alloc/vec/in_place_collect.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//! Inplace iterate-and-collect specialization for `Vec`
//!
//! Note: This documents Vec internals, some of the following sections explain implementation
//! details and are best read together with the source of this module.
//!
//! The specialization in this module applies to iterators in the shape of
//! `source.adapter().adapter().adapter().collect::<Vec<U>>()`
//! where `source` is an owning iterator obtained from [`Vec<T>`], [`Box<[T]>`][box] (by conversion to `Vec`)
//! or [`BinaryHeap<T>`], the adapters guarantee to consume enough items per step to make room
//! for the results (represented by [`InPlaceIterable`]), provide transitive access to `source`
//! (via [`SourceIter`]) and thus the underlying allocation.
//! And finally there are alignment and size constraints to consider, this is currently ensured via
//! const eval instead of trait bounds in the specialized [`SpecFromIter`] implementation.
//!
//! [`BinaryHeap<T>`]: crate::collections::BinaryHeap
//! [box]: crate::boxed::Box
//!
//! By extension some other collections which use `collect::<Vec<_>>()` internally in their
//! `FromIterator` implementation benefit from this too.
//!
//! Access to the underlying source goes through a further layer of indirection via the private
//! trait [`AsVecIntoIter`] to hide the implementation detail that other collections may use
//! `vec::IntoIter` internally.
//!
//! In-place iteration depends on the interaction of several unsafe traits, implementation
//! details of multiple parts in the iterator pipeline and often requires holistic reasoning
//! across multiple structs since iterators are executed cooperatively rather than having
//! a central evaluator/visitor struct executing all iterator components.
//!
//! # Reading from and writing to the same allocation
//!
//! By its nature collecting in place means that the reader and writer side of the iterator
//! use the same allocation. Since `try_fold()` (used in [`SpecInPlaceCollect`]) takes a
//! reference to the iterator for the duration of the iteration that means we can't interleave
//! the step of reading a value and getting a reference to write to. Instead raw pointers must be
//! used on the reader and writer side.
//!
//! That writes never clobber a yet-to-be-read items is ensured by the [`InPlaceIterable`] requirements.
//!
//! # Layout constraints
//!
//! When recycling an allocation between different types we must uphold the [`Allocator`] contract
//! which means that the input and output Layouts have to "fit".
//!
//! To complicate things further `InPlaceIterable` supports splitting or merging items into smaller/
//! larger ones to enable (de)aggregation of arrays.
//!
//! Ultimately each step of the iterator must free up enough *bytes* in the source to make room
//! for the next output item.
//! If `T` and `U` have the same size no fixup is needed.
//! If `T`'s size is a multiple of `U`'s we can compensate by multiplying the capacity accordingly.
//! Otherwise the input capacity (and thus layout) in bytes may not be representable by the output
//! `Vec<U>`. In that case `alloc.shrink()` is used to update the allocation's layout.
//!
//! Alignments of `T` must be the same or larger than `U`. Since alignments are always a power
//! of two _larger_ implies _is a multiple of_.
//!
//! See `in_place_collectible()` for the current conditions.
//!
//! Additionally this specialization doesn't make sense for ZSTs as there is no reallocation to
//! avoid and it would make pointer arithmetic more difficult.
//!
//! [`Allocator`]: core::alloc::Allocator
//!
//! # Drop- and panic-safety
//!
//! Iteration can panic, requiring dropping the already written parts but also the remainder of
//! the source. Iteration can also leave some source items unconsumed which must be dropped.
//! All those drops in turn can panic which then must either leak the allocation or abort to avoid
//! double-drops.
//!
//! This is handled by the [`InPlaceDrop`] guard for sink items (`U`) and by
//! [`vec::IntoIter::forget_allocation_drop_remaining()`] for remaining source items (`T`).
//!
//! If dropping any remaining source item (`T`) panics then [`InPlaceDstDataSrcBufDrop`] will handle dropping
//! the already collected sink items (`U`) and freeing the allocation.
//!
//! [`vec::IntoIter::forget_allocation_drop_remaining()`]: super::IntoIter::forget_allocation_drop_remaining()
//!
//! # O(1) collect
//!
//! The main iteration itself is further specialized when the iterator implements
//! [`TrustedRandomAccessNoCoerce`] to let the optimizer see that it is a counted loop with a single
//! [induction variable]. This can turn some iterators into a noop, i.e. it reduces them from O(n) to
//! O(1). This particular optimization is quite fickle and doesn't always work, see [#79308]
//!
//! [#79308]: https://github.com/rust-lang/rust/issues/79308
//! [induction variable]: https://en.wikipedia.org/wiki/Induction_variable
//!
//! Since unchecked accesses through that trait do not advance the read pointer of `IntoIter`
//! this would interact unsoundly with the requirements about dropping the tail described above.
//! But since the normal `Drop` implementation of `IntoIter` would suffer from the same problem it
//! is only correct for `TrustedRandomAccessNoCoerce` to be implemented when the items don't
//! have a destructor. Thus that implicit requirement also makes the specialization safe to use for
//! in-place collection.
//! Note that this safety concern is about the correctness of `impl Drop for IntoIter`,
//! not the guarantees of `InPlaceIterable`.
//!
//! # Adapter implementations
//!
//! The invariants for adapters are documented in [`SourceIter`] and [`InPlaceIterable`], but
//! getting them right can be rather subtle for multiple, sometimes non-local reasons.
//! For example `InPlaceIterable` would be valid to implement for [`Peekable`], except
//! that it is stateful, cloneable and `IntoIter`'s clone implementation shortens the underlying
//! allocation which means if the iterator has been peeked and then gets cloned there no longer is
//! enough room, thus breaking an invariant ([#85322]).
//!
//! [#85322]: https://github.com/rust-lang/rust/issues/85322
//! [`Peekable`]: core::iter::Peekable
//!
//!
//! # Examples
//!
//! Some cases that are optimized by this specialization, more can be found in the `Vec`
//! benchmarks:
//!
//! ```rust
//! # #[allow(dead_code)]
//! /// Converts a usize vec into an isize one.
//! pub fn cast(vec: Vec<usize>) -> Vec<isize> {
//! // Does not allocate, free or panic. On optlevel>=2 it does not loop.
//! // Of course this particular case could and should be written with `into_raw_parts` and
//! // `from_raw_parts` instead.
//! vec.into_iter().map(|u| u as isize).collect()
//! }
//! ```
//!
//! ```rust
//! # #[allow(dead_code)]
//! /// Drops remaining items in `src` and if the layouts of `T` and `U` match it
//! /// returns an empty Vec backed by the original allocation. Otherwise it returns a new
//! /// empty vec.
//! pub fn recycle_allocation<T, U>(src: Vec<T>) -> Vec<U> {
//! src.into_iter().filter_map(|_| None).collect()
//! }
//! ```
//!
//! ```rust
//! let vec = vec![13usize; 1024];
//! let _ = vec.into_iter()
//! .enumerate()
//! .filter_map(|(idx, val)| if idx % 2 == 0 { Some(val+idx) } else {None})
//! .collect::<Vec<_>>();
//!
//! // is equivalent to the following, but doesn't require bounds checks
//!
//! let mut vec = vec![13usize; 1024];
//! let mut write_idx = 0;
//! for idx in 0..vec.len() {
//! if idx % 2 == 0 {
//! vec[write_idx] = vec[idx] + idx;
//! write_idx += 1;
//! }
//! }
//! vec.truncate(write_idx);
//! ```
use core::alloc::{Allocator, Layout};
use core::iter::{InPlaceIterable, SourceIter, TrustedRandomAccessNoCoerce};
use core::marker::PhantomData;
use core::mem::{self, ManuallyDrop, SizedTypeProperties};
use core::num::NonZero;
use core::ptr;
use super::{InPlaceDrop, InPlaceDstDataSrcBufDrop, SpecFromIter, SpecFromIterNested, Vec};
use crate::alloc::{Global, handle_alloc_error};
const fn in_place_collectible<DEST, SRC>(
step_merge: Option<NonZero<usize>>,
step_expand: Option<NonZero<usize>>,
) -> bool {
// Require matching alignments because an alignment-changing realloc is inefficient on many
// system allocators and better implementations would require the unstable Allocator trait.
if const { SRC::IS_ZST || DEST::IS_ZST || mem::align_of::<SRC>() != mem::align_of::<DEST>() } {
return false;
}
match (step_merge, step_expand) {
(Some(step_merge), Some(step_expand)) => {
// At least N merged source items -> at most M expanded destination items
// e.g.
// - 1 x [u8; 4] -> 4x u8, via flatten
// - 4 x u8 -> 1x [u8; 4], via array_chunks
mem::size_of::<SRC>() * step_merge.get() >= mem::size_of::<DEST>() * step_expand.get()
}
// Fall back to other from_iter impls if an overflow occurred in the step merge/expansion
// tracking.
_ => false,
}
}
const fn needs_realloc<SRC, DEST>(src_cap: usize, dst_cap: usize) -> bool {
if const { mem::align_of::<SRC>() != mem::align_of::<DEST>() } {
// FIXME(const-hack): use unreachable! once that works in const
panic!("in_place_collectible() prevents this");
}
// If src type size is an integer multiple of the destination type size then
// the caller will have calculated a `dst_cap` that is an integer multiple of
// `src_cap` without remainder.
if const {
let src_sz = mem::size_of::<SRC>();
let dest_sz = mem::size_of::<DEST>();
dest_sz != 0 && src_sz % dest_sz == 0
} {
return false;
}
// type layouts don't guarantee a fit, so do a runtime check to see if
// the allocations happen to match
src_cap > 0 && src_cap * mem::size_of::<SRC>() != dst_cap * mem::size_of::<DEST>()
}
/// This provides a shorthand for the source type since local type aliases aren't a thing.
#[rustc_specialization_trait]
trait InPlaceCollect: SourceIter<Source: AsVecIntoIter> + InPlaceIterable {
type Src;
}
impl<T> InPlaceCollect for T
where
T: SourceIter<Source: AsVecIntoIter> + InPlaceIterable,
{
type Src = <<T as SourceIter>::Source as AsVecIntoIter>::Item;
}
impl<T, I> SpecFromIter<T, I> for Vec<T>
where
I: Iterator<Item = T> + InPlaceCollect,
<I as SourceIter>::Source: AsVecIntoIter,
{
default fn from_iter(iterator: I) -> Self {
// Select the implementation in const eval to avoid codegen of the dead branch to improve compile times.
let fun: fn(I) -> Vec<T> = const {
// See "Layout constraints" section in the module documentation. We use const conditions here
// since these conditions currently cannot be expressed as trait bounds
if in_place_collectible::<T, I::Src>(I::MERGE_BY, I::EXPAND_BY) {
from_iter_in_place
} else {
// fallback
SpecFromIterNested::<T, I>::from_iter
}
};
fun(iterator)
}
}
fn from_iter_in_place<I, T>(mut iterator: I) -> Vec<T>
where
I: Iterator<Item = T> + InPlaceCollect,
<I as SourceIter>::Source: AsVecIntoIter,
{
let (src_buf, src_ptr, src_cap, mut dst_buf, dst_end, dst_cap) = unsafe {
let inner = iterator.as_inner().as_into_iter();
(
inner.buf,
inner.ptr,
inner.cap,
inner.buf.cast::<T>(),
inner.end as *const T,
// SAFETY: the multiplication can not overflow, since `inner.cap * size_of::<I::SRC>()` is the size of the allocation.
inner.cap.unchecked_mul(mem::size_of::<I::Src>()) / mem::size_of::<T>(),
)
};
// SAFETY: `dst_buf` and `dst_end` are the start and end of the buffer.
let len = unsafe {
SpecInPlaceCollect::collect_in_place(&mut iterator, dst_buf.as_ptr() as *mut T, dst_end)
};
let src = unsafe { iterator.as_inner().as_into_iter() };
// check if SourceIter contract was upheld
// caveat: if they weren't we might not even make it to this point
debug_assert_eq!(src_buf, src.buf);
// check InPlaceIterable contract. This is only possible if the iterator advanced the
// source pointer at all. If it uses unchecked access via TrustedRandomAccess
// then the source pointer will stay in its initial position and we can't use it as reference
if src.ptr != src_ptr {
debug_assert!(
unsafe { dst_buf.add(len).cast() } <= src.ptr,
"InPlaceIterable contract violation, write pointer advanced beyond read pointer"
);
}
// The ownership of the source allocation and the new `T` values is temporarily moved into `dst_guard`.
// This is safe because
// * `forget_allocation_drop_remaining` immediately forgets the allocation
// before any panic can occur in order to avoid any double free, and then proceeds to drop
// any remaining values at the tail of the source.
// * the shrink either panics without invalidating the allocation, aborts or
// succeeds. In the last case we disarm the guard.
//
// Note: This access to the source wouldn't be allowed by the TrustedRandomIteratorNoCoerce
// contract (used by SpecInPlaceCollect below). But see the "O(1) collect" section in the
// module documentation why this is ok anyway.
let dst_guard =
InPlaceDstDataSrcBufDrop { ptr: dst_buf, len, src_cap, src: PhantomData::<I::Src> };
src.forget_allocation_drop_remaining();
// Adjust the allocation if the source had a capacity in bytes that wasn't a multiple
// of the destination type size.
// Since the discrepancy should generally be small this should only result in some
// bookkeeping updates and no memmove.
if needs_realloc::<I::Src, T>(src_cap, dst_cap) {
let alloc = Global;
debug_assert_ne!(src_cap, 0);
debug_assert_ne!(dst_cap, 0);
unsafe {
// The old allocation exists, therefore it must have a valid layout.
let src_align = mem::align_of::<I::Src>();
let src_size = mem::size_of::<I::Src>().unchecked_mul(src_cap);
let old_layout = Layout::from_size_align_unchecked(src_size, src_align);
// The allocation must be equal or smaller for in-place iteration to be possible
// therefore the new layout must be ≤ the old one and therefore valid.
let dst_align = mem::align_of::<T>();
let dst_size = mem::size_of::<T>().unchecked_mul(dst_cap);
let new_layout = Layout::from_size_align_unchecked(dst_size, dst_align);
let result = alloc.shrink(dst_buf.cast(), old_layout, new_layout);
let Ok(reallocated) = result else { handle_alloc_error(new_layout) };
dst_buf = reallocated.cast::<T>();
}
} else {
debug_assert_eq!(src_cap * mem::size_of::<I::Src>(), dst_cap * mem::size_of::<T>());
}
mem::forget(dst_guard);
let vec = unsafe { Vec::from_parts(dst_buf, len, dst_cap) };
vec
}
fn write_in_place_with_drop<T>(
src_end: *const T,
) -> impl FnMut(InPlaceDrop<T>, T) -> Result<InPlaceDrop<T>, !> {
move |mut sink, item| {
unsafe {
// the InPlaceIterable contract cannot be verified precisely here since
// try_fold has an exclusive reference to the source pointer
// all we can do is check if it's still in range
debug_assert!(sink.dst as *const _ <= src_end, "InPlaceIterable contract violation");
ptr::write(sink.dst, item);
// Since this executes user code which can panic we have to bump the pointer
// after each step.
sink.dst = sink.dst.add(1);
}
Ok(sink)
}
}
/// Helper trait to hold specialized implementations of the in-place iterate-collect loop
trait SpecInPlaceCollect<T, I>: Iterator<Item = T> {
/// Collects an iterator (`self`) into the destination buffer (`dst`) and returns the number of items
/// collected. `end` is the last writable element of the allocation and used for bounds checks.
///
/// This method is specialized and one of its implementations makes use of
/// `Iterator::__iterator_get_unchecked` calls with a `TrustedRandomAccessNoCoerce` bound
/// on `I` which means the caller of this method must take the safety conditions
/// of that trait into consideration.
unsafe fn collect_in_place(&mut self, dst: *mut T, end: *const T) -> usize;
}
impl<T, I> SpecInPlaceCollect<T, I> for I
where
I: Iterator<Item = T>,
{
#[inline]
default unsafe fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
// use try-fold since
// - it vectorizes better for some iterator adapters
// - unlike most internal iteration methods, it only takes a &mut self
// - it lets us thread the write pointer through its innards and get it back in the end
let sink = InPlaceDrop { inner: dst_buf, dst: dst_buf };
let sink =
self.try_fold::<_, _, Result<_, !>>(sink, write_in_place_with_drop(end)).into_ok();
// iteration succeeded, don't drop head
unsafe { ManuallyDrop::new(sink).dst.sub_ptr(dst_buf) }
}
}
impl<T, I> SpecInPlaceCollect<T, I> for I
where
I: Iterator<Item = T> + TrustedRandomAccessNoCoerce,
{
#[inline]
unsafe fn collect_in_place(&mut self, dst_buf: *mut T, end: *const T) -> usize {
let len = self.size();
let mut drop_guard = InPlaceDrop { inner: dst_buf, dst: dst_buf };
for i in 0..len {
// Safety: InplaceIterable contract guarantees that for every element we read
// one slot in the underlying storage will have been freed up and we can immediately
// write back the result.
unsafe {
let dst = dst_buf.add(i);
debug_assert!(dst as *const _ <= end, "InPlaceIterable contract violation");
ptr::write(dst, self.__iterator_get_unchecked(i));
// Since this executes user code which can panic we have to bump the pointer
// after each step.
drop_guard.dst = dst.add(1);
}
}
mem::forget(drop_guard);
len
}
}
/// Internal helper trait for in-place iteration specialization.
///
/// Currently this is only implemented by [`vec::IntoIter`] - returning a reference to itself - and
/// [`binary_heap::IntoIter`] which returns a reference to its inner representation.
///
/// Since this is an internal trait it hides the implementation detail `binary_heap::IntoIter`
/// uses `vec::IntoIter` internally.
///
/// [`vec::IntoIter`]: super::IntoIter
/// [`binary_heap::IntoIter`]: crate::collections::binary_heap::IntoIter
///
/// # Safety
///
/// In-place iteration relies on implementation details of `vec::IntoIter`, most importantly that
/// it does not create references to the whole allocation during iteration, only raw pointers
#[rustc_specialization_trait]
pub(crate) unsafe trait AsVecIntoIter {
type Item;
fn as_into_iter(&mut self) -> &mut super::IntoIter<Self::Item>;
}