# Primitive Type i16

1.0.0 ·## Expand description

The 16-bit signed integer type.

## Implementations§

source§### impl i16

### impl i16

source#### pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>

#### pub fn from_str_radix(src: &str, radix: u32) -> Result<Self, ParseIntError>

Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

or `-`

sign followed by digits.
Leading and trailing whitespace represent an error. Digits are a subset of these characters,
depending on `radix`

:

`0-9`

`a-z`

`A-Z`

##### Panics

This function panics if `radix`

is not in the range from 2 to 36.

##### Examples

Basic usage:

`assert_eq!(i16::from_str_radix("A", 16), Ok(10));`

Runconst: 1.32.0 · source#### pub const fn count_ones(self) -> u32

#### pub const fn count_ones(self) -> u32

const: 1.32.0 · source#### pub const fn count_zeros(self) -> u32

#### pub const fn count_zeros(self) -> u32

const: 1.32.0 · source#### pub const fn leading_zeros(self) -> u32

#### pub const fn leading_zeros(self) -> u32

Returns the number of leading zeros in the binary representation of `self`

.

Depending on what you’re doing with the value, you might also be interested in the
`ilog2`

function which returns a consistent number, even if the type widens.

##### Examples

Basic usage:

```
let n = -1i16;
assert_eq!(n.leading_zeros(), 0);
```

Runconst: 1.32.0 · source#### pub const fn trailing_zeros(self) -> u32

#### pub const fn trailing_zeros(self) -> u32

1.46.0 (const: 1.46.0) · source#### pub const fn leading_ones(self) -> u32

#### pub const fn leading_ones(self) -> u32

1.46.0 (const: 1.46.0) · source#### pub const fn trailing_ones(self) -> u32

#### pub const fn trailing_ones(self) -> u32

const: 1.32.0 · source#### pub const fn rotate_left(self, n: u32) -> Self

#### pub const fn rotate_left(self, n: u32) -> Self

const: 1.32.0 · source#### pub const fn rotate_right(self, n: u32) -> Self

#### pub const fn rotate_right(self, n: u32) -> Self

const: 1.32.0 · source#### pub const fn swap_bytes(self) -> Self

#### pub const fn swap_bytes(self) -> Self

1.37.0 (const: 1.37.0) · source#### pub const fn reverse_bits(self) -> Self

#### pub const fn reverse_bits(self) -> Self

Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.

##### Examples

Basic usage:

```
let n = 0x1234i16;
let m = n.reverse_bits();
assert_eq!(m, 0x2c48);
assert_eq!(0, 0i16.reverse_bits());
```

Runconst: 1.32.0 · source#### pub const fn from_le(x: Self) -> Self

#### pub const fn from_le(x: Self) -> Self

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

##### Examples

Basic usage:

```
let n = 0x1Ai16;
if cfg!(target_endian = "little") {
assert_eq!(i16::from_le(n), n)
} else {
assert_eq!(i16::from_le(n), n.swap_bytes())
}
```

Runconst: 1.47.0 · source#### pub const fn checked_add(self, rhs: Self) -> Option<Self>

#### pub const fn checked_add(self, rhs: Self) -> Option<Self>

const: unstable · source#### pub unsafe fn unchecked_add(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`unchecked_math`

#85122)

#### pub unsafe fn unchecked_add(self, rhs: Self) -> Self

`unchecked_math`

#85122)Unchecked integer addition. Computes `self + rhs`

, assuming overflow
cannot occur.

##### Safety

This results in undefined behavior when
`self + rhs > i16::MAX`

or `self + rhs < i16::MIN`

,
i.e. when `checked_add`

would return `None`

.

1.66.0 (const: 1.66.0) · source#### pub const fn checked_add_unsigned(self, rhs: u16) -> Option<Self>

#### pub const fn checked_add_unsigned(self, rhs: u16) -> Option<Self>

const: 1.47.0 · source#### pub const fn checked_sub(self, rhs: Self) -> Option<Self>

#### pub const fn checked_sub(self, rhs: Self) -> Option<Self>

const: unstable · source#### pub unsafe fn unchecked_sub(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`unchecked_math`

#85122)

#### pub unsafe fn unchecked_sub(self, rhs: Self) -> Self

`unchecked_math`

#85122)Unchecked integer subtraction. Computes `self - rhs`

, assuming overflow
cannot occur.

##### Safety

This results in undefined behavior when
`self - rhs > i16::MAX`

or `self - rhs < i16::MIN`

,
i.e. when `checked_sub`

would return `None`

.

1.66.0 (const: 1.66.0) · source#### pub const fn checked_sub_unsigned(self, rhs: u16) -> Option<Self>

#### pub const fn checked_sub_unsigned(self, rhs: u16) -> Option<Self>

const: 1.47.0 · source#### pub const fn checked_mul(self, rhs: Self) -> Option<Self>

#### pub const fn checked_mul(self, rhs: Self) -> Option<Self>

const: unstable · source#### pub unsafe fn unchecked_mul(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`unchecked_math`

#85122)

#### pub unsafe fn unchecked_mul(self, rhs: Self) -> Self

`unchecked_math`

#85122)Unchecked integer multiplication. Computes `self * rhs`

, assuming overflow
cannot occur.

##### Safety

This results in undefined behavior when
`self * rhs > i16::MAX`

or `self * rhs < i16::MIN`

,
i.e. when `checked_mul`

would return `None`

.

const: 1.52.0 · source#### pub const fn checked_div(self, rhs: Self) -> Option<Self>

#### pub const fn checked_div(self, rhs: Self) -> Option<Self>

1.38.0 (const: 1.52.0) · source#### pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self>

#### pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self>

Checked Euclidean division. Computes `self.div_euclid(rhs)`

,
returning `None`

if `rhs == 0`

or the division results in overflow.

##### Examples

Basic usage:

```
assert_eq!((i16::MIN + 1).checked_div_euclid(-1), Some(32767));
assert_eq!(i16::MIN.checked_div_euclid(-1), None);
assert_eq!((1i16).checked_div_euclid(0), None);
```

Run1.7.0 (const: 1.52.0) · source#### pub const fn checked_rem(self, rhs: Self) -> Option<Self>

#### pub const fn checked_rem(self, rhs: Self) -> Option<Self>

1.38.0 (const: 1.52.0) · source#### pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self>

#### pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self>

1.7.0 (const: 1.47.0) · source#### pub const fn checked_neg(self) -> Option<Self>

#### pub const fn checked_neg(self) -> Option<Self>

1.7.0 (const: 1.47.0) · source#### pub const fn checked_shl(self, rhs: u32) -> Option<Self>

#### pub const fn checked_shl(self, rhs: u32) -> Option<Self>

const: unstable · source#### pub unsafe fn unchecked_shl(self, rhs: u32) -> Self

🔬This is a nightly-only experimental API. (`unchecked_math`

#85122)

#### pub unsafe fn unchecked_shl(self, rhs: u32) -> Self

`unchecked_math`

#85122)Unchecked shift left. Computes `self << rhs`

, assuming that
`rhs`

is less than the number of bits in `self`

.

##### Safety

This results in undefined behavior if `rhs`

is larger than
or equal to the number of bits in `self`

,
i.e. when `checked_shl`

would return `None`

.

1.7.0 (const: 1.47.0) · source#### pub const fn checked_shr(self, rhs: u32) -> Option<Self>

#### pub const fn checked_shr(self, rhs: u32) -> Option<Self>

const: unstable · source#### pub unsafe fn unchecked_shr(self, rhs: u32) -> Self

🔬This is a nightly-only experimental API. (`unchecked_math`

#85122)

#### pub unsafe fn unchecked_shr(self, rhs: u32) -> Self

`unchecked_math`

#85122)Unchecked shift right. Computes `self >> rhs`

, assuming that
`rhs`

is less than the number of bits in `self`

.

##### Safety

This results in undefined behavior if `rhs`

is larger than
or equal to the number of bits in `self`

,
i.e. when `checked_shr`

would return `None`

.

1.13.0 (const: 1.47.0) · source#### pub const fn checked_abs(self) -> Option<Self>

#### pub const fn checked_abs(self) -> Option<Self>

1.34.0 (const: 1.50.0) · source#### pub const fn checked_pow(self, exp: u32) -> Option<Self>

#### pub const fn checked_pow(self, exp: u32) -> Option<Self>

const: 1.47.0 · source#### pub const fn saturating_add(self, rhs: Self) -> Self

#### pub const fn saturating_add(self, rhs: Self) -> Self

1.66.0 (const: 1.66.0) · source#### pub const fn saturating_add_unsigned(self, rhs: u16) -> Self

#### pub const fn saturating_add_unsigned(self, rhs: u16) -> Self

const: 1.47.0 · source#### pub const fn saturating_sub(self, rhs: Self) -> Self

#### pub const fn saturating_sub(self, rhs: Self) -> Self

1.66.0 (const: 1.66.0) · source#### pub const fn saturating_sub_unsigned(self, rhs: u16) -> Self

#### pub const fn saturating_sub_unsigned(self, rhs: u16) -> Self

1.45.0 (const: 1.47.0) · source#### pub const fn saturating_neg(self) -> Self

#### pub const fn saturating_neg(self) -> Self

Saturating integer negation. Computes `-self`

, returning `MAX`

if `self == MIN`

instead of overflowing.

##### Examples

Basic usage:

```
assert_eq!(100i16.saturating_neg(), -100);
assert_eq!((-100i16).saturating_neg(), 100);
assert_eq!(i16::MIN.saturating_neg(), i16::MAX);
assert_eq!(i16::MAX.saturating_neg(), i16::MIN + 1);
```

Run1.45.0 (const: 1.47.0) · source#### pub const fn saturating_abs(self) -> Self

#### pub const fn saturating_abs(self) -> Self

Saturating absolute value. Computes `self.abs()`

, returning `MAX`

if `self == MIN`

instead of overflowing.

##### Examples

Basic usage:

```
assert_eq!(100i16.saturating_abs(), 100);
assert_eq!((-100i16).saturating_abs(), 100);
assert_eq!(i16::MIN.saturating_abs(), i16::MAX);
assert_eq!((i16::MIN + 1).saturating_abs(), i16::MAX);
```

Run1.7.0 (const: 1.47.0) · source#### pub const fn saturating_mul(self, rhs: Self) -> Self

#### pub const fn saturating_mul(self, rhs: Self) -> Self

1.58.0 (const: 1.58.0) · source#### pub const fn saturating_div(self, rhs: Self) -> Self

#### pub const fn saturating_div(self, rhs: Self) -> Self

1.34.0 (const: 1.50.0) · source#### pub const fn saturating_pow(self, exp: u32) -> Self

#### pub const fn saturating_pow(self, exp: u32) -> Self

const: 1.32.0 · source#### pub const fn wrapping_add(self, rhs: Self) -> Self

#### pub const fn wrapping_add(self, rhs: Self) -> Self

1.66.0 (const: 1.66.0) · source#### pub const fn wrapping_add_unsigned(self, rhs: u16) -> Self

#### pub const fn wrapping_add_unsigned(self, rhs: u16) -> Self

const: 1.32.0 · source#### pub const fn wrapping_sub(self, rhs: Self) -> Self

#### pub const fn wrapping_sub(self, rhs: Self) -> Self

1.66.0 (const: 1.66.0) · source#### pub const fn wrapping_sub_unsigned(self, rhs: u16) -> Self

#### pub const fn wrapping_sub_unsigned(self, rhs: u16) -> Self

const: 1.32.0 · source#### pub const fn wrapping_mul(self, rhs: Self) -> Self

#### pub const fn wrapping_mul(self, rhs: Self) -> Self

1.2.0 (const: 1.52.0) · source#### pub const fn wrapping_div(self, rhs: Self) -> Self

#### pub const fn wrapping_div(self, rhs: Self) -> Self

Wrapping (modular) division. Computes `self / rhs`

, wrapping around at the
boundary of the type.

The only case where such wrapping can occur is when one divides `MIN / -1`

on a signed type (where
`MIN`

is the negative minimal value for the type); this is equivalent to `-MIN`

, a positive value
that is too large to represent in the type. In such a case, this function returns `MIN`

itself.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_div(10), 10);
assert_eq!((-128i8).wrapping_div(-1), -128);
```

Run1.38.0 (const: 1.52.0) · source#### pub const fn wrapping_div_euclid(self, rhs: Self) -> Self

#### pub const fn wrapping_div_euclid(self, rhs: Self) -> Self

Wrapping Euclidean division. Computes `self.div_euclid(rhs)`

,
wrapping around at the boundary of the type.

Wrapping will only occur in `MIN / -1`

on a signed type (where `MIN`

is the negative minimal value
for the type). This is equivalent to `-MIN`

, a positive value that is too large to represent in the
type. In this case, this method returns `MIN`

itself.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_div_euclid(10), 10);
assert_eq!((-128i8).wrapping_div_euclid(-1), -128);
```

Run1.2.0 (const: 1.52.0) · source#### pub const fn wrapping_rem(self, rhs: Self) -> Self

#### pub const fn wrapping_rem(self, rhs: Self) -> Self

Wrapping (modular) remainder. Computes `self % rhs`

, wrapping around at the
boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`

invalid for `MIN / -1`

on a signed type (where `MIN`

is the negative minimal value). In such a case,
this function returns `0`

.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_rem(10), 0);
assert_eq!((-128i8).wrapping_rem(-1), 0);
```

Run1.38.0 (const: 1.52.0) · source#### pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self

#### pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self

Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`

, wrapping around
at the boundary of the type.

Wrapping will only occur in `MIN % -1`

on a signed type (where `MIN`

is the negative minimal value
for the type). In this case, this method returns 0.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_rem_euclid(10), 0);
assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);
```

Run1.2.0 (const: 1.32.0) · source#### pub const fn wrapping_neg(self) -> Self

#### pub const fn wrapping_neg(self) -> Self

Wrapping (modular) negation. Computes `-self`

, wrapping around at the boundary
of the type.

The only case where such wrapping can occur is when one negates `MIN`

on a signed type (where `MIN`

is the negative minimal value for the type); this is a positive value that is too large to represent
in the type. In such a case, this function returns `MIN`

itself.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_neg(), -100);
assert_eq!(i16::MIN.wrapping_neg(), i16::MIN);
```

Run1.2.0 (const: 1.32.0) · source#### pub const fn wrapping_shl(self, rhs: u32) -> Self

#### pub const fn wrapping_shl(self, rhs: u32) -> Self

Panic-free bitwise shift-left; yields `self << mask(rhs)`

, where `mask`

removes
any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
The primitive integer types all implement a `rotate_left`

function,
which may be what you want instead.

##### Examples

Basic usage:

```
assert_eq!((-1i16).wrapping_shl(7), -128);
assert_eq!((-1i16).wrapping_shl(128), -1);
```

Run1.2.0 (const: 1.32.0) · source#### pub const fn wrapping_shr(self, rhs: u32) -> Self

#### pub const fn wrapping_shr(self, rhs: u32) -> Self

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
to the range of the type, rather than the bits shifted out of the LHS being returned to the other
end. The primitive integer types all implement a `rotate_right`

function,
which may be what you want instead.

##### Examples

Basic usage:

```
assert_eq!((-128i16).wrapping_shr(7), -1);
assert_eq!((-128i16).wrapping_shr(64), -128);
```

Run1.13.0 (const: 1.32.0) · source#### pub const fn wrapping_abs(self) -> Self

#### pub const fn wrapping_abs(self) -> Self

Wrapping (modular) absolute value. Computes `self.abs()`

, wrapping around at
the boundary of the type.

The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type; this is a positive value that is too large to represent in the type. In
such a case, this function returns `MIN`

itself.

##### Examples

Basic usage:

```
assert_eq!(100i16.wrapping_abs(), 100);
assert_eq!((-100i16).wrapping_abs(), 100);
assert_eq!(i16::MIN.wrapping_abs(), i16::MIN);
assert_eq!((-128i8).wrapping_abs() as u8, 128);
```

Run1.51.0 (const: 1.51.0) · source#### pub const fn unsigned_abs(self) -> u16

#### pub const fn unsigned_abs(self) -> u16

1.34.0 (const: 1.50.0) · source#### pub const fn wrapping_pow(self, exp: u32) -> Self

#### pub const fn wrapping_pow(self, exp: u32) -> Self

1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_add(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_add(self, rhs: Self) -> (Self, bool)

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_add(2), (7, false));
assert_eq!(i16::MAX.overflowing_add(1), (i16::MIN, true));
```

Runconst: unstable · source#### pub fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool)

🔬This is a nightly-only experimental API. (`bigint_helper_methods`

#85532)

#### pub fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool)

`bigint_helper_methods`

#85532)Calculates `self`

+ `rhs`

+ `carry`

and checks for overflow.

Performs “ternary addition” of two integer operands and a carry-in bit, and returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow would occur. On overflow, the wrapped value is returned.

This allows chaining together multiple additions to create a wider
addition, and can be useful for bignum addition. This method should
only be used for the most significant word; for the less significant
words the unsigned method
`u16::carrying_add`

should be used.

The output boolean returned by this method is *not* a carry flag,
and should *not* be added to a more significant word.

If the input carry is false, this method is equivalent to
`overflowing_add`

.

##### Examples

```
#![feature(bigint_helper_methods)]
// Only the most significant word is signed.
//
// 10 MAX (a = 10 × 2^16 + 2^16 - 1)
// + -5 9 (b = -5 × 2^16 + 9)
// ---------
// 6 8 (sum = 6 × 2^16 + 8)
let (a1, a0): (i16, u16) = (10, u16::MAX);
let (b1, b0): (i16, u16) = (-5, 9);
let carry0 = false;
// u16::carrying_add for the less significant words
let (sum0, carry1) = a0.carrying_add(b0, carry0);
assert_eq!(carry1, true);
// i16::carrying_add for the most significant word
let (sum1, overflow) = a1.carrying_add(b1, carry1);
assert_eq!(overflow, false);
assert_eq!((sum1, sum0), (6, 8));
```

Run1.66.0 (const: 1.66.0) · source#### pub const fn overflowing_add_unsigned(self, rhs: u16) -> (Self, bool)

#### pub const fn overflowing_add_unsigned(self, rhs: u16) -> (Self, bool)

Calculates `self`

+ `rhs`

with an unsigned `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

##### Examples

Basic usage:

```
assert_eq!(1i16.overflowing_add_unsigned(2), (3, false));
assert_eq!((i16::MIN).overflowing_add_unsigned(u16::MAX), (i16::MAX, false));
assert_eq!((i16::MAX - 2).overflowing_add_unsigned(3), (i16::MIN, true));
```

Run1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool)

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_sub(2), (3, false));
assert_eq!(i16::MIN.overflowing_sub(1), (i16::MAX, true));
```

Runconst: unstable · source#### pub fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool)

🔬This is a nightly-only experimental API. (`bigint_helper_methods`

#85532)

#### pub fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool)

`bigint_helper_methods`

#85532)Calculates `self`

− `rhs`

− `borrow`

and checks for
overflow.

Performs “ternary subtraction” by subtracting both an integer
operand and a borrow-in bit from `self`

, and returns a tuple of the
difference along with a boolean indicating whether an arithmetic
overflow would occur. On overflow, the wrapped value is returned.

This allows chaining together multiple subtractions to create a
wider subtraction, and can be useful for bignum subtraction. This
method should only be used for the most significant word; for the
less significant words the unsigned method
`u16::borrowing_sub`

should be used.

The output boolean returned by this method is *not* a borrow flag,
and should *not* be subtracted from a more significant word.

If the input borrow is false, this method is equivalent to
`overflowing_sub`

.

##### Examples

```
#![feature(bigint_helper_methods)]
// Only the most significant word is signed.
//
// 6 8 (a = 6 × 2^16 + 8)
// - -5 9 (b = -5 × 2^16 + 9)
// ---------
// 10 MAX (diff = 10 × 2^16 + 2^16 - 1)
let (a1, a0): (i16, u16) = (6, 8);
let (b1, b0): (i16, u16) = (-5, 9);
let borrow0 = false;
// u16::borrowing_sub for the less significant words
let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
assert_eq!(borrow1, true);
// i16::borrowing_sub for the most significant word
let (diff1, overflow) = a1.borrowing_sub(b1, borrow1);
assert_eq!(overflow, false);
assert_eq!((diff1, diff0), (10, u16::MAX));
```

Run1.66.0 (const: 1.66.0) · source#### pub const fn overflowing_sub_unsigned(self, rhs: u16) -> (Self, bool)

#### pub const fn overflowing_sub_unsigned(self, rhs: u16) -> (Self, bool)

Calculates `self`

- `rhs`

with an unsigned `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

##### Examples

Basic usage:

```
assert_eq!(1i16.overflowing_sub_unsigned(2), (-1, false));
assert_eq!((i16::MAX).overflowing_sub_unsigned(u16::MAX), (i16::MIN, false));
assert_eq!((i16::MIN + 2).overflowing_sub_unsigned(3), (i16::MAX, true));
```

Run1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool)

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_mul(2), (10, false));
assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));
```

Run1.7.0 (const: 1.52.0) · source#### pub const fn overflowing_div(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_div(self, rhs: Self) -> (Self, bool)

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_div(2), (2, false));
assert_eq!(i16::MIN.overflowing_div(-1), (i16::MIN, true));
```

Run1.38.0 (const: 1.52.0) · source#### pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool)

Calculates the quotient of Euclidean division `self.div_euclid(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
occur. If an overflow would occur then `self`

is returned.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_div_euclid(2), (2, false));
assert_eq!(i16::MIN.overflowing_div_euclid(-1), (i16::MIN, true));
```

Run1.7.0 (const: 1.52.0) · source#### pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool)

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_rem(2), (1, false));
assert_eq!(i16::MIN.overflowing_rem(-1), (0, true));
```

Run1.38.0 (const: 1.52.0) · source#### pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)

#### pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool)

Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

##### Panics

This function will panic if `rhs`

is 0.

##### Examples

Basic usage:

```
assert_eq!(5i16.overflowing_rem_euclid(2), (1, false));
assert_eq!(i16::MIN.overflowing_rem_euclid(-1), (0, true));
```

Run1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_neg(self) -> (Self, bool)

#### pub const fn overflowing_neg(self) -> (Self, bool)

Negates self, overflowing if this is equal to the minimum value.

Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
happened. If `self`

is the minimum value (e.g., `i32::MIN`

for values of type `i32`

), then the
minimum value will be returned again and `true`

will be returned for an overflow happening.

##### Examples

Basic usage:

```
assert_eq!(2i16.overflowing_neg(), (-2, false));
assert_eq!(i16::MIN.overflowing_neg(), (i16::MIN, true));
```

Run1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool)

#### pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool)

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

##### Examples

Basic usage:

```
assert_eq!(0x1i16.overflowing_shl(4), (0x10, false));
assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));
```

Run1.7.0 (const: 1.32.0) · source#### pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool)

#### pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool)

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

##### Examples

Basic usage:

```
assert_eq!(0x10i16.overflowing_shr(4), (0x1, false));
assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));
```

Run1.13.0 (const: 1.32.0) · source#### pub const fn overflowing_abs(self) -> (Self, bool)

#### pub const fn overflowing_abs(self) -> (Self, bool)

Computes the absolute value of `self`

.

Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i16::MIN for values of type i16), then the minimum value will be returned again and true will be returned for an overflow happening.

##### Examples

Basic usage:

```
assert_eq!(10i16.overflowing_abs(), (10, false));
assert_eq!((-10i16).overflowing_abs(), (10, false));
assert_eq!((i16::MIN).overflowing_abs(), (i16::MIN, true));
```

Run1.34.0 (const: 1.50.0) · source#### pub const fn overflowing_pow(self, exp: u32) -> (Self, bool)

#### pub const fn overflowing_pow(self, exp: u32) -> (Self, bool)

1.38.0 (const: 1.52.0) · source#### pub const fn div_euclid(self, rhs: Self) -> Self

#### pub const fn div_euclid(self, rhs: Self) -> Self

Calculates the quotient of Euclidean division of `self`

by `rhs`

.

This computes the integer `q`

such that `self = q * rhs + r`

, with
`r = self.rem_euclid(rhs)`

and `0 <= r < abs(rhs)`

.

In other words, the result is `self / rhs`

rounded to the integer `q`

such that `self >= q * rhs`

.
If `self > 0`

, this is equal to round towards zero (the default in Rust);
if `self < 0`

, this is equal to round towards +/- infinity.

##### Panics

This function will panic if `rhs`

is 0 or the division results in overflow.

##### Examples

Basic usage:

```
let a: i16 = 7; // or any other integer type
let b = 4;
assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1
assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1
assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2
assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2
```

Run1.38.0 (const: 1.52.0) · source#### pub const fn rem_euclid(self, rhs: Self) -> Self

#### pub const fn rem_euclid(self, rhs: Self) -> Self

Calculates the least nonnegative remainder of `self (mod rhs)`

.

This is done as if by the Euclidean division algorithm – given
`r = self.rem_euclid(rhs)`

, `self = rhs * self.div_euclid(rhs) + r`

, and
`0 <= r < abs(rhs)`

.

##### Panics

This function will panic if `rhs`

is 0 or the division results in overflow.

##### Examples

Basic usage:

```
let a: i16 = 7; // or any other integer type
let b = 4;
assert_eq!(a.rem_euclid(b), 3);
assert_eq!((-a).rem_euclid(b), 1);
assert_eq!(a.rem_euclid(-b), 3);
assert_eq!((-a).rem_euclid(-b), 1);
```

Runsource#### pub const fn div_floor(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`int_roundings`

#88581)

#### pub const fn div_floor(self, rhs: Self) -> Self

`int_roundings`

#88581)Calculates the quotient of `self`

and `rhs`

, rounding the result towards negative infinity.

##### Panics

This function will panic if `rhs`

is zero.

###### Overflow behavior

On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).

##### Examples

Basic usage:

```
#![feature(int_roundings)]
let a: i16 = 8;
let b = 3;
assert_eq!(a.div_floor(b), 2);
assert_eq!(a.div_floor(-b), -3);
assert_eq!((-a).div_floor(b), -3);
assert_eq!((-a).div_floor(-b), 2);
```

Runsource#### pub const fn div_ceil(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`int_roundings`

#88581)

#### pub const fn div_ceil(self, rhs: Self) -> Self

`int_roundings`

#88581)Calculates the quotient of `self`

and `rhs`

, rounding the result towards positive infinity.

##### Panics

This function will panic if `rhs`

is zero.

###### Overflow behavior

On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).

##### Examples

Basic usage:

```
#![feature(int_roundings)]
let a: i16 = 8;
let b = 3;
assert_eq!(a.div_ceil(b), 3);
assert_eq!(a.div_ceil(-b), -2);
assert_eq!((-a).div_ceil(b), -2);
assert_eq!((-a).div_ceil(-b), 3);
```

Runsource#### pub const fn next_multiple_of(self, rhs: Self) -> Self

🔬This is a nightly-only experimental API. (`int_roundings`

#88581)

#### pub const fn next_multiple_of(self, rhs: Self) -> Self

`int_roundings`

#88581)If `rhs`

is positive, calculates the smallest value greater than or
equal to `self`

that is a multiple of `rhs`

. If `rhs`

is negative,
calculates the largest value less than or equal to `self`

that is a
multiple of `rhs`

.

##### Panics

This function will panic if `rhs`

is zero.

###### Overflow behavior

On overflow, this function will panic if overflow checks are enabled (default in debug mode) and wrap if overflow checks are disabled (default in release mode).

##### Examples

Basic usage:

```
#![feature(int_roundings)]
assert_eq!(16_i16.next_multiple_of(8), 16);
assert_eq!(23_i16.next_multiple_of(8), 24);
assert_eq!(16_i16.next_multiple_of(-8), 16);
assert_eq!(23_i16.next_multiple_of(-8), 16);
assert_eq!((-16_i16).next_multiple_of(8), -16);
assert_eq!((-23_i16).next_multiple_of(8), -16);
assert_eq!((-16_i16).next_multiple_of(-8), -16);
assert_eq!((-23_i16).next_multiple_of(-8), -24);
```

Runsource#### pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self>

🔬This is a nightly-only experimental API. (`int_roundings`

#88581)

#### pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self>

`int_roundings`

#88581)If `rhs`

is positive, calculates the smallest value greater than or
equal to `self`

that is a multiple of `rhs`

. If `rhs`

is negative,
calculates the largest value less than or equal to `self`

that is a
multiple of `rhs`

. Returns `None`

if `rhs`

is zero or the operation
would result in overflow.

##### Examples

Basic usage:

```
#![feature(int_roundings)]
assert_eq!(16_i16.checked_next_multiple_of(8), Some(16));
assert_eq!(23_i16.checked_next_multiple_of(8), Some(24));
assert_eq!(16_i16.checked_next_multiple_of(-8), Some(16));
assert_eq!(23_i16.checked_next_multiple_of(-8), Some(16));
assert_eq!((-16_i16).checked_next_multiple_of(8), Some(-16));
assert_eq!((-23_i16).checked_next_multiple_of(8), Some(-16));
assert_eq!((-16_i16).checked_next_multiple_of(-8), Some(-16));
assert_eq!((-23_i16).checked_next_multiple_of(-8), Some(-24));
assert_eq!(1_i16.checked_next_multiple_of(0), None);
assert_eq!(i16::MAX.checked_next_multiple_of(2), None);
```

Run1.67.0 (const: 1.67.0) · source#### pub const fn ilog(self, base: Self) -> u32

#### pub const fn ilog(self, base: Self) -> u32

Returns the logarithm of the number with respect to an arbitrary base, rounded down.

This method might not be optimized owing to implementation details;
`ilog2`

can produce results more efficiently for base 2, and `ilog10`

can produce results more efficiently for base 10.

##### Panics

This function will panic if `self`

is less than or equal to zero,
or if `base`

is less than 2.

##### Examples

`assert_eq!(5i16.ilog(5), 1);`

Run1.67.0 (const: 1.67.0) · source#### pub const fn checked_ilog(self, base: Self) -> Option<u32>

#### pub const fn checked_ilog(self, base: Self) -> Option<u32>

Returns the logarithm of the number with respect to an arbitrary base, rounded down.

Returns `None`

if the number is negative or zero, or if the base is not at least 2.

This method might not be optimized owing to implementation details;
`checked_ilog2`

can produce results more efficiently for base 2, and
`checked_ilog10`

can produce results more efficiently for base 10.

##### Examples

`assert_eq!(5i16.checked_ilog(5), Some(1));`

Run1.67.0 (const: 1.67.0) · source#### pub const fn checked_ilog2(self) -> Option<u32>

#### pub const fn checked_ilog2(self) -> Option<u32>

1.67.0 (const: 1.67.0) · source#### pub const fn checked_ilog10(self) -> Option<u32>

#### pub const fn checked_ilog10(self) -> Option<u32>

const: 1.32.0 · source#### pub const fn abs(self) -> Self

#### pub const fn abs(self) -> Self

Computes the absolute value of `self`

.

##### Overflow behavior

The absolute value of
`i16::MIN`

cannot be represented as an
`i16`

,
and attempting to calculate it will cause an overflow. This means
that code in debug mode will trigger a panic on this case and
optimized code will return
`i16::MIN`

without a panic.

##### Examples

Basic usage:

```
assert_eq!(10i16.abs(), 10);
assert_eq!((-10i16).abs(), 10);
```

Run1.60.0 (const: 1.60.0) · source#### pub const fn abs_diff(self, other: Self) -> u16

#### pub const fn abs_diff(self, other: Self) -> u16

Computes the absolute difference between `self`

and `other`

.

This function always returns the correct answer without overflow or panics by returning an unsigned integer.

##### Examples

Basic usage:

```
assert_eq!(100i16.abs_diff(80), 20u16);
assert_eq!(100i16.abs_diff(110), 10u16);
assert_eq!((-100i16).abs_diff(80), 180u16);
assert_eq!((-100i16).abs_diff(-120), 20u16);
assert_eq!(i16::MIN.abs_diff(i16::MAX), u16::MAX);
```

Runconst: 1.32.0 · source#### pub const fn is_positive(self) -> bool

#### pub const fn is_positive(self) -> bool

const: 1.32.0 · source#### pub const fn is_negative(self) -> bool

#### pub const fn is_negative(self) -> bool

1.32.0 (const: 1.44.0) · source#### pub const fn to_be_bytes(self) -> [u8; 2]

#### pub const fn to_be_bytes(self) -> [u8; 2]

1.32.0 (const: 1.44.0) · source#### pub const fn to_le_bytes(self) -> [u8; 2]

#### pub const fn to_le_bytes(self) -> [u8; 2]

1.32.0 (const: 1.44.0) · source#### pub const fn to_ne_bytes(self) -> [u8; 2]

#### pub const fn to_ne_bytes(self) -> [u8; 2]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform’s native endianness is used, portable code
should use `to_be_bytes`

or `to_le_bytes`

, as appropriate,
instead.

##### Examples

```
let bytes = 0x1234i16.to_ne_bytes();
assert_eq!(
bytes,
if cfg!(target_endian = "big") {
[0x12, 0x34]
} else {
[0x34, 0x12]
}
);
```

Run1.32.0 (const: 1.44.0) · source#### pub const fn from_be_bytes(bytes: [u8; 2]) -> Self

#### pub const fn from_be_bytes(bytes: [u8; 2]) -> Self

Create an integer value from its representation as a byte array in big endian.

##### Examples

```
let value = i16::from_be_bytes([0x12, 0x34]);
assert_eq!(value, 0x1234);
```

RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:

```
fn read_be_i16(input: &mut &[u8]) -> i16 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i16>());
*input = rest;
i16::from_be_bytes(int_bytes.try_into().unwrap())
}
```

Run1.32.0 (const: 1.44.0) · source#### pub const fn from_le_bytes(bytes: [u8; 2]) -> Self

#### pub const fn from_le_bytes(bytes: [u8; 2]) -> Self

Create an integer value from its representation as a byte array in little endian.

##### Examples

```
let value = i16::from_le_bytes([0x34, 0x12]);
assert_eq!(value, 0x1234);
```

RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:

```
fn read_le_i16(input: &mut &[u8]) -> i16 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i16>());
*input = rest;
i16::from_le_bytes(int_bytes.try_into().unwrap())
}
```

Run1.32.0 (const: 1.44.0) · source#### pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self

#### pub const fn from_ne_bytes(bytes: [u8; 2]) -> Self

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform’s native endianness is used, portable code
likely wants to use `from_be_bytes`

or `from_le_bytes`

, as
appropriate instead.

##### Examples

```
let value = i16::from_ne_bytes(if cfg!(target_endian = "big") {
[0x12, 0x34]
} else {
[0x34, 0x12]
});
assert_eq!(value, 0x1234);
```

RunWhen starting from a slice rather than an array, fallible conversion APIs can be used:

```
fn read_ne_i16(input: &mut &[u8]) -> i16 {
let (int_bytes, rest) = input.split_at(std::mem::size_of::<i16>());
*input = rest;
i16::from_ne_bytes(int_bytes.try_into().unwrap())
}
```

Run## Trait Implementations§

1.22.0 · source§### impl AddAssign<&i16> for Saturating<i16>

### impl AddAssign<&i16> for Saturating<i16>

source§#### fn add_assign(&mut self, other: &i16)

#### fn add_assign(&mut self, other: &i16)

`+=`

operation. Read moresource§### impl AddAssign<i16> for Saturating<i16>

### impl AddAssign<i16> for Saturating<i16>

source§#### fn add_assign(&mut self, other: i16)

#### fn add_assign(&mut self, other: i16)

`+=`

operation. Read more1.22.0 · source§### impl BitAndAssign<&i16> for Saturating<i16>

### impl BitAndAssign<&i16> for Saturating<i16>

source§#### fn bitand_assign(&mut self, other: &i16)

#### fn bitand_assign(&mut self, other: &i16)

`&=`

operation. Read moresource§### impl BitAndAssign<i16> for Saturating<i16>

### impl BitAndAssign<i16> for Saturating<i16>

source§#### fn bitand_assign(&mut self, other: i16)

#### fn bitand_assign(&mut self, other: i16)

`&=`

operation. Read more1.45.0 (const: unstable) · source§### impl BitOr<NonZeroI16> for i16

### impl BitOr<NonZeroI16> for i16

§#### type Output = NonZeroI16

#### type Output = NonZeroI16

`|`

operator.1.22.0 · source§### impl BitOrAssign<&i16> for Saturating<i16>

### impl BitOrAssign<&i16> for Saturating<i16>

source§#### fn bitor_assign(&mut self, other: &i16)

#### fn bitor_assign(&mut self, other: &i16)

`|=`

operation. Read more1.45.0 (const: unstable) · source§### impl BitOrAssign<i16> for NonZeroI16

### impl BitOrAssign<i16> for NonZeroI16

source§### impl BitOrAssign<i16> for Saturating<i16>

### impl BitOrAssign<i16> for Saturating<i16>

source§#### fn bitor_assign(&mut self, other: i16)

#### fn bitor_assign(&mut self, other: i16)

`|=`

operation. Read more1.22.0 · source§### impl BitXorAssign<&i16> for Saturating<i16>

### impl BitXorAssign<&i16> for Saturating<i16>

source§#### fn bitxor_assign(&mut self, other: &i16)

#### fn bitxor_assign(&mut self, other: &i16)

`^=`

operation. Read moresource§### impl BitXorAssign<i16> for Saturating<i16>

### impl BitXorAssign<i16> for Saturating<i16>

source§#### fn bitxor_assign(&mut self, other: i16)

#### fn bitxor_assign(&mut self, other: i16)

`^=`

operation. Read moreconst: unstable · source§### impl Div<i16> for i16

### impl Div<i16> for i16

This operation rounds towards zero, truncating any fractional part of the exact result.

#### Panics

This operation will panic if `other == 0`

or the division results in overflow.

1.22.0 · source§### impl DivAssign<&i16> for Saturating<i16>

### impl DivAssign<&i16> for Saturating<i16>

source§#### fn div_assign(&mut self, other: &i16)

#### fn div_assign(&mut self, other: &i16)

`/=`

operation. Read moresource§### impl DivAssign<i16> for Saturating<i16>

### impl DivAssign<i16> for Saturating<i16>

source§#### fn div_assign(&mut self, other: i16)

#### fn div_assign(&mut self, other: i16)

`/=`

operation. Read more1.31.0 (const: unstable) · source§### impl From<NonZeroI16> for i16

### impl From<NonZeroI16> for i16

const: unstable · source§#### fn from(nonzero: NonZeroI16) -> Self

#### fn from(nonzero: NonZeroI16) -> Self

Converts a `NonZeroI16`

into an `i16`

source§### impl FromStr for i16

### impl FromStr for i16

§#### type Err = ParseIntError

#### type Err = ParseIntError

1.22.0 · source§### impl MulAssign<&i16> for Saturating<i16>

### impl MulAssign<&i16> for Saturating<i16>

source§#### fn mul_assign(&mut self, other: &i16)

#### fn mul_assign(&mut self, other: &i16)

`*=`

operation. Read moresource§### impl MulAssign<i16> for Saturating<i16>

### impl MulAssign<i16> for Saturating<i16>

source§#### fn mul_assign(&mut self, other: i16)

#### fn mul_assign(&mut self, other: i16)

`*=`

operation. Read moreconst: unstable · source§### impl Ord for i16

### impl Ord for i16

1.21.0 · source§#### fn max(self, other: Self) -> Selfwhere

Self: Sized,

#### fn max(self, other: Self) -> Selfwhere

Self: Sized,

const: unstable · source§### impl PartialEq<i16> for i16

### impl PartialEq<i16> for i16

const: unstable · source§### impl PartialOrd<i16> for i16

### impl PartialOrd<i16> for i16

const: unstable · source§#### fn le(&self, other: &i16) -> bool

#### fn le(&self, other: &i16) -> bool

`self`

and `other`

) and is used by the `<=`

operator. Read moreconst: unstable · source§### impl Rem<i16> for i16

### impl Rem<i16> for i16

This operation satisfies `n % d == n - (n / d) * d`

. The
result has the same sign as the left operand.

#### Panics

This operation will panic if `other == 0`

or if `self / other`

results in overflow.

1.22.0 · source§### impl RemAssign<&i16> for Saturating<i16>

### impl RemAssign<&i16> for Saturating<i16>

source§#### fn rem_assign(&mut self, other: &i16)

#### fn rem_assign(&mut self, other: &i16)

`%=`

operation. Read moresource§### impl RemAssign<i16> for Saturating<i16>

### impl RemAssign<i16> for Saturating<i16>

source§#### fn rem_assign(&mut self, other: i16)

#### fn rem_assign(&mut self, other: i16)

`%=`

operation. Read moresource§### impl SimdElement for i16

### impl SimdElement for i16

source§### impl Step for i16

### impl Step for i16

source§#### unsafe fn forward_unchecked(start: Self, n: usize) -> Self

#### unsafe fn forward_unchecked(start: Self, n: usize) -> Self

`step_trait`

#42168)source§#### unsafe fn backward_unchecked(start: Self, n: usize) -> Self

#### unsafe fn backward_unchecked(start: Self, n: usize) -> Self

`step_trait`

#42168)source§#### fn forward(start: Self, n: usize) -> Self

#### fn forward(start: Self, n: usize) -> Self

`step_trait`

#42168)source§#### fn backward(start: Self, n: usize) -> Self

#### fn backward(start: Self, n: usize) -> Self

`step_trait`

#42168)source§#### fn steps_between(start: &Self, end: &Self) -> Option<usize>

#### fn steps_between(start: &Self, end: &Self) -> Option<usize>

`step_trait`

#42168)1.22.0 · source§### impl SubAssign<&i16> for Saturating<i16>

### impl SubAssign<&i16> for Saturating<i16>

source§#### fn sub_assign(&mut self, other: &i16)

#### fn sub_assign(&mut self, other: &i16)

`-=`

operation. Read moresource§### impl SubAssign<i16> for Saturating<i16>

### impl SubAssign<i16> for Saturating<i16>

source§#### fn sub_assign(&mut self, other: i16)

#### fn sub_assign(&mut self, other: i16)

`-=`

operation. Read more1.34.0 (const: unstable) · source§### impl TryFrom<i128> for i16

### impl TryFrom<i128> for i16

const: unstable · source§#### fn try_from(u: i128) -> Result<Self, Self::Error>

#### fn try_from(u: i128) -> Result<Self, Self::Error>

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

§#### type Error = TryFromIntError

#### type Error = TryFromIntError

1.46.0 · source§### impl TryFrom<i16> for NonZeroI16

### impl TryFrom<i16> for NonZeroI16

1.34.0 (const: unstable) · source§### impl TryFrom<i16> for i8

### impl TryFrom<i16> for i8

const: unstable · source§#### fn try_from(u: i16) -> Result<Self, Self::Error>

#### fn try_from(u: i16) -> Result<Self, Self::Error>

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

§#### type Error = TryFromIntError

#### type Error = TryFromIntError

1.34.0 (const: unstable) · source§### impl TryFrom<i16> for u128

### impl TryFrom<i16> for u128

const: unstable · source§#### fn try_from(u: i16) -> Result<Self, Self::Error>

#### fn try_from(u: i16) -> Result<Self, Self::Error>

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.