1use rustc_abi::FieldIdx;
2use rustc_ast::InlineAsmTemplatePiece;
3use rustc_data_structures::fx::FxIndexSet;
4use rustc_hir::def_id::DefId;
5use rustc_hir::{self as hir, LangItem};
6use rustc_middle::bug;
7use rustc_middle::ty::{self, Article, FloatTy, IntTy, Ty, TyCtxt, TypeVisitableExt, UintTy};
8use rustc_session::lint;
9use rustc_span::def_id::LocalDefId;
10use rustc_span::{ErrorGuaranteed, Span, Symbol, sym};
11use rustc_target::asm::{
12 InlineAsmReg, InlineAsmRegClass, InlineAsmRegOrRegClass, InlineAsmType, ModifierInfo,
13};
14use rustc_trait_selection::infer::InferCtxtExt;
15
16use crate::FnCtxt;
17use crate::errors::RegisterTypeUnstable;
18
19pub(crate) struct InlineAsmCtxt<'a, 'tcx> {
20 target_features: &'tcx FxIndexSet<Symbol>,
21 fcx: &'a FnCtxt<'a, 'tcx>,
22}
23
24enum NonAsmTypeReason<'tcx> {
25 UnevaluatedSIMDArrayLength(DefId, ty::Const<'tcx>),
26 Invalid(Ty<'tcx>),
27 InvalidElement(DefId, Ty<'tcx>),
28 NotSizedPtr(Ty<'tcx>),
29 EmptySIMDArray(Ty<'tcx>),
30 Tainted(ErrorGuaranteed),
31}
32
33impl<'a, 'tcx> InlineAsmCtxt<'a, 'tcx> {
34 pub(crate) fn new(fcx: &'a FnCtxt<'a, 'tcx>, def_id: LocalDefId) -> Self {
35 InlineAsmCtxt { target_features: fcx.tcx.asm_target_features(def_id), fcx }
36 }
37
38 fn tcx(&self) -> TyCtxt<'tcx> {
39 self.fcx.tcx
40 }
41
42 fn expr_ty(&self, expr: &hir::Expr<'tcx>) -> Ty<'tcx> {
43 let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted(expr);
44 let ty = self.fcx.try_structurally_resolve_type(expr.span, ty);
45 if ty.has_non_region_infer() {
46 Ty::new_misc_error(self.tcx())
47 } else {
48 self.tcx().erase_and_anonymize_regions(ty)
49 }
50 }
51
52 fn is_thin_ptr_ty(&self, span: Span, ty: Ty<'tcx>) -> bool {
54 if self.fcx.type_is_sized_modulo_regions(self.fcx.param_env, ty) {
57 return true;
58 }
59 if let ty::Foreign(..) = self.fcx.try_structurally_resolve_type(span, ty).kind() {
60 return true;
61 }
62 false
63 }
64
65 fn get_asm_ty(
66 &self,
67 span: Span,
68 ty: Ty<'tcx>,
69 ) -> Result<InlineAsmType, NonAsmTypeReason<'tcx>> {
70 let asm_ty_isize = match self.tcx().sess.target.pointer_width {
71 16 => InlineAsmType::I16,
72 32 => InlineAsmType::I32,
73 64 => InlineAsmType::I64,
74 width => bug!("unsupported pointer width: {width}"),
75 };
76
77 match *ty.kind() {
78 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::I8),
79 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::I16),
80 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::I32),
81 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::I64),
82 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => Ok(InlineAsmType::I128),
83 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => Ok(asm_ty_isize),
84 ty::Float(FloatTy::F16) => Ok(InlineAsmType::F16),
85 ty::Float(FloatTy::F32) => Ok(InlineAsmType::F32),
86 ty::Float(FloatTy::F64) => Ok(InlineAsmType::F64),
87 ty::Float(FloatTy::F128) => Ok(InlineAsmType::F128),
88 ty::FnPtr(..) => Ok(asm_ty_isize),
89 ty::RawPtr(elem_ty, _) => {
90 if self.is_thin_ptr_ty(span, elem_ty) {
91 Ok(asm_ty_isize)
92 } else {
93 Err(NonAsmTypeReason::NotSizedPtr(ty))
94 }
95 }
96 ty::Adt(adt, args) if adt.repr().simd() => {
97 if !adt.is_struct() {
98 let guar = self.fcx.dcx().span_delayed_bug(
99 span,
100 format!("repr(simd) should only be used on structs, got {}", adt.descr()),
101 );
102 return Err(NonAsmTypeReason::Tainted(guar));
103 }
104
105 let fields = &adt.non_enum_variant().fields;
106 if fields.is_empty() {
107 return Err(NonAsmTypeReason::EmptySIMDArray(ty));
108 }
109 let field = &fields[FieldIdx::ZERO];
110 let elem_ty = field.ty(self.tcx(), args);
111
112 let (size, ty) = match *elem_ty.kind() {
113 ty::Array(ty, len) => {
114 let len = if self.fcx.next_trait_solver() {
117 self.fcx.try_structurally_resolve_const(span, len)
118 } else {
119 self.fcx.tcx.normalize_erasing_regions(
120 self.fcx.typing_env(self.fcx.param_env),
121 len,
122 )
123 };
124 let Some(len) = len.try_to_target_usize(self.tcx()) else {
125 return Err(NonAsmTypeReason::UnevaluatedSIMDArrayLength(
126 field.did, len,
127 ));
128 };
129 (len, ty)
130 }
131 _ => (fields.len() as u64, elem_ty),
132 };
133
134 match ty.kind() {
135 ty::Int(IntTy::I8) | ty::Uint(UintTy::U8) => Ok(InlineAsmType::VecI8(size)),
136 ty::Int(IntTy::I16) | ty::Uint(UintTy::U16) => Ok(InlineAsmType::VecI16(size)),
137 ty::Int(IntTy::I32) | ty::Uint(UintTy::U32) => Ok(InlineAsmType::VecI32(size)),
138 ty::Int(IntTy::I64) | ty::Uint(UintTy::U64) => Ok(InlineAsmType::VecI64(size)),
139 ty::Int(IntTy::I128) | ty::Uint(UintTy::U128) => {
140 Ok(InlineAsmType::VecI128(size))
141 }
142 ty::Int(IntTy::Isize) | ty::Uint(UintTy::Usize) => {
143 Ok(match self.tcx().sess.target.pointer_width {
144 16 => InlineAsmType::VecI16(size),
145 32 => InlineAsmType::VecI32(size),
146 64 => InlineAsmType::VecI64(size),
147 width => bug!("unsupported pointer width: {width}"),
148 })
149 }
150 ty::Float(FloatTy::F16) => Ok(InlineAsmType::VecF16(size)),
151 ty::Float(FloatTy::F32) => Ok(InlineAsmType::VecF32(size)),
152 ty::Float(FloatTy::F64) => Ok(InlineAsmType::VecF64(size)),
153 ty::Float(FloatTy::F128) => Ok(InlineAsmType::VecF128(size)),
154 _ => Err(NonAsmTypeReason::InvalidElement(field.did, ty)),
155 }
156 }
157 ty::Infer(_) => bug!("unexpected infer ty in asm operand"),
158 _ => Err(NonAsmTypeReason::Invalid(ty)),
159 }
160 }
161
162 fn check_asm_operand_type(
163 &self,
164 idx: usize,
165 reg: InlineAsmRegOrRegClass,
166 expr: &'tcx hir::Expr<'tcx>,
167 template: &[InlineAsmTemplatePiece],
168 is_input: bool,
169 tied_input: Option<(&'tcx hir::Expr<'tcx>, Option<InlineAsmType>)>,
170 ) -> Option<InlineAsmType> {
171 let ty = self.expr_ty(expr);
172 if ty.has_non_region_infer() {
173 bug!("inference variable in asm operand ty: {:?} {:?}", expr, ty);
174 }
175
176 let asm_ty = match *ty.kind() {
177 ty::Never if is_input => return None,
179 _ if ty.references_error() => return None,
180 ty::Adt(adt, args) if self.tcx().is_lang_item(adt.did(), LangItem::MaybeUninit) => {
181 let fields = &adt.non_enum_variant().fields;
182 let ty = fields[FieldIdx::ONE].ty(self.tcx(), args);
183 let ty::Adt(ty, args) = ty.kind() else {
186 unreachable!("expected first field of `MaybeUninit` to be an ADT")
187 };
188 assert!(
189 ty.is_manually_drop(),
190 "expected first field of `MaybeUninit` to be `ManuallyDrop`"
191 );
192 let fields = &ty.non_enum_variant().fields;
193 let ty = fields[FieldIdx::ZERO].ty(self.tcx(), args);
194 self.get_asm_ty(expr.span, ty)
195 }
196 _ => self.get_asm_ty(expr.span, ty),
197 };
198 let asm_ty = match asm_ty {
199 Ok(asm_ty) => asm_ty,
200 Err(reason) => {
201 match reason {
202 NonAsmTypeReason::UnevaluatedSIMDArrayLength(did, len) => {
203 let msg = format!("cannot evaluate SIMD vector length `{len}`");
204 self.fcx
205 .dcx()
206 .struct_span_err(self.tcx().def_span(did), msg)
207 .with_span_note(
208 expr.span,
209 "SIMD vector length needs to be known statically for use in `asm!`",
210 )
211 .emit();
212 }
213 NonAsmTypeReason::Invalid(ty) => {
214 let msg = format!("cannot use value of type `{ty}` for inline assembly");
215 self.fcx.dcx().struct_span_err(expr.span, msg).with_note(
216 "only integers, floats, SIMD vectors, pointers and function pointers \
217 can be used as arguments for inline assembly",
218 ).emit();
219 }
220 NonAsmTypeReason::NotSizedPtr(ty) => {
221 let msg = format!(
222 "cannot use value of unsized pointer type `{ty}` for inline assembly"
223 );
224 self.fcx
225 .dcx()
226 .struct_span_err(expr.span, msg)
227 .with_note("only sized pointers can be used in inline assembly")
228 .emit();
229 }
230 NonAsmTypeReason::InvalidElement(did, ty) => {
231 let msg = format!(
232 "cannot use SIMD vector with element type `{ty}` for inline assembly"
233 );
234 self.fcx.dcx()
235 .struct_span_err(self.tcx().def_span(did), msg).with_span_note(
236 expr.span,
237 "only integers, floats, SIMD vectors, pointers and function pointers \
238 can be used as arguments for inline assembly",
239 ).emit();
240 }
241 NonAsmTypeReason::EmptySIMDArray(ty) => {
242 let msg = format!("use of empty SIMD vector `{ty}`");
243 self.fcx.dcx().struct_span_err(expr.span, msg).emit();
244 }
245 NonAsmTypeReason::Tainted(_error_guard) => {
246 }
248 }
249 return None;
250 }
251 };
252
253 if !self.fcx.type_is_copy_modulo_regions(self.fcx.param_env, ty) {
256 let msg = "arguments for inline assembly must be copyable";
257 self.fcx
258 .dcx()
259 .struct_span_err(expr.span, msg)
260 .with_note(format!("`{ty}` does not implement the Copy trait"))
261 .emit();
262 }
263
264 if let Some((in_expr, Some(in_asm_ty))) = tied_input {
274 if in_asm_ty != asm_ty {
275 let msg = "incompatible types for asm inout argument";
276 let in_expr_ty = self.expr_ty(in_expr);
277 self.fcx
278 .dcx()
279 .struct_span_err(vec![in_expr.span, expr.span], msg)
280 .with_span_label(in_expr.span, format!("type `{in_expr_ty}`"))
281 .with_span_label(expr.span, format!("type `{ty}`"))
282 .with_note(
283 "asm inout arguments must have the same type, \
284 unless they are both pointers or integers of the same size",
285 )
286 .emit();
287 }
288
289 return Some(asm_ty);
292 }
293
294 let asm_arch = self.tcx().sess.asm_arch.unwrap();
297 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
298 let reg_class = reg.reg_class();
299 let supported_tys = reg_class.supported_types(asm_arch, allow_experimental_reg);
300 let Some((_, feature)) = supported_tys.iter().find(|&&(t, _)| t == asm_ty) else {
301 let mut err = if !allow_experimental_reg
302 && reg_class.supported_types(asm_arch, true).iter().any(|&(t, _)| t == asm_ty)
303 {
304 self.tcx().sess.create_feature_err(
305 RegisterTypeUnstable { span: expr.span, ty },
306 sym::asm_experimental_reg,
307 )
308 } else {
309 let msg = format!("type `{ty}` cannot be used with this register class");
310 let mut err = self.fcx.dcx().struct_span_err(expr.span, msg);
311 let supported_tys: Vec<_> =
312 supported_tys.iter().map(|(t, _)| t.to_string()).collect();
313 err.note(format!(
314 "register class `{}` supports these types: {}",
315 reg_class.name(),
316 supported_tys.join(", "),
317 ));
318 err
319 };
320 if let Some(suggest) = reg_class.suggest_class(asm_arch, asm_ty) {
321 err.help(format!("consider using the `{}` register class instead", suggest.name()));
322 }
323 err.emit();
324 return Some(asm_ty);
325 };
326
327 if let Some(feature) = feature {
338 if !self.target_features.contains(feature) {
339 let msg = format!("`{feature}` target feature is not enabled");
340 self.fcx
341 .dcx()
342 .struct_span_err(expr.span, msg)
343 .with_note(format!(
344 "this is required to use type `{}` with register class `{}`",
345 ty,
346 reg_class.name(),
347 ))
348 .emit();
349 return Some(asm_ty);
350 }
351 }
352
353 if let Some(ModifierInfo {
355 modifier: suggested_modifier,
356 result: suggested_result,
357 size: suggested_size,
358 }) = reg_class.suggest_modifier(asm_arch, asm_ty)
359 {
360 let mut spans = vec![];
363 for piece in template {
364 if let &InlineAsmTemplatePiece::Placeholder { operand_idx, modifier, span } = piece
365 {
366 if operand_idx == idx && modifier.is_none() {
367 spans.push(span);
368 }
369 }
370 }
371 if !spans.is_empty() {
372 let ModifierInfo {
373 modifier: default_modifier,
374 result: default_result,
375 size: default_size,
376 } = reg_class.default_modifier(asm_arch).unwrap();
377 self.tcx().node_span_lint(
378 lint::builtin::ASM_SUB_REGISTER,
379 expr.hir_id,
380 spans,
381 |lint| {
382 lint.primary_message("formatting may not be suitable for sub-register argument");
383 lint.span_label(expr.span, "for this argument");
384 lint.help(format!(
385 "use `{{{idx}:{suggested_modifier}}}` to have the register formatted as `{suggested_result}` (for {suggested_size}-bit values)",
386 ));
387 lint.help(format!(
388 "or use `{{{idx}:{default_modifier}}}` to keep the default formatting of `{default_result}` (for {default_size}-bit values)",
389 ));
390 },
391 );
392 }
393 }
394
395 Some(asm_ty)
396 }
397
398 pub(crate) fn check_asm(&self, asm: &hir::InlineAsm<'tcx>) {
399 let Some(asm_arch) = self.tcx().sess.asm_arch else {
400 self.fcx.dcx().delayed_bug("target architecture does not support asm");
401 return;
402 };
403 let allow_experimental_reg = self.tcx().features().asm_experimental_reg();
404 for (idx, &(op, op_sp)) in asm.operands.iter().enumerate() {
405 if let Some(reg) = op.reg() {
416 if let InlineAsmRegOrRegClass::Reg(reg) = reg {
419 if let InlineAsmReg::Err = reg {
420 continue;
423 }
424 if let Err(msg) = reg.validate(
425 asm_arch,
426 self.tcx().sess.relocation_model(),
427 self.target_features,
428 &self.tcx().sess.target,
429 op.is_clobber(),
430 ) {
431 let msg = format!("cannot use register `{}`: {}", reg.name(), msg);
432 self.fcx.dcx().span_err(op_sp, msg);
433 continue;
434 }
435 }
436
437 if !op.is_clobber() {
438 let mut missing_required_features = vec![];
439 let reg_class = reg.reg_class();
440 if let InlineAsmRegClass::Err = reg_class {
441 continue;
442 }
443 for &(_, feature) in reg_class.supported_types(asm_arch, allow_experimental_reg)
444 {
445 match feature {
446 Some(feature) => {
447 if self.target_features.contains(&feature) {
448 missing_required_features.clear();
449 break;
450 } else {
451 missing_required_features.push(feature);
452 }
453 }
454 None => {
455 missing_required_features.clear();
456 break;
457 }
458 }
459 }
460
461 missing_required_features.sort_unstable();
463 missing_required_features.dedup();
464 match &missing_required_features[..] {
465 [] => {}
466 [feature] => {
467 let msg = format!(
468 "register class `{}` requires the `{}` target feature",
469 reg_class.name(),
470 feature
471 );
472 self.fcx.dcx().span_err(op_sp, msg);
473 continue;
475 }
476 features => {
477 let msg = format!(
478 "register class `{}` requires at least one of the following target features: {}",
479 reg_class.name(),
480 features
481 .iter()
482 .map(|f| f.as_str())
483 .intersperse(", ")
484 .collect::<String>(),
485 );
486 self.fcx.dcx().span_err(op_sp, msg);
487 continue;
489 }
490 }
491 }
492 }
493
494 match op {
495 hir::InlineAsmOperand::In { reg, expr } => {
496 self.check_asm_operand_type(idx, reg, expr, asm.template, true, None);
497 }
498 hir::InlineAsmOperand::Out { reg, late: _, expr } => {
499 if let Some(expr) = expr {
500 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
501 }
502 }
503 hir::InlineAsmOperand::InOut { reg, late: _, expr } => {
504 self.check_asm_operand_type(idx, reg, expr, asm.template, false, None);
505 }
506 hir::InlineAsmOperand::SplitInOut { reg, late: _, in_expr, out_expr } => {
507 let in_ty =
508 self.check_asm_operand_type(idx, reg, in_expr, asm.template, true, None);
509 if let Some(out_expr) = out_expr {
510 self.check_asm_operand_type(
511 idx,
512 reg,
513 out_expr,
514 asm.template,
515 false,
516 Some((in_expr, in_ty)),
517 );
518 }
519 }
520 hir::InlineAsmOperand::Const { anon_const } => {
521 let ty = self.expr_ty(self.tcx().hir_body(anon_const.body).value);
522 match ty.kind() {
523 ty::Error(_) => {}
524 _ if ty.is_integral() => {}
525 _ => {
526 self.fcx
527 .dcx()
528 .struct_span_err(op_sp, "invalid type for `const` operand")
529 .with_span_label(
530 self.tcx().def_span(anon_const.def_id),
531 format!("is {} `{}`", ty.kind().article(), ty),
532 )
533 .with_help("`const` operands must be of an integer type")
534 .emit();
535 }
536 }
537 }
538 hir::InlineAsmOperand::SymFn { expr } => {
540 let ty = self.expr_ty(expr);
541 match ty.kind() {
542 ty::FnDef(..) => {}
543 ty::Error(_) => {}
544 _ => {
545 self.fcx
546 .dcx()
547 .struct_span_err(op_sp, "invalid `sym` operand")
548 .with_span_label(
549 expr.span,
550 format!("is {} `{}`", ty.kind().article(), ty),
551 )
552 .with_help(
553 "`sym` operands must refer to either a function or a static",
554 )
555 .emit();
556 }
557 }
558 }
559 hir::InlineAsmOperand::SymStatic { .. } => {}
561 hir::InlineAsmOperand::Label { .. } => {}
563 }
564 }
565 }
566}