1use rustc_abi::FieldIdx;
2use rustc_ast::InlineAsmTemplatePiece;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_hir::def_id::DefId;
5use rustc_hir::{self as hir, LangItem};
6use rustc_middle::bug;
7use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
8use rustc_session::lint;
9use rustc_span::def_id::LocalDefId;
10use rustc_span::{ErrorGuaranteed, Span, Symbol, sym};
11use rustc_target::asm::{
12 InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
13};
14use rustc_trait_selection::infer::InferCtxtExt;
15
16use crate::FnCtxt;
17use crate::errors::RegisterTypeUnstable;
18
19pub(crate) struct InlineAsmCtxt<'a, 'tcx> {
20 target_features: &'tcx FxIndexSet<Symbol>,
21 fcx: &'a FnCtxt<'a, 'tcx>,
22}
23
24enum NonAsmTypeReason<'tcx> {
25 UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
26 Invalid(Ty<'tcx>),
27 InvalidElement(DefId, Ty<'tcx>),
28 NotSizedPtr(Ty<'tcx>),
29 EmptySIMDArray(Ty<'tcx>),
30 Tainted(ErrorGuaranteed),
31}
32
33impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
34 pub(crate) fn new(fcx: &'a FnCtxt<'a, 'tcx>, def_id: LocalDefId) -> Self {
35 InlineAsmCtxt { target_features: fcx.tcx.asm_target_features(def_id), fcx }
36 }
37
38 fn tcx(&self) -> TyCtxt<'tcx> {
39 self.fcx.tcx
40 }
41
42 fn expr_ty(&self, expr: &hir::Expr<'tcx>) -> Ty<'tcx> {
43 let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted(expr);
44 let ty = self.fcx.try_structurally_resolve_type(expr.span, ty);
45 if ty.has_non_region_infer() {
46 Ty::new_misc_error(self.tcx())
47 } else {
48 self.tcx().erase_and_anonymize_regions(ty)
49 }
50 }
51
52 fn is_thin_ptr_ty(&self, span: Span, ty: Ty<'tcx>) -> bool {
54 if self.fcx.type_is_sized_modulo_regions(self.fcx.param_env, ty) {
57 return true;
58 }
59 if let ty::Foreign(..) = self.fcx.try_structurally_resolve_type(span, ty).kind() {
60 return true;
61 }
62 false
63 }
64
65 fn get_asm_ty(
66 &self,
67 span: Span,
68 ty: Ty<'tcx>,
69 ) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
70 let asm_ty_isize = match self.tcx().sess.target.pointer_width {
71 16 => InlineAsmType::I16,
72 32 => InlineAsmType::I32,
73 64 => InlineAsmType::I64,
74 width => bug!("unsupported pointer width: {width}"),
75 };
76
77 match *ty.kind() {
78 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
79 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
80 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
81 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
82 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
83 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
84 ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
85 ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
86 ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
87 ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
88 ty::FnPtr(..) => Ok(asm_ty_isize),
89 ty::RawPtr(elem_ty, _) => {
90 if self.is_thin_ptr_ty(span, elem_ty) {
91 Ok(asm_ty_isize)
92 } else {
93 Err(NonAsmTypeReason::NotSizedPtr(ty))
94 }
95 }
96 ty::Adt(adt, args) if adt.repr().simd() => {
97 if !adt.is_struct() {
98 let guar = self.fcx.dcx().span_delayed_bug(
99 span,
100 format!("repr(simd) should only be used on structs, got {}", adt.descr()),
101 );
102 return Err(NonAsmTypeReason::Tainted(guar));
103 }
104
105 let fields = &adt.non_enum_variant().fields;
106 if fields.is_empty() {
107 return Err(NonAsmTypeReason::EmptySIMDArray(ty));
108 }
109 let field = &fields[FieldIdx::ZERO];
110 let elem_ty = field.ty(self.tcx(), args);
111
112 let (size, ty) = match *elem_ty.kind() {
113 ty::Array(ty, len) => {
114 let len = if self.fcx.next_trait_solver() {
117 self.fcx.try_structurally_resolve_const(span, len)
118 } else {
119 self.fcx.tcx.normalize_erasing_regions(
120 self.fcx.typing_env(self.fcx.param_env),
121 len,
122 )
123 };
124 if let Some(len) = len.try_to_target_usize(self.tcx()) {
125 (len, ty)
126 } else {
127 return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
128 field.did, len,
129 ));
130 }
131 }
132 _ => (fields.len() as u64, elem_ty),
133 };
134
135 match ty.kind() {
136 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
137 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
138 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
139 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
140 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
141 Ok(InlineAsmType::VecI128(size))
142 }
143 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
144 Ok(match self.tcx().sess.target.pointer_width {
145 16 => InlineAsmType::VecI16(size),
146 32 => InlineAsmType::VecI32(size),
147 64 => InlineAsmType::VecI64(size),
148 width => bug!("unsupported pointer width: {width}"),
149 })
150 }
151 ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
152 ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
153 ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
154 ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
155 _ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
156 }
157 }
158 ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
159 _ => Err(NonAsmTypeReason::Invalid(ty)),
160 }
161 }
162
163 fn check_asm_operand_type(
164 &self,
165 idx: usize,
166 reg: InlineAsmRegOrRegClass,
167 expr: &'tcx hir::Expr<'tcx>,
168 template: &[InlineAsmTemplatePiece],
169 is_input: bool,
170 tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
171 ) -> Option<InlineAsmType> {
172 let ty = self.expr_ty(expr);
173 if ty.has_non_region_infer() {
174 bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
175 }
176
177 let asm_ty = match *ty.kind() {
178 ty::Never if is_input => return None,
180 _ if ty.references_error() => return None,
181 ty::Adt(adt, args) if self.tcx().is_lang_item(adt.did(), LangItem::MaybeUninit) => {
182 let fields = &adt.non_enum_variant().fields;
183 let ty = fields[FieldIdx::ONE].ty(self.tcx(), args);
184 let ty::Adt(ty, args) = ty.kind() else {
187 unreachable!("expected first field of `MaybeUninit` to be an ADT")
188 };
189 assert!(
190 ty.is_manually_drop(),
191 "expected first field of `MaybeUninit` to be `ManuallyDrop`"
192 );
193 let fields = &ty.non_enum_variant().fields;
194 let ty = fields[FieldIdx::ZERO].ty(self.tcx(), args);
195 self.get_asm_ty(expr.span, ty)
196 }
197 _ => self.get_asm_ty(expr.span, ty),
198 };
199 let asm_ty = match asm_ty {
200 Ok(asm_ty) => asm_ty,
201 Err(reason) => {
202 match reason {
203 NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
204 let msg = format!("cannot evaluate SIMD vector length `{len}`");
205 self.fcx
206 .dcx()
207 .struct_span_err(self.tcx().def_span(did), msg)
208 .with_span_note(
209 expr.span,
210 "SIMD vector length needs to be known statically for use in `asm!`",
211 )
212 .emit();
213 }
214 NonAsmTypeReason::Invalid(ty) => {
215 let msg = format!("cannot use value of type `{ty}` for inline assembly");
216 self.fcx.dcx().struct_span_err(expr.span, msg).with_note(
217 "only integers, floats, SIMD vectors, pointers and function pointers \
218 can be used as arguments for inline assembly",
219 ).emit();
220 }
221 NonAsmTypeReason::NotSizedPtr(ty) => {
222 let msg = format!(
223 "cannot use value of unsized pointer type `{ty}` for inline assembly"
224 );
225 self.fcx
226 .dcx()
227 .struct_span_err(expr.span, msg)
228 .with_note("only sized pointers can be used in inline assembly")
229 .emit();
230 }
231 NonAsmTypeReason::InvalidElement(did, ty) => {
232 let msg = format!(
233 "cannot use SIMD vector with element type `{ty}` for inline assembly"
234 );
235 self.fcx.dcx()
236 .struct_span_err(self.tcx().def_span(did), msg).with_span_note(
237 expr.span,
238 "only integers, floats, SIMD vectors, pointers and function pointers \
239 can be used as arguments for inline assembly",
240 ).emit();
241 }
242 NonAsmTypeReason::EmptySIMDArray(ty) => {
243 let msg = format!("use of empty SIMD vector `{ty}`");
244 self.fcx.dcx().struct_span_err(expr.span, msg).emit();
245 }
246 NonAsmTypeReason::Tainted(_error_guard) => {
247 }
249 }
250 return None;
251 }
252 };
253
254 if !self.fcx.type_is_copy_modulo_regions(self.fcx.param_env, ty) {
257 let msg = "arguments for inline assembly must be copyable";
258 self.fcx
259 .dcx()
260 .struct_span_err(expr.span, msg)
261 .with_note(format!("`{ty}` does not implement the Copy trait"))
262 .emit();
263 }
264
265 if let Some((in_expr, Some(in_asm_ty))) = tied_input {
275 if in_asm_ty != asm_ty {
276 let msg = "incompatible types for asm inout argument";
277 let in_expr_ty = self.expr_ty(in_expr);
278 self.fcx
279 .dcx()
280 .struct_span_err(vec![in_expr.span, expr.span], msg)
281 .with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
282 .with_span_label(expr.span, format!("type `{ty}`"))
283 .with_note(
284 "asm inout arguments must have the same type, \
285 unless they are both pointers or integers of the same size",
286 )
287 .emit();
288 }
289
290 return Some(asm_ty);
293 }
294
295 let asm_arch = self.tcx().sess.asm_arch.unwrap();
298 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
299 let reg_class = reg.reg_class();
300 let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
301 let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
302 let mut err = if !allow_experimental_reg
303 && reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
304 {
305 self.tcx().sess.create_feature_err(
306 RegisterTypeUnstable { span: expr.span, ty },
307 sym::asm_experimental_reg,
308 )
309 } else {
310 let msg = format!("type `{ty}` cannot be used with this register class");
311 let mut err = self.fcx.dcx().struct_span_err(expr.span, msg);
312 let supported_tys: Vec<_> =
313 supported_tys.iter().map(|(t, _)| t.to_string()).collect();
314 err.note(format!(
315 "register class `{}` supports these types: {}",
316 reg_class.name(),
317 supported_tys.join(", "),
318 ));
319 err
320 };
321 if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
322 err.help(format!("consider using the `{}` register class instead", suggest.name()));
323 }
324 err.emit();
325 return Some(asm_ty);
326 };
327
328 if let Some(feature) = feature {
339 if !self.target_features.contains(feature) {
340 let msg = format!("`{feature}` target feature is not enabled");
341 self.fcx
342 .dcx()
343 .struct_span_err(expr.span, msg)
344 .with_note(format!(
345 "this is required to use type `{}` with register class `{}`",
346 ty,
347 reg_class.name(),
348 ))
349 .emit();
350 return Some(asm_ty);
351 }
352 }
353
354 if let Some(ModifierInfo {
356 modifier: suggested_modifier,
357 result: suggested_result,
358 size: suggested_size,
359 }) = reg_class.suggest_modifier(asm_arch, asm_ty)
360 {
361 let mut spans = vec![];
364 for piece in template {
365 if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
366 {
367 if operand_idx == idx && modifier.is_none() {
368 spans.push(span);
369 }
370 }
371 }
372 if !spans.is_empty() {
373 let ModifierInfo {
374 modifier: default_modifier,
375 result: default_result,
376 size: default_size,
377 } = reg_class.default_modifier(asm_arch).unwrap();
378 self.tcx().node_span_lint(
379 lint::builtin::ASM_SUB_REGISTER,
380 expr.hir_id,
381 spans,
382 |lint| {
383 lint.primary_message("formatting may not be suitable for sub-register argument");
384 lint.span_label(expr.span, "for this argument");
385 lint.help(format!(
386 "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
387 ));
388 lint.help(format!(
389 "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
390 ));
391 },
392 );
393 }
394 }
395
396 Some(asm_ty)
397 }
398
399 pub(crate) fn check_asm(&self, asm: &hir::InlineAsm<'tcx>) {
400 let Some(asm_arch) = self.tcx().sess.asm_arch else {
401 self.fcx.dcx().delayed_bug("target architecture does not support asm");
402 return;
403 };
404 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
405 for (idx, &(op, op_sp)) in asm.operands.iter().enumerate() {
406 if let Some(reg) = op.reg() {
417 if let InlineAsmRegOrRegClass::Reg(reg) = reg {
420 if let InlineAsmReg::Err = reg {
421 continue;
424 }
425 if let Err(msg) = reg.validate(
426 asm_arch,
427 self.tcx().sess.relocation_model(),
428 self.target_features,
429 &self.tcx().sess.target,
430 op.is_clobber(),
431 ) {
432 let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
433 self.fcx.dcx().span_err(op_sp, msg);
434 continue;
435 }
436 }
437
438 if !op.is_clobber() {
439 let mut missing_required_features = vec![];
440 let reg_class = reg.reg_class();
441 if let InlineAsmRegClass::Err = reg_class {
442 continue;
443 }
444 for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
445 {
446 match feature {
447 Some(feature) => {
448 if self.target_features.contains(&feature) {
449 missing_required_features.clear();
450 break;
451 } else {
452 missing_required_features.push(feature);
453 }
454 }
455 None => {
456 missing_required_features.clear();
457 break;
458 }
459 }
460 }
461
462 missing_required_features.sort_unstable();
464 missing_required_features.dedup();
465 match &missing_required_features[..] {
466 [] => {}
467 [feature] => {
468 let msg = format!(
469 "register class `{}` requires the `{}` target feature",
470 reg_class.name(),
471 feature
472 );
473 self.fcx.dcx().span_err(op_sp, msg);
474 continue;
476 }
477 features => {
478 let msg = format!(
479 "register class `{}` requires at least one of the following target features: {}",
480 reg_class.name(),
481 features
482 .iter()
483 .map(|f| f.as_str())
484 .intersperse(", ")
485 .collect::<String>(),
486 );
487 self.fcx.dcx().span_err(op_sp, msg);
488 continue;
490 }
491 }
492 }
493 }
494
495 match op {
496 hir::InlineAsmOperand::In { reg, expr } => {
497 self.check_asm_operand_type(idx, reg, expr, asm.template, true, None);
498 }
499 hir::InlineAsmOperand::Out { reg, late: _, expr } => {
500 if let Some(expr) = expr {
501 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
502 }
503 }
504 hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
505 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
506 }
507 hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
508 let in_ty =
509 self.check_asm_operand_type(idx, reg, in_expr, asm.template, true, None);
510 if let Some(out_expr) = out_expr {
511 self.check_asm_operand_type(
512 idx,
513 reg,
514 out_expr,
515 asm.template,
516 false,
517 Some((in_expr, in_ty)),
518 );
519 }
520 }
521 hir::InlineAsmOperand::Const { anon_const } => {
522 let ty = self.expr_ty(self.tcx().hir_body(anon_const.body).value);
523 match ty.kind() {
524 ty::Error(_) => {}
525 _ if ty.is_integral() => {}
526 _ => {
527 self.fcx
528 .dcx()
529 .struct_span_err(op_sp, "invalid type for `const` operand")
530 .with_span_label(
531 self.tcx().def_span(anon_const.def_id),
532 format!("is {} `{}`", ty.kind().article(), ty),
533 )
534 .with_help("`const` operands must be of an integer type")
535 .emit();
536 }
537 }
538 }
539 hir::InlineAsmOperand::SymFn { expr } => {
541 let ty = self.expr_ty(expr);
542 match ty.kind() {
543 ty::FnDef(..) => {}
544 ty::Error(_) => {}
545 _ => {
546 self.fcx
547 .dcx()
548 .struct_span_err(op_sp, "invalid `sym` operand")
549 .with_span_label(
550 expr.span,
551 format!("is {} `{}`", ty.kind().article(), ty),
552 )
553 .with_help(
554 "`sym` operands must refer to either a function or a static",
555 )
556 .emit();
557 }
558 }
559 }
560 hir::InlineAsmOperand::SymStatic { .. } => {}
562 hir::InlineAsmOperand::Label { .. } => {}
564 }
565 }
566 }
567}