std/sys/personality/gcc.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
//! Implementation of panics backed by libgcc/libunwind (in some form).
//!
//! For background on exception handling and stack unwinding please see
//! "Exception Handling in LLVM" (llvm.org/docs/ExceptionHandling.html) and
//! documents linked from it.
//! These are also good reads:
//! * <https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html>
//! * <https://monoinfinito.wordpress.com/series/exception-handling-in-c/>
//! * <https://www.airs.com/blog/index.php?s=exception+frames>
//!
//! ## A brief summary
//!
//! Exception handling happens in two phases: a search phase and a cleanup
//! phase.
//!
//! In both phases the unwinder walks stack frames from top to bottom using
//! information from the stack frame unwind sections of the current process's
//! modules ("module" here refers to an OS module, i.e., an executable or a
//! dynamic library).
//!
//! For each stack frame, it invokes the associated "personality routine", whose
//! address is also stored in the unwind info section.
//!
//! In the search phase, the job of a personality routine is to examine
//! exception object being thrown, and to decide whether it should be caught at
//! that stack frame. Once the handler frame has been identified, cleanup phase
//! begins.
//!
//! In the cleanup phase, the unwinder invokes each personality routine again.
//! This time it decides which (if any) cleanup code needs to be run for
//! the current stack frame. If so, the control is transferred to a special
//! branch in the function body, the "landing pad", which invokes destructors,
//! frees memory, etc. At the end of the landing pad, control is transferred
//! back to the unwinder and unwinding resumes.
//!
//! Once stack has been unwound down to the handler frame level, unwinding stops
//! and the last personality routine transfers control to the catch block.
#![forbid(unsafe_op_in_unsafe_fn)]
use unwind as uw;
use super::dwarf::eh::{self, EHAction, EHContext};
use crate::ffi::c_int;
// Register ids were lifted from LLVM's TargetLowering::getExceptionPointerRegister()
// and TargetLowering::getExceptionSelectorRegister() for each architecture,
// then mapped to DWARF register numbers via register definition tables
// (typically <arch>RegisterInfo.td, search for "DwarfRegNum").
// See also https://llvm.org/docs/WritingAnLLVMBackend.html#defining-a-register.
#[cfg(target_arch = "x86")]
const UNWIND_DATA_REG: (i32, i32) = (0, 2); // EAX, EDX
#[cfg(target_arch = "x86_64")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // RAX, RDX
#[cfg(any(target_arch = "arm", target_arch = "aarch64"))]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1 / X0, X1
#[cfg(target_arch = "m68k")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // D0, D1
#[cfg(any(
target_arch = "mips",
target_arch = "mips32r6",
target_arch = "mips64",
target_arch = "mips64r6"
))]
const UNWIND_DATA_REG: (i32, i32) = (4, 5); // A0, A1
#[cfg(target_arch = "csky")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
const UNWIND_DATA_REG: (i32, i32) = (3, 4); // R3, R4 / X3, X4
#[cfg(target_arch = "s390x")]
const UNWIND_DATA_REG: (i32, i32) = (6, 7); // R6, R7
#[cfg(any(target_arch = "sparc", target_arch = "sparc64"))]
const UNWIND_DATA_REG: (i32, i32) = (24, 25); // I0, I1
#[cfg(target_arch = "hexagon")]
const UNWIND_DATA_REG: (i32, i32) = (0, 1); // R0, R1
#[cfg(any(target_arch = "riscv64", target_arch = "riscv32"))]
const UNWIND_DATA_REG: (i32, i32) = (10, 11); // x10, x11
#[cfg(target_arch = "loongarch64")]
const UNWIND_DATA_REG: (i32, i32) = (4, 5); // a0, a1
// The following code is based on GCC's C and C++ personality routines. For reference, see:
// https://github.com/gcc-mirror/gcc/blob/master/libstdc++-v3/libsupc++/eh_personality.cc
// https://github.com/gcc-mirror/gcc/blob/trunk/libgcc/unwind-c.c
cfg_if::cfg_if! {
if #[cfg(all(
target_arch = "arm",
not(target_vendor = "apple"),
not(target_os = "netbsd"),
))] {
/// personality fn called by [ARM EHABI][armeabi-eh]
///
/// 32-bit ARM on iOS/tvOS/watchOS does not use ARM EHABI, it uses
/// either "setjmp-longjmp" unwinding or DWARF CFI unwinding, which is
/// handled by the default routine.
///
/// [armeabi-eh]: https://web.archive.org/web/20190728160938/https://infocenter.arm.com/help/topic/com.arm.doc.ihi0038b/IHI0038B_ehabi.pdf
#[lang = "eh_personality"]
unsafe extern "C" fn rust_eh_personality(
state: uw::_Unwind_State,
exception_object: *mut uw::_Unwind_Exception,
context: *mut uw::_Unwind_Context,
) -> uw::_Unwind_Reason_Code {
unsafe {
let state = state as c_int;
let action = state & uw::_US_ACTION_MASK as c_int;
let search_phase = if action == uw::_US_VIRTUAL_UNWIND_FRAME as c_int {
// Backtraces on ARM will call the personality routine with
// state == _US_VIRTUAL_UNWIND_FRAME | _US_FORCE_UNWIND. In those cases
// we want to continue unwinding the stack, otherwise all our backtraces
// would end at __rust_try
if state & uw::_US_FORCE_UNWIND as c_int != 0 {
return continue_unwind(exception_object, context);
}
true
} else if action == uw::_US_UNWIND_FRAME_STARTING as c_int {
false
} else if action == uw::_US_UNWIND_FRAME_RESUME as c_int {
return continue_unwind(exception_object, context);
} else {
return uw::_URC_FAILURE;
};
// The DWARF unwinder assumes that _Unwind_Context holds things like the function
// and LSDA pointers, however ARM EHABI places them into the exception object.
// To preserve signatures of functions like _Unwind_GetLanguageSpecificData(), which
// take only the context pointer, GCC personality routines stash a pointer to
// exception_object in the context, using location reserved for ARM's
// "scratch register" (r12).
uw::_Unwind_SetGR(context, uw::UNWIND_POINTER_REG, exception_object as uw::_Unwind_Ptr);
// ...A more principled approach would be to provide the full definition of ARM's
// _Unwind_Context in our libunwind bindings and fetch the required data from there
// directly, bypassing DWARF compatibility functions.
let eh_action = match find_eh_action(context) {
Ok(action) => action,
Err(_) => return uw::_URC_FAILURE,
};
if search_phase {
match eh_action {
EHAction::None | EHAction::Cleanup(_) => {
return continue_unwind(exception_object, context);
}
EHAction::Catch(_) | EHAction::Filter(_) => {
// EHABI requires the personality routine to update the
// SP value in the barrier cache of the exception object.
(*exception_object).private[5] =
uw::_Unwind_GetGR(context, uw::UNWIND_SP_REG);
return uw::_URC_HANDLER_FOUND;
}
EHAction::Terminate => return uw::_URC_FAILURE,
}
} else {
match eh_action {
EHAction::None => return continue_unwind(exception_object, context),
EHAction::Filter(_) if state & uw::_US_FORCE_UNWIND as c_int != 0 => return continue_unwind(exception_object, context),
EHAction::Cleanup(lpad) | EHAction::Catch(lpad) | EHAction::Filter(lpad) => {
uw::_Unwind_SetGR(
context,
UNWIND_DATA_REG.0,
exception_object as uw::_Unwind_Ptr,
);
uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, core::ptr::null());
uw::_Unwind_SetIP(context, lpad);
return uw::_URC_INSTALL_CONTEXT;
}
EHAction::Terminate => return uw::_URC_FAILURE,
}
}
// On ARM EHABI the personality routine is responsible for actually
// unwinding a single stack frame before returning (ARM EHABI Sec. 6.1).
unsafe fn continue_unwind(
exception_object: *mut uw::_Unwind_Exception,
context: *mut uw::_Unwind_Context,
) -> uw::_Unwind_Reason_Code {
unsafe {
if __gnu_unwind_frame(exception_object, context) == uw::_URC_NO_REASON {
uw::_URC_CONTINUE_UNWIND
} else {
uw::_URC_FAILURE
}
}
}
// defined in libgcc
extern "C" {
fn __gnu_unwind_frame(
exception_object: *mut uw::_Unwind_Exception,
context: *mut uw::_Unwind_Context,
) -> uw::_Unwind_Reason_Code;
}
}
}
} else {
/// Default personality routine, which is used directly on most targets
/// and indirectly on Windows x86_64 and AArch64 via SEH.
unsafe extern "C" fn rust_eh_personality_impl(
version: c_int,
actions: uw::_Unwind_Action,
_exception_class: uw::_Unwind_Exception_Class,
exception_object: *mut uw::_Unwind_Exception,
context: *mut uw::_Unwind_Context,
) -> uw::_Unwind_Reason_Code {
unsafe {
if version != 1 {
return uw::_URC_FATAL_PHASE1_ERROR;
}
let eh_action = match find_eh_action(context) {
Ok(action) => action,
Err(_) => return uw::_URC_FATAL_PHASE1_ERROR,
};
if actions as i32 & uw::_UA_SEARCH_PHASE as i32 != 0 {
match eh_action {
EHAction::None | EHAction::Cleanup(_) => uw::_URC_CONTINUE_UNWIND,
EHAction::Catch(_) | EHAction::Filter(_) => uw::_URC_HANDLER_FOUND,
EHAction::Terminate => uw::_URC_FATAL_PHASE1_ERROR,
}
} else {
match eh_action {
EHAction::None => uw::_URC_CONTINUE_UNWIND,
// Forced unwinding hits a terminate action.
EHAction::Filter(_) if actions as i32 & uw::_UA_FORCE_UNWIND as i32 != 0 => uw::_URC_CONTINUE_UNWIND,
EHAction::Cleanup(lpad) | EHAction::Catch(lpad) | EHAction::Filter(lpad) => {
uw::_Unwind_SetGR(
context,
UNWIND_DATA_REG.0,
exception_object.cast(),
);
uw::_Unwind_SetGR(context, UNWIND_DATA_REG.1, core::ptr::null());
uw::_Unwind_SetIP(context, lpad);
uw::_URC_INSTALL_CONTEXT
}
EHAction::Terminate => uw::_URC_FATAL_PHASE2_ERROR,
}
}
}
}
cfg_if::cfg_if! {
if #[cfg(all(windows, any(target_arch = "aarch64", target_arch = "x86_64"), target_env = "gnu"))] {
/// personality fn called by [Windows Structured Exception Handling][windows-eh]
///
/// On x86_64 and AArch64 MinGW targets, the unwinding mechanism is SEH,
/// however the unwind handler data (aka LSDA) uses GCC-compatible encoding
///
/// [windows-eh]: https://learn.microsoft.com/en-us/cpp/cpp/structured-exception-handling-c-cpp?view=msvc-170
#[lang = "eh_personality"]
#[allow(nonstandard_style)]
unsafe extern "C" fn rust_eh_personality(
exceptionRecord: *mut uw::EXCEPTION_RECORD,
establisherFrame: uw::LPVOID,
contextRecord: *mut uw::CONTEXT,
dispatcherContext: *mut uw::DISPATCHER_CONTEXT,
) -> uw::EXCEPTION_DISPOSITION {
// SAFETY: the cfg is still target_os = "windows" and target_env = "gnu",
// which means that this is the correct function to call, passing our impl fn
// as the callback which gets actually used
unsafe {
uw::_GCC_specific_handler(
exceptionRecord,
establisherFrame,
contextRecord,
dispatcherContext,
rust_eh_personality_impl,
)
}
}
} else {
/// personality fn called by [Itanium C++ ABI Exception Handling][itanium-eh]
///
/// The personality routine for most non-Windows targets. This will be called by
/// the unwinding library:
/// - "In the search phase, the framework repeatedly calls the personality routine,
/// with the _UA_SEARCH_PHASE flag as described below, first for the current PC
/// and register state, and then unwinding a frame to a new PC at each step..."
/// - "If the search phase reports success, the framework restarts in the cleanup
/// phase. Again, it repeatedly calls the personality routine, with the
/// _UA_CLEANUP_PHASE flag as described below, first for the current PC and
/// register state, and then unwinding a frame to a new PC at each step..."i
///
/// [itanium-eh]: https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html
#[lang = "eh_personality"]
unsafe extern "C" fn rust_eh_personality(
version: c_int,
actions: uw::_Unwind_Action,
exception_class: uw::_Unwind_Exception_Class,
exception_object: *mut uw::_Unwind_Exception,
context: *mut uw::_Unwind_Context,
) -> uw::_Unwind_Reason_Code {
// SAFETY: the platform support must modify the cfg for the inner fn
// if it needs something different than what is currently invoked.
unsafe {
rust_eh_personality_impl(
version,
actions,
exception_class,
exception_object,
context,
)
}
}
}
}
}
}
unsafe fn find_eh_action(context: *mut uw::_Unwind_Context) -> Result<EHAction, ()> {
unsafe {
let lsda = uw::_Unwind_GetLanguageSpecificData(context) as *const u8;
let mut ip_before_instr: c_int = 0;
let ip = uw::_Unwind_GetIPInfo(context, &mut ip_before_instr);
let eh_context = EHContext {
// The return address points 1 byte past the call instruction,
// which could be in the next IP range in LSDA range table.
//
// `ip = -1` has special meaning, so use wrapping sub to allow for that
ip: if ip_before_instr != 0 { ip } else { ip.wrapping_sub(1) },
func_start: uw::_Unwind_GetRegionStart(context),
get_text_start: &|| uw::_Unwind_GetTextRelBase(context),
get_data_start: &|| uw::_Unwind_GetDataRelBase(context),
};
eh::find_eh_action(lsda, &eh_context)
}
}