# 1.0.0[−]Primitive Type f32

The 32-bit floating point type.

## Methods

`impl f32`

[src]

`impl f32`

`pub fn floor(self) -> f32`

[src]

`pub fn floor(self) -> f32`

Returns the largest integer less than or equal to a number.

# Examples

let f = 3.99_f32; let g = 3.0_f32; assert_eq!(f.floor(), 3.0); assert_eq!(g.floor(), 3.0);Run

`pub fn ceil(self) -> f32`

[src]

`pub fn ceil(self) -> f32`

Returns the smallest integer greater than or equal to a number.

# Examples

let f = 3.01_f32; let g = 4.0_f32; assert_eq!(f.ceil(), 4.0); assert_eq!(g.ceil(), 4.0);Run

`pub fn round(self) -> f32`

[src]

`pub fn round(self) -> f32`

Returns the nearest integer to a number. Round half-way cases away from
`0.0`

.

# Examples

let f = 3.3_f32; let g = -3.3_f32; assert_eq!(f.round(), 3.0); assert_eq!(g.round(), -3.0);Run

`pub fn trunc(self) -> f32`

[src]

`pub fn trunc(self) -> f32`

Returns the integer part of a number.

# Examples

let f = 3.3_f32; let g = -3.7_f32; assert_eq!(f.trunc(), 3.0); assert_eq!(g.trunc(), -3.0);Run

`pub fn fract(self) -> f32`

[src]

`pub fn fract(self) -> f32`

Returns the fractional part of a number.

# Examples

use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.fract() - 0.5).abs(); let abs_difference_y = (y.fract() - (-0.5)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run

`pub fn abs(self) -> f32`

[src]

`pub fn abs(self) -> f32`

Computes the absolute value of `self`

. Returns `NAN`

if the
number is `NAN`

.

# Examples

use std::f32; let x = 3.5_f32; let y = -3.5_f32; let abs_difference_x = (x.abs() - x).abs(); let abs_difference_y = (y.abs() - (-y)).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON); assert!(f32::NAN.abs().is_nan());Run

`pub fn signum(self) -> f32`

[src]

`pub fn signum(self) -> f32`

Returns a number that represents the sign of `self`

.

`1.0`

if the number is positive,`+0.0`

or`INFINITY`

`-1.0`

if the number is negative,`-0.0`

or`NEG_INFINITY`

`NAN`

if the number is`NAN`

# Examples

use std::f32; let f = 3.5_f32; assert_eq!(f.signum(), 1.0); assert_eq!(f32::NEG_INFINITY.signum(), -1.0); assert!(f32::NAN.signum().is_nan());Run

```
#[must_use]
pub fn copysign(self, y: f32) -> f32
```

[src]

```
#[must_use]
pub fn copysign(self, y: f32) -> f32
```

Returns a number composed of the magnitude of `self`

and the sign of
`y`

.

Equal to `self`

if the sign of `self`

and `y`

are the same, otherwise
equal to `-self`

. If `self`

is a `NAN`

, then a `NAN`

with the sign of
`y`

is returned.

# Examples

#![feature(copysign)] use std::f32; let f = 3.5_f32; assert_eq!(f.copysign(0.42), 3.5_f32); assert_eq!(f.copysign(-0.42), -3.5_f32); assert_eq!((-f).copysign(0.42), 3.5_f32); assert_eq!((-f).copysign(-0.42), -3.5_f32); assert!(f32::NAN.copysign(1.0).is_nan());Run

`pub fn mul_add(self, a: f32, b: f32) -> f32`

[src]

`pub fn mul_add(self, a: f32, b: f32) -> f32`

Fused multiply-add. Computes `(self * a) + b`

with only one rounding
error, yielding a more accurate result than an unfused multiply-add.

Using `mul_add`

can be more performant than an unfused multiply-add if
the target architecture has a dedicated `fma`

CPU instruction.

# Examples

use std::f32; let m = 10.0_f32; let x = 4.0_f32; let b = 60.0_f32; // 100.0 let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn div_euc(self, rhs: f32) -> f32`

[src]

`pub fn div_euc(self, rhs: f32) -> f32`

Calculates Euclidean division, the matching method for `mod_euc`

.

This computes the integer `n`

such that
`self = n * rhs + self.mod_euc(rhs)`

.
In other words, the result is `self / rhs`

rounded to the integer `n`

such that `self >= n * rhs`

.

# Examples

#![feature(euclidean_division)] let a: f32 = 7.0; let b = 4.0; assert_eq!(a.div_euc(b), 1.0); // 7.0 > 4.0 * 1.0 assert_eq!((-a).div_euc(b), -2.0); // -7.0 >= 4.0 * -2.0 assert_eq!(a.div_euc(-b), -1.0); // 7.0 >= -4.0 * -1.0 assert_eq!((-a).div_euc(-b), 2.0); // -7.0 >= -4.0 * 2.0Run

`pub fn mod_euc(self, rhs: f32) -> f32`

[src]

`pub fn mod_euc(self, rhs: f32) -> f32`

Calculates the Euclidean modulo (self mod rhs), which is never negative.

In particular, the return value `r`

satisfies `0.0 <= r < rhs.abs()`

in
most cases. However, due to a floating point round-off error it can
result in `r == rhs.abs()`

, violating the mathematical definition, if
`self`

is much smaller than `rhs.abs()`

in magnitude and `self < 0.0`

.
This result is not an element of the function's codomain, but it is the
closest floating point number in the real numbers and thus fulfills the
property `self == self.div_euc(rhs) * rhs + self.mod_euc(rhs)`

approximatively.

# Examples

#![feature(euclidean_division)] let a: f32 = 7.0; let b = 4.0; assert_eq!(a.mod_euc(b), 3.0); assert_eq!((-a).mod_euc(b), 1.0); assert_eq!(a.mod_euc(-b), 3.0); assert_eq!((-a).mod_euc(-b), 1.0); // limitation due to round-off error assert!((-std::f32::EPSILON).mod_euc(3.0) != 0.0);Run

`pub fn powi(self, n: i32) -> f32`

[src]

`pub fn powi(self, n: i32) -> f32`

Raises a number to an integer power.

Using this function is generally faster than using `powf`

# Examples

use std::f32; let x = 2.0_f32; let abs_difference = (x.powi(2) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn powf(self, n: f32) -> f32`

[src]

`pub fn powf(self, n: f32) -> f32`

Raises a number to a floating point power.

# Examples

use std::f32; let x = 2.0_f32; let abs_difference = (x.powf(2.0) - x*x).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn sqrt(self) -> f32`

[src]

`pub fn sqrt(self) -> f32`

Takes the square root of a number.

Returns NaN if `self`

is a negative number.

# Examples

use std::f32; let positive = 4.0_f32; let negative = -4.0_f32; let abs_difference = (positive.sqrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON); assert!(negative.sqrt().is_nan());Run

`pub fn exp(self) -> f32`

[src]

`pub fn exp(self) -> f32`

Returns `e^(self)`

, (the exponential function).

# Examples

use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn exp2(self) -> f32`

[src]

`pub fn exp2(self) -> f32`

Returns `2^(self)`

.

# Examples

use std::f32; let f = 2.0f32; // 2^2 - 4 == 0 let abs_difference = (f.exp2() - 4.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn ln(self) -> f32`

[src]

`pub fn ln(self) -> f32`

Returns the natural logarithm of the number.

# Examples

use std::f32; let one = 1.0f32; // e^1 let e = one.exp(); // ln(e) - 1 == 0 let abs_difference = (e.ln() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn log(self, base: f32) -> f32`

[src]

`pub fn log(self, base: f32) -> f32`

Returns the logarithm of the number with respect to an arbitrary base.

The result may not be correctly rounded owing to implementation details;
`self.log2()`

can produce more accurate results for base 2, and
`self.log10()`

can produce more accurate results for base 10.

# Examples

use std::f32; let five = 5.0f32; // log5(5) - 1 == 0 let abs_difference = (five.log(5.0) - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn log2(self) -> f32`

[src]

`pub fn log2(self) -> f32`

Returns the base 2 logarithm of the number.

# Examples

use std::f32; let two = 2.0f32; // log2(2) - 1 == 0 let abs_difference = (two.log2() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn log10(self) -> f32`

[src]

`pub fn log10(self) -> f32`

Returns the base 10 logarithm of the number.

# Examples

use std::f32; let ten = 10.0f32; // log10(10) - 1 == 0 let abs_difference = (ten.log10() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn abs_sub(self, other: f32) -> f32`

[src]

`pub fn abs_sub(self, other: f32) -> f32`

: you probably meant `(self - other).abs()`

: this operation is `(self - other).max(0.0)`

(also known as `fdimf`

in C). If you truly need the positive difference, consider using that expression or the C function `fdimf`

, depending on how you wish to handle NaN (please consider filing an issue describing your use-case too).

The positive difference of two numbers.

- If
`self <= other`

:`0:0`

- Else:
`self - other`

# Examples

use std::f32; let x = 3.0f32; let y = -3.0f32; let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); assert!(abs_difference_x <= f32::EPSILON); assert!(abs_difference_y <= f32::EPSILON);Run

`pub fn cbrt(self) -> f32`

[src]

`pub fn cbrt(self) -> f32`

Takes the cubic root of a number.

# Examples

use std::f32; let x = 8.0f32; // x^(1/3) - 2 == 0 let abs_difference = (x.cbrt() - 2.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn hypot(self, other: f32) -> f32`

[src]

`pub fn hypot(self, other: f32) -> f32`

Calculates the length of the hypotenuse of a right-angle triangle given
legs of length `x`

and `y`

.

# Examples

use std::f32; let x = 2.0f32; let y = 3.0f32; // sqrt(x^2 + y^2) let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn sin(self) -> f32`

[src]

`pub fn sin(self) -> f32`

Computes the sine of a number (in radians).

# Examples

use std::f32; let x = f32::consts::PI/2.0; let abs_difference = (x.sin() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn cos(self) -> f32`

[src]

`pub fn cos(self) -> f32`

Computes the cosine of a number (in radians).

# Examples

use std::f32; let x = 2.0*f32::consts::PI; let abs_difference = (x.cos() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn tan(self) -> f32`

[src]

`pub fn tan(self) -> f32`

Computes the tangent of a number (in radians).

# Examples

use std::f32; let x = f32::consts::PI / 4.0; let abs_difference = (x.tan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn asin(self) -> f32`

[src]

`pub fn asin(self) -> f32`

Computes the arcsine of a number. Return value is in radians in the range [-pi/2, pi/2] or NaN if the number is outside the range [-1, 1].

# Examples

use std::f32; let f = f32::consts::PI / 2.0; // asin(sin(pi/2)) let abs_difference = (f.sin().asin() - f32::consts::PI / 2.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn acos(self) -> f32`

[src]

`pub fn acos(self) -> f32`

Computes the arccosine of a number. Return value is in radians in the range [0, pi] or NaN if the number is outside the range [-1, 1].

# Examples

use std::f32; let f = f32::consts::PI / 4.0; // acos(cos(pi/4)) let abs_difference = (f.cos().acos() - f32::consts::PI / 4.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn atan(self) -> f32`

[src]

`pub fn atan(self) -> f32`

Computes the arctangent of a number. Return value is in radians in the range [-pi/2, pi/2];

# Examples

use std::f32; let f = 1.0f32; // atan(tan(1)) let abs_difference = (f.tan().atan() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn atan2(self, other: f32) -> f32`

[src]

`pub fn atan2(self, other: f32) -> f32`

Computes the four quadrant arctangent of `self`

(`y`

) and `other`

(`x`

) in radians.

`x = 0`

,`y = 0`

:`0`

`x >= 0`

:`arctan(y/x)`

->`[-pi/2, pi/2]`

`y >= 0`

:`arctan(y/x) + pi`

->`(pi/2, pi]`

`y < 0`

:`arctan(y/x) - pi`

->`(-pi, -pi/2)`

# Examples

use std::f32; let pi = f32::consts::PI; // Positive angles measured counter-clockwise // from positive x axis // -pi/4 radians (45 deg clockwise) let x1 = 3.0f32; let y1 = -3.0f32; // 3pi/4 radians (135 deg counter-clockwise) let x2 = -3.0f32; let y2 = 3.0f32; let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); assert!(abs_difference_1 <= f32::EPSILON); assert!(abs_difference_2 <= f32::EPSILON);Run

`pub fn sin_cos(self) -> (f32, f32)`

[src]

`pub fn sin_cos(self) -> (f32, f32)`

Simultaneously computes the sine and cosine of the number, `x`

. Returns
`(sin(x), cos(x))`

.

# Examples

use std::f32; let x = f32::consts::PI/4.0; let f = x.sin_cos(); let abs_difference_0 = (f.0 - x.sin()).abs(); let abs_difference_1 = (f.1 - x.cos()).abs(); assert!(abs_difference_0 <= f32::EPSILON); assert!(abs_difference_1 <= f32::EPSILON);Run

`pub fn exp_m1(self) -> f32`

[src]

`pub fn exp_m1(self) -> f32`

Returns `e^(self) - 1`

in a way that is accurate even if the
number is close to zero.

# Examples

use std::f32; let x = 6.0f32; // e^(ln(6)) - 1 let abs_difference = (x.ln().exp_m1() - 5.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn ln_1p(self) -> f32`

[src]

`pub fn ln_1p(self) -> f32`

Returns `ln(1+n)`

(natural logarithm) more accurately than if
the operations were performed separately.

# Examples

use std::f32; let x = f32::consts::E - 1.0; // ln(1 + (e - 1)) == ln(e) == 1 let abs_difference = (x.ln_1p() - 1.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn sinh(self) -> f32`

[src]

`pub fn sinh(self) -> f32`

Hyperbolic sine function.

# Examples

use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.sinh(); // Solving sinh() at 1 gives `(e^2-1)/(2e)` let g = (e*e - 1.0)/(2.0*e); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn cosh(self) -> f32`

[src]

`pub fn cosh(self) -> f32`

Hyperbolic cosine function.

# Examples

use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.cosh(); // Solving cosh() at 1 gives this result let g = (e*e + 1.0)/(2.0*e); let abs_difference = (f - g).abs(); // Same result assert!(abs_difference <= f32::EPSILON);Run

`pub fn tanh(self) -> f32`

[src]

`pub fn tanh(self) -> f32`

Hyperbolic tangent function.

# Examples

use std::f32; let e = f32::consts::E; let x = 1.0f32; let f = x.tanh(); // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); let abs_difference = (f - g).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn asinh(self) -> f32`

[src]

`pub fn asinh(self) -> f32`

Inverse hyperbolic sine function.

# Examples

use std::f32; let x = 1.0f32; let f = x.sinh().asinh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn acosh(self) -> f32`

[src]

`pub fn acosh(self) -> f32`

Inverse hyperbolic cosine function.

# Examples

use std::f32; let x = 1.0f32; let f = x.cosh().acosh(); let abs_difference = (f - x).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn atanh(self) -> f32`

[src]

`pub fn atanh(self) -> f32`

`impl f32`

[src]

`impl f32`

`pub fn is_nan(self) -> bool`

[src]

`pub fn is_nan(self) -> bool`

Returns `true`

if this value is `NaN`

and false otherwise.

use std::f32; let nan = f32::NAN; let f = 7.0_f32; assert!(nan.is_nan()); assert!(!f.is_nan());Run

`pub fn is_infinite(self) -> bool`

[src]

`pub fn is_infinite(self) -> bool`

Returns `true`

if this value is positive infinity or negative infinity and
false otherwise.

use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(!f.is_infinite()); assert!(!nan.is_infinite()); assert!(inf.is_infinite()); assert!(neg_inf.is_infinite());Run

`pub fn is_finite(self) -> bool`

[src]

`pub fn is_finite(self) -> bool`

Returns `true`

if this number is neither infinite nor `NaN`

.

use std::f32; let f = 7.0f32; let inf = f32::INFINITY; let neg_inf = f32::NEG_INFINITY; let nan = f32::NAN; assert!(f.is_finite()); assert!(!nan.is_finite()); assert!(!inf.is_finite()); assert!(!neg_inf.is_finite());Run

`pub fn is_normal(self) -> bool`

[src]

`pub fn is_normal(self) -> bool`

Returns `true`

if the number is neither zero, infinite,
subnormal, or `NaN`

.

use std::f32; let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 let max = f32::MAX; let lower_than_min = 1.0e-40_f32; let zero = 0.0_f32; assert!(min.is_normal()); assert!(max.is_normal()); assert!(!zero.is_normal()); assert!(!f32::NAN.is_normal()); assert!(!f32::INFINITY.is_normal()); // Values between `0` and `min` are Subnormal. assert!(!lower_than_min.is_normal());Run

`pub fn classify(self) -> FpCategory`

[src]

`pub fn classify(self) -> FpCategory`

Returns the floating point category of the number. If only one property is going to be tested, it is generally faster to use the specific predicate instead.

use std::num::FpCategory; use std::f32; let num = 12.4_f32; let inf = f32::INFINITY; assert_eq!(num.classify(), FpCategory::Normal); assert_eq!(inf.classify(), FpCategory::Infinite);Run

`pub fn is_sign_positive(self) -> bool`

[src]

`pub fn is_sign_positive(self) -> bool`

Returns `true`

if and only if `self`

has a positive sign, including `+0.0`

, `NaN`

s with
positive sign bit and positive infinity.

let f = 7.0_f32; let g = -7.0_f32; assert!(f.is_sign_positive()); assert!(!g.is_sign_positive());Run

`pub fn is_sign_negative(self) -> bool`

[src]

`pub fn is_sign_negative(self) -> bool`

Returns `true`

if and only if `self`

has a negative sign, including `-0.0`

, `NaN`

s with
negative sign bit and negative infinity.

let f = 7.0f32; let g = -7.0f32; assert!(!f.is_sign_negative()); assert!(g.is_sign_negative());Run

`pub fn recip(self) -> f32`

[src]

`pub fn recip(self) -> f32`

Takes the reciprocal (inverse) of a number, `1/x`

.

use std::f32; let x = 2.0_f32; let abs_difference = (x.recip() - (1.0/x)).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn to_degrees(self) -> f32`

1.7.0[src]

`pub fn to_degrees(self) -> f32`

Converts radians to degrees.

use std::f32::{self, consts}; let angle = consts::PI; let abs_difference = (angle.to_degrees() - 180.0).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn to_radians(self) -> f32`

1.7.0[src]

`pub fn to_radians(self) -> f32`

Converts degrees to radians.

use std::f32::{self, consts}; let angle = 180.0f32; let abs_difference = (angle.to_radians() - consts::PI).abs(); assert!(abs_difference <= f32::EPSILON);Run

`pub fn max(self, other: f32) -> f32`

[src]

`pub fn max(self, other: f32) -> f32`

Returns the maximum of the two numbers.

let x = 1.0f32; let y = 2.0f32; assert_eq!(x.max(y), y);Run

If one of the arguments is NaN, then the other argument is returned.

`pub fn min(self, other: f32) -> f32`

[src]

`pub fn min(self, other: f32) -> f32`

Returns the minimum of the two numbers.

let x = 1.0f32; let y = 2.0f32; assert_eq!(x.min(y), x);Run

If one of the arguments is NaN, then the other argument is returned.

`pub fn to_bits(self) -> u32`

1.20.0[src]

`pub fn to_bits(self) -> u32`

Raw transmutation to `u32`

.

This is currently identical to `transmute::<f32, u32>(self)`

on all platforms.

See `from_bits`

for some discussion of the portability of this operation
(there are almost no issues).

Note that this function is distinct from `as`

casting, which attempts to
preserve the *numeric* value, and not the bitwise value.

# Examples

assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() is not casting! assert_eq!((12.5f32).to_bits(), 0x41480000); Run

`pub fn from_bits(v: u32) -> f32`

1.20.0[src]

`pub fn from_bits(v: u32) -> f32`

Raw transmutation from `u32`

.

This is currently identical to `transmute::<u32, f32>(v)`

on all platforms.
It turns out this is incredibly portable, for two reasons:

- Floats and Ints have the same endianness on all supported platforms.
- IEEE-754 very precisely specifies the bit layout of floats.

However there is one caveat: prior to the 2008 version of IEEE-754, how to interpret the NaN signaling bit wasn't actually specified. Most platforms (notably x86 and ARM) picked the interpretation that was ultimately standardized in 2008, but some didn't (notably MIPS). As a result, all signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.

Rather than trying to preserve signaling-ness cross-platform, this implementation favors preserving the exact bits. This means that any payloads encoded in NaNs will be preserved even if the result of this method is sent over the network from an x86 machine to a MIPS one.

If the results of this method are only manipulated by the same architecture that produced them, then there is no portability concern.

If the input isn't NaN, then there is no portability concern.

If you don't care about signalingness (very likely), then there is no portability concern.

Note that this function is distinct from `as`

casting, which attempts to
preserve the *numeric* value, and not the bitwise value.

# Examples

use std::f32; let v = f32::from_bits(0x41480000); let difference = (v - 12.5).abs(); assert!(difference <= 1e-5);Run

## Trait Implementations

`impl Debug for f32`

[src]

`impl Debug for f32`

`impl<'a, 'b> Rem<&'a f32> for &'b f32`

[src]

`impl<'a, 'b> Rem<&'a f32> for &'b f32`

`type Output = <f32 as Rem<f32>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output`

[src]

`fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output`

`impl Rem<f32> for f32`

[src]

`impl Rem<f32> for f32`

`type Output = f32`

The resulting type after applying the `%`

operator.

`fn rem(self, other: f32) -> f32`

[src]

`fn rem(self, other: f32) -> f32`

`impl<'a> Rem<f32> for &'a f32`

[src]

`impl<'a> Rem<f32> for &'a f32`

`type Output = <f32 as Rem<f32>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: f32) -> <f32 as Rem<f32>>::Output`

[src]

`fn rem(self, other: f32) -> <f32 as Rem<f32>>::Output`

`impl<'a> Rem<&'a f32> for f32`

[src]

`impl<'a> Rem<&'a f32> for f32`

`type Output = <f32 as Rem<f32>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output`

[src]

`fn rem(self, other: &'a f32) -> <f32 as Rem<f32>>::Output`

`impl Mul<f32> for f32`

[src]

`impl Mul<f32> for f32`

`type Output = f32`

The resulting type after applying the `*`

operator.

`fn mul(self, other: f32) -> f32`

[src]

`fn mul(self, other: f32) -> f32`

`impl<'a> Mul<&'a f32> for f32`

[src]

`impl<'a> Mul<&'a f32> for f32`

`type Output = <f32 as Mul<f32>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output`

[src]

`fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output`

`impl<'a, 'b> Mul<&'a f32> for &'b f32`

[src]

`impl<'a, 'b> Mul<&'a f32> for &'b f32`

`type Output = <f32 as Mul<f32>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output`

[src]

`fn mul(self, other: &'a f32) -> <f32 as Mul<f32>>::Output`

`impl<'a> Mul<f32> for &'a f32`

[src]

`impl<'a> Mul<f32> for &'a f32`

`type Output = <f32 as Mul<f32>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: f32) -> <f32 as Mul<f32>>::Output`

[src]

`fn mul(self, other: f32) -> <f32 as Mul<f32>>::Output`

`impl UpperExp for f32`

[src]

`impl UpperExp for f32`

`impl Clone for f32`

[src]

`impl Clone for f32`

`fn clone(&self) -> f32`

[src]

`fn clone(&self) -> f32`

`fn clone_from(&mut self, source: &Self)`

[src]

`fn clone_from(&mut self, source: &Self)`

Performs copy-assignment from `source`

. Read more

`impl PartialOrd<f32> for f32`

[src]

`impl PartialOrd<f32> for f32`

`fn partial_cmp(&self, other: &f32) -> Option<Ordering>`

[src]

`fn partial_cmp(&self, other: &f32) -> Option<Ordering>`

`fn lt(&self, other: &f32) -> bool`

[src]

`fn lt(&self, other: &f32) -> bool`

`fn le(&self, other: &f32) -> bool`

[src]

`fn le(&self, other: &f32) -> bool`

`fn ge(&self, other: &f32) -> bool`

[src]

`fn ge(&self, other: &f32) -> bool`

`fn gt(&self, other: &f32) -> bool`

[src]

`fn gt(&self, other: &f32) -> bool`

`impl Product<f32> for f32`

1.12.0[src]

`impl Product<f32> for f32`

`impl<'a> Product<&'a f32> for f32`

1.12.0[src]

`impl<'a> Product<&'a f32> for f32`

`impl<'a> Div<f32> for &'a f32`

[src]

`impl<'a> Div<f32> for &'a f32`

`type Output = <f32 as Div<f32>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: f32) -> <f32 as Div<f32>>::Output`

[src]

`fn div(self, other: f32) -> <f32 as Div<f32>>::Output`

`impl<'a, 'b> Div<&'a f32> for &'b f32`

[src]

`impl<'a, 'b> Div<&'a f32> for &'b f32`

`type Output = <f32 as Div<f32>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output`

[src]

`fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output`

`impl Div<f32> for f32`

[src]

`impl Div<f32> for f32`

`type Output = f32`

The resulting type after applying the `/`

operator.

`fn div(self, other: f32) -> f32`

[src]

`fn div(self, other: f32) -> f32`

`impl<'a> Div<&'a f32> for f32`

[src]

`impl<'a> Div<&'a f32> for f32`

`type Output = <f32 as Div<f32>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output`

[src]

`fn div(self, other: &'a f32) -> <f32 as Div<f32>>::Output`

`impl Add<f32> for f32`

[src]

`impl Add<f32> for f32`

`type Output = f32`

The resulting type after applying the `+`

operator.

`fn add(self, other: f32) -> f32`

[src]

`fn add(self, other: f32) -> f32`

`impl<'a> Add<f32> for &'a f32`

[src]

`impl<'a> Add<f32> for &'a f32`

`type Output = <f32 as Add<f32>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: f32) -> <f32 as Add<f32>>::Output`

[src]

`fn add(self, other: f32) -> <f32 as Add<f32>>::Output`

`impl<'a> Add<&'a f32> for f32`

[src]

`impl<'a> Add<&'a f32> for f32`

`type Output = <f32 as Add<f32>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output`

[src]

`fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output`

`impl<'a, 'b> Add<&'a f32> for &'b f32`

[src]

`impl<'a, 'b> Add<&'a f32> for &'b f32`

`type Output = <f32 as Add<f32>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output`

[src]

`fn add(self, other: &'a f32) -> <f32 as Add<f32>>::Output`

`impl PartialEq<f32> for f32`

[src]

`impl PartialEq<f32> for f32`

`impl From<u8> for f32`

1.6.0[src]

`impl From<u8> for f32`

Converts `u8`

to `f32`

losslessly.

`impl From<i8> for f32`

1.6.0[src]

`impl From<i8> for f32`

Converts `i8`

to `f32`

losslessly.

`impl From<u16> for f32`

1.6.0[src]

`impl From<u16> for f32`

Converts `u16`

to `f32`

losslessly.

`impl From<i16> for f32`

1.6.0[src]

`impl From<i16> for f32`

Converts `i16`

to `f32`

losslessly.

`impl<'a> RemAssign<&'a f32> for f32`

1.22.0[src]

`impl<'a> RemAssign<&'a f32> for f32`

`fn rem_assign(&mut self, other: &'a f32)`

[src]

`fn rem_assign(&mut self, other: &'a f32)`

`impl RemAssign<f32> for f32`

1.8.0[src]

`impl RemAssign<f32> for f32`

`fn rem_assign(&mut self, other: f32)`

[src]

`fn rem_assign(&mut self, other: f32)`

`impl LowerExp for f32`

[src]

`impl LowerExp for f32`

`impl DivAssign<f32> for f32`

1.8.0[src]

`impl DivAssign<f32> for f32`

`fn div_assign(&mut self, other: f32)`

[src]

`fn div_assign(&mut self, other: f32)`

`impl<'a> DivAssign<&'a f32> for f32`

1.22.0[src]

`impl<'a> DivAssign<&'a f32> for f32`

`fn div_assign(&mut self, other: &'a f32)`

[src]

`fn div_assign(&mut self, other: &'a f32)`

`impl MulAssign<f32> for f32`

1.8.0[src]

`impl MulAssign<f32> for f32`

`fn mul_assign(&mut self, other: f32)`

[src]

`fn mul_assign(&mut self, other: f32)`

`impl<'a> MulAssign<&'a f32> for f32`

1.22.0[src]

`impl<'a> MulAssign<&'a f32> for f32`

`fn mul_assign(&mut self, other: &'a f32)`

[src]

`fn mul_assign(&mut self, other: &'a f32)`

`impl SubAssign<f32> for f32`

1.8.0[src]

`impl SubAssign<f32> for f32`

`fn sub_assign(&mut self, other: f32)`

[src]

`fn sub_assign(&mut self, other: f32)`

`impl<'a> SubAssign<&'a f32> for f32`

1.22.0[src]

`impl<'a> SubAssign<&'a f32> for f32`

`fn sub_assign(&mut self, other: &'a f32)`

[src]

`fn sub_assign(&mut self, other: &'a f32)`

`impl<'a> AddAssign<&'a f32> for f32`

1.22.0[src]

`impl<'a> AddAssign<&'a f32> for f32`

`fn add_assign(&mut self, other: &'a f32)`

[src]

`fn add_assign(&mut self, other: &'a f32)`

`impl AddAssign<f32> for f32`

1.8.0[src]

`impl AddAssign<f32> for f32`

`fn add_assign(&mut self, other: f32)`

[src]

`fn add_assign(&mut self, other: f32)`

`impl Display for f32`

[src]

`impl Display for f32`

`impl Neg for f32`

[src]

`impl Neg for f32`

`impl<'a> Neg for &'a f32`

[src]

`impl<'a> Neg for &'a f32`

`type Output = <f32 as Neg>::Output`

The resulting type after applying the `-`

operator.

`fn neg(self) -> <f32 as Neg>::Output`

[src]

`fn neg(self) -> <f32 as Neg>::Output`

`impl Sum<f32> for f32`

1.12.0[src]

`impl Sum<f32> for f32`

`impl<'a> Sum<&'a f32> for f32`

1.12.0[src]

`impl<'a> Sum<&'a f32> for f32`

`impl FromStr for f32`

[src]

`impl FromStr for f32`

`type Err = ParseFloatError`

The associated error which can be returned from parsing.

`fn from_str(src: &str) -> Result<f32, ParseFloatError>`

[src]

`fn from_str(src: &str) -> Result<f32, ParseFloatError>`

Converts a string in base 10 to a float. Accepts an optional decimal exponent.

This function accepts strings such as

- '3.14'
- '-3.14'
- '2.5E10', or equivalently, '2.5e10'
- '2.5E-10'
- '5.'
- '.5', or, equivalently, '0.5'
- 'inf', '-inf', 'NaN'

Leading and trailing whitespace represent an error.

# Arguments

- src - A string

# Return value

`Err(ParseFloatError)`

if the string did not represent a valid
number. Otherwise, `Ok(n)`

where `n`

is the floating-point
number represented by `src`

.

`impl<'a, 'b> Sub<&'a f32> for &'b f32`

[src]

`impl<'a, 'b> Sub<&'a f32> for &'b f32`

`type Output = <f32 as Sub<f32>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output`

[src]

`fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output`

`impl<'a> Sub<&'a f32> for f32`

[src]

`impl<'a> Sub<&'a f32> for f32`

`type Output = <f32 as Sub<f32>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output`

[src]

`fn sub(self, other: &'a f32) -> <f32 as Sub<f32>>::Output`

`impl Sub<f32> for f32`

[src]

`impl Sub<f32> for f32`

`type Output = f32`

The resulting type after applying the `-`

operator.

`fn sub(self, other: f32) -> f32`

[src]

`fn sub(self, other: f32) -> f32`

`impl<'a> Sub<f32> for &'a f32`

[src]

`impl<'a> Sub<f32> for &'a f32`

`type Output = <f32 as Sub<f32>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: f32) -> <f32 as Sub<f32>>::Output`

[src]

`fn sub(self, other: f32) -> <f32 as Sub<f32>>::Output`

`impl Default for f32`

[src]

`impl Default for f32`

`impl Copy for f32`

[src]

`impl Copy for f32`

`impl Float for f32`

[src]

`impl Float for f32`

`type Int = u32`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A uint of the same with as the float

`type SignedInt = i32`

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

A int of the same with as the float

`const `**ZERO**: f32

[src]

**ZERO**: f32

`const `**ONE**: f32

[src]

**ONE**: f32

`const `**BITS**: u32

[src]

**BITS**: u32

`const `**SIGNIFICAND_BITS**: u32

[src]

**SIGNIFICAND_BITS**: u32

`const `**SIGN_MASK**: <f32 as Float>::Int

[src]

**SIGN_MASK**: <f32 as Float>::Int

`const `**SIGNIFICAND_MASK**: <f32 as Float>::Int

[src]

**SIGNIFICAND_MASK**: <f32 as Float>::Int

`const `**IMPLICIT_BIT**: <f32 as Float>::Int

[src]

**IMPLICIT_BIT**: <f32 as Float>::Int

`const `**EXPONENT_MASK**: <f32 as Float>::Int

[src]

**EXPONENT_MASK**: <f32 as Float>::Int

`fn repr(self) -> <f32 as Float>::Int`

[src]

`fn repr(self) -> <f32 as Float>::Int`

`fn signed_repr(self) -> <f32 as Float>::SignedInt`

[src]

`fn signed_repr(self) -> <f32 as Float>::SignedInt`

`fn from_repr(a: <f32 as Float>::Int) -> f32`

[src]

`fn from_repr(a: <f32 as Float>::Int) -> f32`

`fn from_parts(`

sign: bool,

exponent: <f32 as Float>::Int,

significand: <f32 as Float>::Int

) -> f32

[src]

`fn from_parts(`

sign: bool,

exponent: <f32 as Float>::Int,

significand: <f32 as Float>::Int

) -> f32

`fn normalize(significand: <f32 as Float>::Int) -> (i32, <f32 as Float>::Int)`

[src]

`fn normalize(significand: <f32 as Float>::Int) -> (i32, <f32 as Float>::Int)`

`const `**EXPONENT_BITS**: u32

[src]

**EXPONENT_BITS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The bitwidth of the exponent

`const `**EXPONENT_MAX**: u32

[src]

**EXPONENT_MAX**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The maximum value of the exponent

`const `**EXPONENT_BIAS**: u32

[src]

**EXPONENT_BIAS**: u32

## 🔬 This is a nightly-only experimental API. (`compiler_builtins_lib`

)

Compiler builtins. Will never become stable.

The exponent bias value

## Auto Trait Implementations

## Blanket Implementations

`impl<T, U> TryFrom for T where`

T: From<U>,

[src]

`impl<T, U> TryFrom for T where`

T: From<U>,

`type Error = !`

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

`impl<T> From for T`

[src]

`impl<T> From for T`

`impl<T, U> TryInto for T where`

U: TryFrom<T>,

[src]

`impl<T, U> TryInto for T where`

U: TryFrom<T>,

`type Error = <U as TryFrom<T>>::Error`

The type returned in the event of a conversion error.

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

[src]

`fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>`

`impl<T, U> Into for T where`

U: From<T>,

[src]

`impl<T, U> Into for T where`

U: From<T>,

`impl<T> Borrow for T where`

T: ?Sized,

[src]

`impl<T> Borrow for T where`

T: ?Sized,

`impl<T> BorrowMut for T where`

T: ?Sized,

[src]

`impl<T> BorrowMut for T where`

T: ?Sized,

#### ⓘImportant traits for &'_ mut I`fn borrow_mut(&mut self) -> &mut T`

[src]

`fn borrow_mut(&mut self) -> &mut T`

`impl<T> Any for T where`

T: 'static + ?Sized,

[src]

`impl<T> Any for T where`

T: 'static + ?Sized,

`fn get_type_id(&self) -> TypeId`

[src]

`fn get_type_id(&self) -> TypeId`

`impl<T> ToOwned for T where`

T: Clone,

[src]

`impl<T> ToOwned for T where`

T: Clone,

`impl<T> ToString for T where`

T: Display + ?Sized,

[src]

`impl<T> ToString for T where`

T: Display + ?Sized,