_len + 1..old_left_len + 1),
right.edge_area_mut(1..new_right_len + 1),
);
right.correct_childrens_parent_links(1..new_right_len + 1);
}
(ForceResult::Leaf(_), ForceResult::Leaf(_)) => {}
_ => unreachable!(),
}
}
}
}
}
pub enum ForceResult<Leaf, Internal> {
Leaf(Leaf),
Internal(Internal),
}
/// Result of insertion, when a node needed to expand beyond its capacity.
pub struct SplitResult<'a, K, V, NodeType> {
// Altered node in existing tree with elements and edges that belong to the left of `kv`.
pub left: NodeRef<marker::Mut<'a>, K, V, NodeType>,
// Some key and value that existed before and were split off, to be inserted elsewhere.
pub kv: (K, V),
// Owned, unattached, new node with elements and edges that belong to the right of `kv`.
pub right: NodeRef<marker::Owned, K, V, NodeType>,
}
impl<'a, K, V> SplitResult<'a, K, V, marker::Leaf> {
pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
}
}
impl<'a, K, V> SplitResult<'a, K, V, marker::Internal> {
pub fn forget_node_type(self) -> SplitResult<'a, K, V, marker::LeafOrInternal> {
SplitResult { left: self.left.forget_type(), kv: self.kv, right: self.right.forget_type() }
}
}
pub mod marker {
use core::marker::PhantomData;
pub enum Leaf {}
pub enum Internal {}
pub enum LeafOrInternal {}
pub enum Owned {}
pub enum Dying {}
pub enum DormantMut {}
pub struct Immut<'a>(PhantomData<&'a ()>);
pub struct Mut<'a>(PhantomData<&'a mut ()>);
pub struct ValMut<'a>(PhantomData<&'a mut ()>);
pub trait BorrowType {
/// If node references of this borrow type allow traversing to other
/// nodes in the tree, this constant is set to `true`. It can be used
/// for a compile-time assertion.
const TRAVERSAL_PERMIT: bool = true;
}
impl BorrowType for Owned {
/// Reject traversal, because it isn't needed. Instead traversal
/// happens using the result of `borrow_mut`.
/// By disabling traversal, and only creating new references to roots,
/// we know that every reference of the `Owned` type is to a root node.
const TRAVERSAL_PERMIT: bool = false;
}
impl BorrowType for Dying {}
impl<'a> BorrowType for Immut<'a> {}
impl<'a> BorrowType for Mut<'a> {}
impl<'a> BorrowType for ValMut<'a> {}
impl BorrowType for DormantMut {}
pub enum KV {}
pub enum Edge {}
}
/// Inserts a value into a slice of initialized elements followed by one uninitialized element.
///
/// # Safety
/// The slice has more than `idx` elements.
unsafe fn slice_insert<T>(slice: &mut [MaybeUninit<T>], idx: usize, val: T) {
unsafe {
let len = slice.len();
debug_assert!(len > idx);
let slice_ptr = slice.as_mut_ptr();
if len > idx + 1 {
ptr::copy(slice_ptr.add(idx), slice_ptr.add(idx + 1), len - idx - 1);
}
(*slice_ptr.add(idx)).write(val);
}
}
/// Removes and returns a value from a slice of all initialized elements, leaving behind one
/// trailing uninitialized element.
///
/// # Safety
/// The slice has more than `idx` elements.
unsafe fn slice_remove<T>(slice: &mut [MaybeUninit<T>], idx: usize) -> T {
unsafe {
let len = slice.len();
debug_assert!(idx < len);
let slice_ptr = slice.as_mut_ptr();
let ret = (*slice_ptr.add(idx)).assume_init_read();
ptr::copy(slice_ptr.add(idx + 1), slice_ptr.add(idx), len - idx - 1);
ret
}
}
/// Shifts the elements in a slice `distance` positions to the left.
///
/// # Safety
/// The slice has at least `distance` elements.
unsafe fn slice_shl<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
unsafe {
let slice_ptr = slice.as_mut_ptr();
ptr::copy(slice_ptr.add(distance), slice_ptr, slice.len() - distance);
}
}
/// Shifts the elements in a slice `distance` positions to the right.
///
/// # Safety
/// The slice has at least `distance` elements.
unsafe fn slice_shr<T>(slice: &mut [MaybeUninit<T>], distance: usize) {
unsafe {
let slice_ptr = slice.as_mut_ptr();
ptr::copy(slice_ptr, slice_ptr.add(distance), slice.len() - distance);
}
}
/// Moves all values from a slice of initialized elements to a slice
/// of uninitialized elements, leaving behind `src` as all uninitialized.
/// Works like `dst.copy_from_slice(src)` but does not require `T` to be `Copy`.
fn move_to_slice<T>(src: &mut [MaybeUninit<T>], dst: &mut [MaybeUninit<T>]) {
assert!(src.len() == dst.len());
unsafe {
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
}
}
#[cfg(test)]
mod tests;