1use rustc_abi::FieldIdx;
2use rustc_ast::InlineAsmTemplatePiece;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_hir::def_id::DefId;
5use rustc_hir::{self as hir, LangItem};
6use rustc_middle::bug;
7use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
8use rustc_session::lint;
9use rustc_span::def_id::LocalDefId;
10use rustc_span::{ErrorGuaranteed, Span, Symbol, sym};
11use rustc_target::asm::{
12 InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
13};
14use rustc_trait_selection::infer::InferCtxtExt;
15
16use crate::FnCtxt;
17use crate::errors::RegisterTypeUnstable;
18
19pub(crate) struct InlineAsmCtxt<'a, 'tcx> {
20 target_features: &'tcx FxIndexSet<Symbol>,
21 fcx: &'a FnCtxt<'a, 'tcx>,
22}
23
24enum NonAsmTypeReason<'tcx> {
25 UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
26 Invalid(Ty<'tcx>),
27 InvalidElement(DefId, Ty<'tcx>),
28 NotSizedPtr(Ty<'tcx>),
29 EmptySIMDArray(Ty<'tcx>),
30 Tainted(ErrorGuaranteed),
31}
32
33impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
34 pub(crate) fn new(fcx: &'a FnCtxt<'a, 'tcx>, def_id: LocalDefId) -> Self {
35 InlineAsmCtxt { target_features: fcx.tcx.asm_target_features(def_id), fcx }
36 }
37
38 fn tcx(&self) -> TyCtxt<'tcx> {
39 self.fcx.tcx
40 }
41
42 fn expr_ty(&self, expr: &hir::Expr<'tcx>) -> Ty<'tcx> {
43 let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted(expr);
44 let ty = self.fcx.try_structurally_resolve_type(expr.span, ty);
45 if ty.has_non_region_infer() {
46 Ty::new_misc_error(self.tcx())
47 } else {
48 self.tcx().erase_and_anonymize_regions(ty)
49 }
50 }
51
52 fn is_thin_ptr_ty(&self, span: Span, ty: Ty<'tcx>) -> bool {
54 if self.fcx.type_is_sized_modulo_regions(self.fcx.param_env, ty) {
57 return true;
58 }
59 if let ty::Foreign(..) = self.fcx.try_structurally_resolve_type(span, ty).kind() {
60 return true;
61 }
62 false
63 }
64
65 fn get_asm_ty(
66 &self,
67 span: Span,
68 ty: Ty<'tcx>,
69 ) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
70 let asm_ty_isize = match self.tcx().sess.target.pointer_width {
71 16 => InlineAsmType::I16,
72 32 => InlineAsmType::I32,
73 64 => InlineAsmType::I64,
74 width => bug!("unsupported pointer width: {width}"),
75 };
76
77 match *ty.kind() {
78 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
79 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
80 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
81 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
82 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
83 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
84 ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
85 ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
86 ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
87 ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
88 ty::FnPtr(..) => Ok(asm_ty_isize),
89 ty::RawPtr(elem_ty, _) => {
90 if self.is_thin_ptr_ty(span, elem_ty) {
91 Ok(asm_ty_isize)
92 } else {
93 Err(NonAsmTypeReason::NotSizedPtr(ty))
94 }
95 }
96 ty::Adt(adt, args) if adt.repr().simd() => {
97 if !adt.is_struct() {
98 let guar = self.fcx.dcx().span_delayed_bug(
99 span,
100 format!("repr(simd) should only be used on structs, got {}", adt.descr()),
101 );
102 return Err(NonAsmTypeReason::Tainted(guar));
103 }
104
105 let fields = &adt.non_enum_variant().fields;
106 if fields.is_empty() {
107 return Err(NonAsmTypeReason::EmptySIMDArray(ty));
108 }
109 let field = &fields[FieldIdx::ZERO];
110 let elem_ty = field.ty(self.tcx(), args);
111
112 let (size, ty) = match *elem_ty.kind() {
113 ty::Array(ty, len) => {
114 let len = if self.fcx.next_trait_solver() {
117 self.fcx.try_structurally_resolve_const(span, len)
118 } else {
119 self.fcx.tcx.normalize_erasing_regions(
120 self.fcx.typing_env(self.fcx.param_env),
121 len,
122 )
123 };
124 let Some(len) = len.try_to_target_usize(self.tcx()) else {
125 return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
126 field.did, len,
127 ));
128 };
129 (len, ty)
130 }
131 _ => (fields.len() as u64, elem_ty),
132 };
133
134 match ty.kind() {
135 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
136 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
137 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
138 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
139 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
140 Ok(InlineAsmType::VecI128(size))
141 }
142 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
143 Ok(match self.tcx().sess.target.pointer_width {
144 16 => InlineAsmType::VecI16(size),
145 32 => InlineAsmType::VecI32(size),
146 64 => InlineAsmType::VecI64(size),
147 width => bug!("unsupported pointer width: {width}"),
148 })
149 }
150 ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
151 ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
152 ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
153 ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
154 _ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
155 }
156 }
157 ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
158 _ => Err(NonAsmTypeReason::Invalid(ty)),
159 }
160 }
161
162 fn check_asm_operand_type(
163 &self,
164 idx: usize,
165 reg: InlineAsmRegOrRegClass,
166 expr: &'tcx hir::Expr<'tcx>,
167 template: &[InlineAsmTemplatePiece],
168 is_input: bool,
169 tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
170 ) -> Option<InlineAsmType> {
171 let ty = self.expr_ty(expr);
172 if ty.has_non_region_infer() {
173 bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
174 }
175
176 let asm_ty = match *ty.kind() {
177 ty::Never if is_input => return None,
179 _ if ty.references_error() => return None,
180 ty::Adt(adt, args) if self.tcx().is_lang_item(adt.did(), LangItem::MaybeUninit) => {
181 let ty = args.type_at(0);
182 self.get_asm_ty(expr.span, ty)
183 }
184 _ => self.get_asm_ty(expr.span, ty),
185 };
186 let asm_ty = match asm_ty {
187 Ok(asm_ty) => asm_ty,
188 Err(reason) => {
189 match reason {
190 NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
191 let msg = format!("cannot evaluate SIMD vector length `{len}`");
192 self.fcx
193 .dcx()
194 .struct_span_err(self.tcx().def_span(did), msg)
195 .with_span_note(
196 expr.span,
197 "SIMD vector length needs to be known statically for use in `asm!`",
198 )
199 .emit();
200 }
201 NonAsmTypeReason::Invalid(ty) => {
202 let msg = format!("cannot use value of type `{ty}` for inline assembly");
203 self.fcx.dcx().struct_span_err(expr.span, msg).with_note(
204 "only integers, floats, SIMD vectors, pointers and function pointers \
205 can be used as arguments for inline assembly",
206 ).emit();
207 }
208 NonAsmTypeReason::NotSizedPtr(ty) => {
209 let msg = format!(
210 "cannot use value of unsized pointer type `{ty}` for inline assembly"
211 );
212 self.fcx
213 .dcx()
214 .struct_span_err(expr.span, msg)
215 .with_note("only sized pointers can be used in inline assembly")
216 .emit();
217 }
218 NonAsmTypeReason::InvalidElement(did, ty) => {
219 let msg = format!(
220 "cannot use SIMD vector with element type `{ty}` for inline assembly"
221 );
222 self.fcx.dcx()
223 .struct_span_err(self.tcx().def_span(did), msg).with_span_note(
224 expr.span,
225 "only integers, floats, SIMD vectors, pointers and function pointers \
226 can be used as arguments for inline assembly",
227 ).emit();
228 }
229 NonAsmTypeReason::EmptySIMDArray(ty) => {
230 let msg = format!("use of empty SIMD vector `{ty}`");
231 self.fcx.dcx().struct_span_err(expr.span, msg).emit();
232 }
233 NonAsmTypeReason::Tainted(_error_guard) => {
234 }
236 }
237 return None;
238 }
239 };
240
241 if !self.fcx.type_is_copy_modulo_regions(self.fcx.param_env, ty) {
244 let msg = "arguments for inline assembly must be copyable";
245 self.fcx
246 .dcx()
247 .struct_span_err(expr.span, msg)
248 .with_note(format!("`{ty}` does not implement the Copy trait"))
249 .emit();
250 }
251
252 if let Some((in_expr, Some(in_asm_ty))) = tied_input {
262 if in_asm_ty != asm_ty {
263 let msg = "incompatible types for asm inout argument";
264 let in_expr_ty = self.expr_ty(in_expr);
265 self.fcx
266 .dcx()
267 .struct_span_err(vec![in_expr.span, expr.span], msg)
268 .with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
269 .with_span_label(expr.span, format!("type `{ty}`"))
270 .with_note(
271 "asm inout arguments must have the same type, \
272 unless they are both pointers or integers of the same size",
273 )
274 .emit();
275 }
276
277 return Some(asm_ty);
280 }
281
282 let asm_arch = self.tcx().sess.asm_arch.unwrap();
285 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
286 let reg_class = reg.reg_class();
287 let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
288 let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
289 let mut err = if !allow_experimental_reg
290 && reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
291 {
292 self.tcx().sess.create_feature_err(
293 RegisterTypeUnstable { span: expr.span, ty },
294 sym::asm_experimental_reg,
295 )
296 } else {
297 let msg = format!("type `{ty}` cannot be used with this register class");
298 let mut err = self.fcx.dcx().struct_span_err(expr.span, msg);
299 let supported_tys: Vec<_> =
300 supported_tys.iter().map(|(t, _)| t.to_string()).collect();
301 err.note(format!(
302 "register class `{}` supports these types: {}",
303 reg_class.name(),
304 supported_tys.join(", "),
305 ));
306 err
307 };
308 if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
309 err.help(format!("consider using the `{}` register class instead", suggest.name()));
310 }
311 err.emit();
312 return Some(asm_ty);
313 };
314
315 if let Some(feature) = feature {
326 if !self.target_features.contains(feature) {
327 let msg = format!("`{feature}` target feature is not enabled");
328 self.fcx
329 .dcx()
330 .struct_span_err(expr.span, msg)
331 .with_note(format!(
332 "this is required to use type `{}` with register class `{}`",
333 ty,
334 reg_class.name(),
335 ))
336 .emit();
337 return Some(asm_ty);
338 }
339 }
340
341 if let Some(ModifierInfo {
343 modifier: suggested_modifier,
344 result: suggested_result,
345 size: suggested_size,
346 }) = reg_class.suggest_modifier(asm_arch, asm_ty)
347 {
348 let mut spans = vec![];
351 for piece in template {
352 if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
353 {
354 if operand_idx == idx && modifier.is_none() {
355 spans.push(span);
356 }
357 }
358 }
359 if !spans.is_empty() {
360 let ModifierInfo {
361 modifier: default_modifier,
362 result: default_result,
363 size: default_size,
364 } = reg_class.default_modifier(asm_arch).unwrap();
365 self.tcx().node_span_lint(
366 lint::builtin::ASM_SUB_REGISTER,
367 expr.hir_id,
368 spans,
369 |lint| {
370 lint.primary_message("formatting may not be suitable for sub-register argument");
371 lint.span_label(expr.span, "for this argument");
372 lint.help(format!(
373 "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
374 ));
375 lint.help(format!(
376 "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
377 ));
378 },
379 );
380 }
381 }
382
383 Some(asm_ty)
384 }
385
386 pub(crate) fn check_asm(&self, asm: &hir::InlineAsm<'tcx>) {
387 let Some(asm_arch) = self.tcx().sess.asm_arch else {
388 self.fcx.dcx().delayed_bug("target architecture does not support asm");
389 return;
390 };
391 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
392 for (idx, &(op, op_sp)) in asm.operands.iter().enumerate() {
393 if let Some(reg) = op.reg() {
404 if let InlineAsmRegOrRegClass::Reg(reg) = reg {
407 if let InlineAsmReg::Err = reg {
408 continue;
411 }
412 if let Err(msg) = reg.validate(
413 asm_arch,
414 self.tcx().sess.relocation_model(),
415 self.target_features,
416 &self.tcx().sess.target,
417 op.is_clobber(),
418 ) {
419 let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
420 self.fcx.dcx().span_err(op_sp, msg);
421 continue;
422 }
423 }
424
425 if !op.is_clobber() {
426 let mut missing_required_features = vec![];
427 let reg_class = reg.reg_class();
428 if let InlineAsmRegClass::Err = reg_class {
429 continue;
430 }
431 for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
432 {
433 match feature {
434 Some(feature) => {
435 if self.target_features.contains(&feature) {
436 missing_required_features.clear();
437 break;
438 } else {
439 missing_required_features.push(feature);
440 }
441 }
442 None => {
443 missing_required_features.clear();
444 break;
445 }
446 }
447 }
448
449 missing_required_features.sort_unstable();
451 missing_required_features.dedup();
452 match &missing_required_features[..] {
453 [] => {}
454 [feature] => {
455 let msg = format!(
456 "register class `{}` requires the `{}` target feature",
457 reg_class.name(),
458 feature
459 );
460 self.fcx.dcx().span_err(op_sp, msg);
461 continue;
463 }
464 features => {
465 let msg = format!(
466 "register class `{}` requires at least one of the following target features: {}",
467 reg_class.name(),
468 features
469 .iter()
470 .map(|f| f.as_str())
471 .intersperse(", ")
472 .collect::<String>(),
473 );
474 self.fcx.dcx().span_err(op_sp, msg);
475 continue;
477 }
478 }
479 }
480 }
481
482 match op {
483 hir::InlineAsmOperand::In { reg, expr } => {
484 self.check_asm_operand_type(idx, reg, expr, asm.template, true, None);
485 }
486 hir::InlineAsmOperand::Out { reg, late: _, expr } => {
487 if let Some(expr) = expr {
488 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
489 }
490 }
491 hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
492 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
493 }
494 hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
495 let in_ty =
496 self.check_asm_operand_type(idx, reg, in_expr, asm.template, true, None);
497 if let Some(out_expr) = out_expr {
498 self.check_asm_operand_type(
499 idx,
500 reg,
501 out_expr,
502 asm.template,
503 false,
504 Some((in_expr, in_ty)),
505 );
506 }
507 }
508 hir::InlineAsmOperand::Const { anon_const } => {
509 let ty = self.expr_ty(self.tcx().hir_body(anon_const.body).value);
510 match ty.kind() {
511 ty::Error(_) => {}
512 _ if ty.is_integral() => {}
513 _ => {
514 self.fcx
515 .dcx()
516 .struct_span_err(op_sp, "invalid type for `const` operand")
517 .with_span_label(
518 self.tcx().def_span(anon_const.def_id),
519 format!("is {} `{}`", ty.kind().article(), ty),
520 )
521 .with_help("`const` operands must be of an integer type")
522 .emit();
523 }
524 }
525 }
526 hir::InlineAsmOperand::SymFn { expr } => {
528 let ty = self.expr_ty(expr);
529 match ty.kind() {
530 ty::FnDef(..) => {}
531 ty::Error(_) => {}
532 _ => {
533 self.fcx
534 .dcx()
535 .struct_span_err(op_sp, "invalid `sym` operand")
536 .with_span_label(
537 expr.span,
538 format!("is {} `{}`", ty.kind().article(), ty),
539 )
540 .with_help(
541 "`sym` operands must refer to either a function or a static",
542 )
543 .emit();
544 }
545 }
546 }
547 hir::InlineAsmOperand::SymStatic { .. } => {}
549 hir::InlineAsmOperand::Label { .. } => {}
551 }
552 }
553 }
554}