core/slice/sort/stable/quicksort.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
//! This module contains a stable quicksort and partition implementation.
use crate::mem::{self, ManuallyDrop, MaybeUninit};
use crate::slice::sort::shared::FreezeMarker;
use crate::slice::sort::shared::pivot::choose_pivot;
use crate::slice::sort::shared::smallsort::StableSmallSortTypeImpl;
use crate::{intrinsics, ptr};
/// Sorts `v` recursively using quicksort.
///
/// `limit` when initialized with `c*log(v.len())` for some c ensures we do not
/// overflow the stack or go quadratic.
#[inline(never)]
pub fn quicksort<T, F: FnMut(&T, &T) -> bool>(
mut v: &mut [T],
scratch: &mut [MaybeUninit<T>],
mut limit: u32,
mut left_ancestor_pivot: Option<&T>,
is_less: &mut F,
) {
loop {
let len = v.len();
if len <= T::small_sort_threshold() {
T::small_sort(v, scratch, is_less);
return;
}
if limit == 0 {
// We have had too many bad pivots, switch to O(n log n) fallback
// algorithm. In our case that is driftsort in eager mode.
crate::slice::sort::stable::drift::sort(v, scratch, true, is_less);
return;
}
limit -= 1;
let pivot_pos = choose_pivot(v, is_less);
// SAFETY: choose_pivot promises to return a valid pivot index.
unsafe {
intrinsics::assume(pivot_pos < v.len());
}
// SAFETY: We only access the temporary copy for Freeze types, otherwise
// self-modifications via `is_less` would not be observed and this would
// be unsound. Our temporary copy does not escape this scope.
let pivot_copy = unsafe { ManuallyDrop::new(ptr::read(&v[pivot_pos])) };
let pivot_ref = (!has_direct_interior_mutability::<T>()).then_some(&*pivot_copy);
// We choose a pivot, and check if this pivot is equal to our left
// ancestor. If true, we do a partition putting equal elements on the
// left and do not recurse on it. This gives O(n log k) sorting for k
// distinct values, a strategy borrowed from pdqsort. For types with
// interior mutability we can't soundly create a temporary copy of the
// ancestor pivot, and use left_partition_len == 0 as our method for
// detecting when we re-use a pivot, which means we do at most three
// partition operations with pivot p instead of the optimal two.
let mut perform_equal_partition = false;
if let Some(la_pivot) = left_ancestor_pivot {
perform_equal_partition = !is_less(la_pivot, &v[pivot_pos]);
}
let mut left_partition_len = 0;
if !perform_equal_partition {
left_partition_len = stable_partition(v, scratch, pivot_pos, false, is_less);
perform_equal_partition = left_partition_len == 0;
}
if perform_equal_partition {
let mid_eq = stable_partition(v, scratch, pivot_pos, true, &mut |a, b| !is_less(b, a));
v = &mut v[mid_eq..];
left_ancestor_pivot = None;
continue;
}
// Process left side with the next loop iter, right side with recursion.
let (left, right) = v.split_at_mut(left_partition_len);
quicksort(right, scratch, limit, pivot_ref, is_less);
v = left;
}
}
/// Partitions `v` using pivot `p = v[pivot_pos]` and returns the number of
/// elements less than `p`. The relative order of elements that compare < p and
/// those that compare >= p is preserved - it is a stable partition.
///
/// If `is_less` is not a strict total order or panics, `scratch.len() < v.len()`,
/// or `pivot_pos >= v.len()`, the result and `v`'s state is sound but unspecified.
fn stable_partition<T, F: FnMut(&T, &T) -> bool>(
v: &mut [T],
scratch: &mut [MaybeUninit<T>],
pivot_pos: usize,
pivot_goes_left: bool,
is_less: &mut F,
) -> usize {
let len = v.len();
if intrinsics::unlikely(scratch.len() < len || pivot_pos >= len) {
core::intrinsics::abort()
}
let v_base = v.as_ptr();
let scratch_base = MaybeUninit::slice_as_mut_ptr(scratch);
// The core idea is to write the values that compare as less-than to the left
// side of `scratch`, while the values that compared as greater or equal than
// `v[pivot_pos]` go to the right side of `scratch` in reverse. See
// PartitionState for details.
// SAFETY: see individual comments.
unsafe {
// SAFETY: we made sure the scratch has length >= len and that pivot_pos
// is in-bounds. v and scratch are disjoint slices.
let pivot = v_base.add(pivot_pos);
let mut state = PartitionState::new(v_base, scratch_base, len);
let mut pivot_in_scratch = ptr::null_mut();
let mut loop_end_pos = pivot_pos;
// SAFETY: this loop is equivalent to calling state.partition_one
// exactly len times.
loop {
// Ideally the outer loop won't be unrolled, to save binary size,
// but we do want the inner loop to be unrolled for small types, as
// this gave significant performance boosts in benchmarks. Unrolling
// through for _ in 0..UNROLL_LEN { .. } instead of manually improves
// compile times but has a ~10-20% performance penalty on opt-level=s.
if const { mem::size_of::<T>() <= 16 } {
const UNROLL_LEN: usize = 4;
let unroll_end = v_base.add(loop_end_pos.saturating_sub(UNROLL_LEN - 1));
while state.scan < unroll_end {
state.partition_one(is_less(&*state.scan, &*pivot));
state.partition_one(is_less(&*state.scan, &*pivot));
state.partition_one(is_less(&*state.scan, &*pivot));
state.partition_one(is_less(&*state.scan, &*pivot));
}
}
let loop_end = v_base.add(loop_end_pos);
while state.scan < loop_end {
state.partition_one(is_less(&*state.scan, &*pivot));
}
if loop_end_pos == len {
break;
}
// We avoid comparing pivot with itself, as this could create deadlocks for
// certain comparison operators. We also store its location later for later.
pivot_in_scratch = state.partition_one(pivot_goes_left);
loop_end_pos = len;
}
// `pivot` must be copied into its correct position again, because a
// comparison operator might have modified it.
if has_direct_interior_mutability::<T>() {
ptr::copy_nonoverlapping(pivot, pivot_in_scratch, 1);
}
// SAFETY: partition_one being called exactly len times guarantees that scratch
// is initialized with a permuted copy of `v`, and that num_left <= v.len().
// Copying scratch[0..num_left] and scratch[num_left..v.len()] back is thus
// sound, as the values in scratch will never be read again, meaning our copies
// semantically act as moves, permuting `v`.
// Copy all the elements < p directly from swap to v.
let v_base = v.as_mut_ptr();
ptr::copy_nonoverlapping(scratch_base, v_base, state.num_left);
// Copy the elements >= p in reverse order.
for i in 0..len - state.num_left {
ptr::copy_nonoverlapping(
scratch_base.add(len - 1 - i),
v_base.add(state.num_left + i),
1,
);
}
state.num_left
}
}
struct PartitionState<T> {
// The start of the scratch auxiliary memory.
scratch_base: *mut T,
// The current element that is being looked at, scans left to right through slice.
scan: *const T,
// Counts the number of elements that went to the left side, also works around:
// https://github.com/rust-lang/rust/issues/117128
num_left: usize,
// Reverse scratch output pointer.
scratch_rev: *mut T,
}
impl<T> PartitionState<T> {
/// # Safety
///
/// `scan` and `scratch` must point to valid disjoint buffers of length `len`. The
/// scan buffer must be initialized.
unsafe fn new(scan: *const T, scratch: *mut T, len: usize) -> Self {
// SAFETY: See function safety comment.
unsafe { Self { scratch_base: scratch, scan, num_left: 0, scratch_rev: scratch.add(len) } }
}
/// Depending on the value of `towards_left` this function will write a value
/// to the growing left or right side of the scratch memory. This forms the
/// branchless core of the partition.
///
/// # Safety
///
/// This function may be called at most `len` times. If it is called exactly
/// `len` times the scratch buffer then contains a copy of each element from
/// the scan buffer exactly once - a permutation, and num_left <= len.
unsafe fn partition_one(&mut self, towards_left: bool) -> *mut T {
// SAFETY: see individual comments.
unsafe {
// SAFETY: in-bounds because this function is called at most len times, and thus
// right now is incremented at most len - 1 times. Similarly, num_left < len and
// num_right < len, where num_right == i - num_left at the start of the ith
// iteration (zero-indexed).
self.scratch_rev = self.scratch_rev.sub(1);
// SAFETY: now we have scratch_rev == base + len - (i + 1). This means
// scratch_rev + num_left == base + len - 1 - num_right < base + len.
let dst_base = if towards_left { self.scratch_base } else { self.scratch_rev };
let dst = dst_base.add(self.num_left);
ptr::copy_nonoverlapping(self.scan, dst, 1);
self.num_left += towards_left as usize;
self.scan = self.scan.add(1);
dst
}
}
}
trait IsFreeze {
fn is_freeze() -> bool;
}
impl<T> IsFreeze for T {
default fn is_freeze() -> bool {
false
}
}
impl<T: FreezeMarker> IsFreeze for T {
fn is_freeze() -> bool {
true
}
}
#[must_use]
fn has_direct_interior_mutability<T>() -> bool {
// If a type has interior mutability it may alter itself during comparison
// in a way that must be preserved after the sort operation concludes.
// Otherwise a type like Mutex<Option<Box<str>>> could lead to double free.
!T::is_freeze()
}