# Primitive Type i321.0.0[−]

The 32-bit signed integer type.

## Implementations

`impl i32`

[src]

`impl i32`

[src]`pub const `**MIN**: i32

1.43.0[src]

**MIN**: i32

The smallest value that can be represented by this integer type.

# Examples

Basic usage:

assert_eq!(i32::MIN, -2147483648);Run

`pub const `**MAX**: i32

1.43.0[src]

**MAX**: i32

The largest value that can be represented by this integer type.

# Examples

Basic usage:

assert_eq!(i32::MAX, 2147483647);Run

`pub const `**BITS**: u32

1.53.0[src]

**BITS**: u32

`pub fn from_str_radix(src: &str, radix: u32) -> Result<i32, ParseIntError>`

[src]

Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

or `-`

sign followed by digits.
Leading and trailing whitespace represent an error. Digits are a subset of these characters,
depending on `radix`

:

`0-9`

`a-z`

`A-Z`

# Panics

This function panics if `radix`

is not in the range from 2 to 36.

# Examples

Basic usage:

assert_eq!(i32::from_str_radix("A", 16), Ok(10));Run

`pub const fn count_ones(self) -> u32`

1.0.0 (const: 1.32.0)[src]

Returns the number of ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = 0b100_0000i32; assert_eq!(n.count_ones(), 1);Run

`pub const fn count_zeros(self) -> u32`

1.0.0 (const: 1.32.0)[src]

Returns the number of zeros in the binary representation of `self`

.

# Examples

Basic usage:

assert_eq!(i32::MAX.count_zeros(), 1);Run

`pub const fn leading_zeros(self) -> u32`

1.0.0 (const: 1.32.0)[src]

Returns the number of leading zeros in the binary representation of `self`

.

# Examples

Basic usage:

let n = -1i32; assert_eq!(n.leading_zeros(), 0);Run

`pub const fn trailing_zeros(self) -> u32`

1.0.0 (const: 1.32.0)[src]

Returns the number of trailing zeros in the binary representation of `self`

.

# Examples

Basic usage:

let n = -4i32; assert_eq!(n.trailing_zeros(), 2);Run

`pub const fn leading_ones(self) -> u32`

1.46.0 (const: 1.46.0)[src]

Returns the number of leading ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = -1i32; assert_eq!(n.leading_ones(), 32);Run

`pub const fn trailing_ones(self) -> u32`

1.46.0 (const: 1.46.0)[src]

Returns the number of trailing ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = 3i32; assert_eq!(n.trailing_ones(), 2);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn rotate_left(self, n: u32) -> i32`

1.0.0 (const: 1.32.0)[src]

Shifts the bits to the left by a specified amount, `n`

,
wrapping the truncated bits to the end of the resulting integer.

Please note this isn’t the same operation as the `<<`

shifting operator!

# Examples

Basic usage:

let n = 0x10000b3i32; let m = 0xb301; assert_eq!(n.rotate_left(8), m);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn rotate_right(self, n: u32) -> i32`

1.0.0 (const: 1.32.0)[src]

Shifts the bits to the right by a specified amount, `n`

,
wrapping the truncated bits to the beginning of the resulting
integer.

Please note this isn’t the same operation as the `>>`

shifting operator!

# Examples

Basic usage:

let n = 0xb301i32; let m = 0x10000b3; assert_eq!(n.rotate_right(8), m);Run

`pub const fn swap_bytes(self) -> i32`

1.0.0 (const: 1.32.0)[src]

Reverses the byte order of the integer.

# Examples

Basic usage:

let n = 0x12345678i32; let m = n.swap_bytes(); assert_eq!(m, 0x78563412);Run

`#[must_use]pub const fn reverse_bits(self) -> i32`

1.37.0 (const: 1.37.0)[src]

Reverses the order of bits in the integer. The least significant bit becomes the most significant bit, second least-significant bit becomes second most-significant bit, etc.

# Examples

Basic usage:

let n = 0x12345678i32; let m = n.reverse_bits(); assert_eq!(m, 0x1e6a2c48); assert_eq!(0, 0i32.reverse_bits());Run

`pub const fn from_be(x: i32) -> i32`

1.0.0 (const: 1.32.0)[src]

Converts an integer from big endian to the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Ai32; if cfg!(target_endian = "big") { assert_eq!(i32::from_be(n), n) } else { assert_eq!(i32::from_be(n), n.swap_bytes()) }Run

`pub const fn from_le(x: i32) -> i32`

1.0.0 (const: 1.32.0)[src]

Converts an integer from little endian to the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Ai32; if cfg!(target_endian = "little") { assert_eq!(i32::from_le(n), n) } else { assert_eq!(i32::from_le(n), n.swap_bytes()) }Run

`pub const fn to_be(self) -> i32`

1.0.0 (const: 1.32.0)[src]

Converts `self`

to big endian from the target’s endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Ai32; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }Run

`pub const fn to_le(self) -> i32`

1.0.0 (const: 1.32.0)[src]

Converts `self`

to little endian from the target’s endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Ai32; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_add(self, rhs: i32) -> Option<i32>`

1.0.0 (const: 1.47.0)[src]

Checked integer addition. Computes `self + rhs`

, returning `None`

if overflow occurred.

# Examples

Basic usage:

assert_eq!((i32::MAX - 2).checked_add(1), Some(i32::MAX - 1)); assert_eq!((i32::MAX - 2).checked_add(3), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub unsafe fn unchecked_add(self, rhs: i32) -> i32`

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer addition. Computes `self + rhs`

, assuming overflow
cannot occur. This results in undefined behavior when
`self + rhs > i32::MAX`

or `self + rhs < i32::MIN`

.

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_sub(self, rhs: i32) -> Option<i32>`

1.0.0 (const: 1.47.0)[src]

Checked integer subtraction. Computes `self - rhs`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!((i32::MIN + 2).checked_sub(1), Some(i32::MIN + 1)); assert_eq!((i32::MIN + 2).checked_sub(3), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub unsafe fn unchecked_sub(self, rhs: i32) -> i32`

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer subtraction. Computes `self - rhs`

, assuming overflow
cannot occur. This results in undefined behavior when
`self - rhs > i32::MAX`

or `self - rhs < i32::MIN`

.

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_mul(self, rhs: i32) -> Option<i32>`

1.0.0 (const: 1.47.0)[src]

Checked integer multiplication. Computes `self * rhs`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!(i32::MAX.checked_mul(1), Some(i32::MAX)); assert_eq!(i32::MAX.checked_mul(2), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub unsafe fn unchecked_mul(self, rhs: i32) -> i32`

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer multiplication. Computes `self * rhs`

, assuming overflow
cannot occur. This results in undefined behavior when
`self * rhs > i32::MAX`

or `self * rhs < i32::MIN`

.

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_div(self, rhs: i32) -> Option<i32>`

1.0.0 (const: 1.52.0)[src]

Checked integer division. Computes `self / rhs`

, returning `None`

if `rhs == 0`

or the division results in overflow.

# Examples

Basic usage:

assert_eq!((i32::MIN + 1).checked_div(-1), Some(2147483647)); assert_eq!(i32::MIN.checked_div(-1), None); assert_eq!((1i32).checked_div(0), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_div_euclid(self, rhs: i32) -> Option<i32>`

1.38.0 (const: 1.52.0)[src]

Checked Euclidean division. Computes `self.div_euclid(rhs)`

,
returning `None`

if `rhs == 0`

or the division results in overflow.

# Examples

Basic usage:

assert_eq!((i32::MIN + 1).checked_div_euclid(-1), Some(2147483647)); assert_eq!(i32::MIN.checked_div_euclid(-1), None); assert_eq!((1i32).checked_div_euclid(0), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_rem(self, rhs: i32) -> Option<i32>`

1.7.0 (const: 1.52.0)[src]

Checked integer remainder. Computes `self % rhs`

, returning `None`

if
`rhs == 0`

or the division results in overflow.

# Examples

Basic usage:

assert_eq!(5i32.checked_rem(2), Some(1)); assert_eq!(5i32.checked_rem(0), None); assert_eq!(i32::MIN.checked_rem(-1), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_rem_euclid(self, rhs: i32) -> Option<i32>`

1.38.0 (const: 1.52.0)[src]

Checked Euclidean remainder. Computes `self.rem_euclid(rhs)`

, returning `None`

if `rhs == 0`

or the division results in overflow.

# Examples

Basic usage:

assert_eq!(5i32.checked_rem_euclid(2), Some(1)); assert_eq!(5i32.checked_rem_euclid(0), None); assert_eq!(i32::MIN.checked_rem_euclid(-1), None);Run

`pub const fn checked_neg(self) -> Option<i32>`

1.7.0 (const: 1.47.0)[src]

Checked negation. Computes `-self`

, returning `None`

if `self == MIN`

.

# Examples

Basic usage:

assert_eq!(5i32.checked_neg(), Some(-5)); assert_eq!(i32::MIN.checked_neg(), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_shl(self, rhs: u32) -> Option<i32>`

1.7.0 (const: 1.47.0)[src]

Checked shift left. Computes `self << rhs`

, returning `None`

if `rhs`

is larger
than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(0x1i32.checked_shl(4), Some(0x10)); assert_eq!(0x1i32.checked_shl(129), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_shr(self, rhs: u32) -> Option<i32>`

1.7.0 (const: 1.47.0)[src]

Checked shift right. Computes `self >> rhs`

, returning `None`

if `rhs`

is
larger than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(0x10i32.checked_shr(4), Some(0x1)); assert_eq!(0x10i32.checked_shr(128), None);Run

`pub const fn checked_abs(self) -> Option<i32>`

1.13.0 (const: 1.47.0)[src]

Checked absolute value. Computes `self.abs()`

, returning `None`

if
`self == MIN`

.

# Examples

Basic usage:

assert_eq!((-5i32).checked_abs(), Some(5)); assert_eq!(i32::MIN.checked_abs(), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn checked_pow(self, exp: u32) -> Option<i32>`

1.34.0 (const: 1.50.0)[src]

Checked exponentiation. Computes `self.pow(exp)`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!(8i32.checked_pow(2), Some(64)); assert_eq!(i32::MAX.checked_pow(2), None);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn saturating_add(self, rhs: i32) -> i32`

1.0.0 (const: 1.47.0)[src]

Saturating integer addition. Computes `self + rhs`

, saturating at the numeric
bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(100i32.saturating_add(1), 101); assert_eq!(i32::MAX.saturating_add(100), i32::MAX); assert_eq!(i32::MIN.saturating_add(-1), i32::MIN);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn saturating_sub(self, rhs: i32) -> i32`

1.0.0 (const: 1.47.0)[src]

Saturating integer subtraction. Computes `self - rhs`

, saturating at the
numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(100i32.saturating_sub(127), -27); assert_eq!(i32::MIN.saturating_sub(100), i32::MIN); assert_eq!(i32::MAX.saturating_sub(-1), i32::MAX);Run

`pub const fn saturating_neg(self) -> i32`

1.45.0 (const: 1.47.0)[src]

Saturating integer negation. Computes `-self`

, returning `MAX`

if `self == MIN`

instead of overflowing.

# Examples

Basic usage:

assert_eq!(100i32.saturating_neg(), -100); assert_eq!((-100i32).saturating_neg(), 100); assert_eq!(i32::MIN.saturating_neg(), i32::MAX); assert_eq!(i32::MAX.saturating_neg(), i32::MIN + 1);Run

`pub const fn saturating_abs(self) -> i32`

1.45.0 (const: 1.47.0)[src]

Saturating absolute value. Computes `self.abs()`

, returning `MAX`

if `self == MIN`

instead of overflowing.

# Examples

Basic usage:

assert_eq!(100i32.saturating_abs(), 100); assert_eq!((-100i32).saturating_abs(), 100); assert_eq!(i32::MIN.saturating_abs(), i32::MAX); assert_eq!((i32::MIN + 1).saturating_abs(), i32::MAX);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn saturating_mul(self, rhs: i32) -> i32`

1.7.0 (const: 1.47.0)[src]

Saturating integer multiplication. Computes `self * rhs`

, saturating at the
numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(10i32.saturating_mul(12), 120); assert_eq!(i32::MAX.saturating_mul(10), i32::MAX); assert_eq!(i32::MIN.saturating_mul(10), i32::MIN);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn saturating_pow(self, exp: u32) -> i32`

1.34.0 (const: 1.50.0)[src]

Saturating integer exponentiation. Computes `self.pow(exp)`

,
saturating at the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!((-4i32).saturating_pow(3), -64); assert_eq!(i32::MIN.saturating_pow(2), i32::MAX); assert_eq!(i32::MIN.saturating_pow(3), i32::MIN);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_add(self, rhs: i32) -> i32`

1.0.0 (const: 1.32.0)[src]

Wrapping (modular) addition. Computes `self + rhs`

, wrapping around at the
boundary of the type.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_add(27), 127); assert_eq!(i32::MAX.wrapping_add(2), i32::MIN + 1);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_sub(self, rhs: i32) -> i32`

1.0.0 (const: 1.32.0)[src]

Wrapping (modular) subtraction. Computes `self - rhs`

, wrapping around at the
boundary of the type.

# Examples

Basic usage:

assert_eq!(0i32.wrapping_sub(127), -127); assert_eq!((-2i32).wrapping_sub(i32::MAX), i32::MAX);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_mul(self, rhs: i32) -> i32`

1.0.0 (const: 1.32.0)[src]

Wrapping (modular) multiplication. Computes `self * rhs`

, wrapping around at
the boundary of the type.

# Examples

Basic usage:

assert_eq!(10i32.wrapping_mul(12), 120); assert_eq!(11i8.wrapping_mul(12), -124);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_div(self, rhs: i32) -> i32`

1.2.0 (const: 1.52.0)[src]

Wrapping (modular) division. Computes `self / rhs`

, wrapping around at the
boundary of the type.

The only case where such wrapping can occur is when one divides `MIN / -1`

on a signed type (where
`MIN`

is the negative minimal value for the type); this is equivalent to `-MIN`

, a positive value
that is too large to represent in the type. In such a case, this function returns `MIN`

itself.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_div(10), 10); assert_eq!((-128i8).wrapping_div(-1), -128);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_div_euclid(self, rhs: i32) -> i32`

1.38.0 (const: 1.52.0)[src]

Wrapping Euclidean division. Computes `self.div_euclid(rhs)`

,
wrapping around at the boundary of the type.

Wrapping will only occur in `MIN / -1`

on a signed type (where `MIN`

is the negative minimal value
for the type). This is equivalent to `-MIN`

, a positive value that is too large to represent in the
type. In this case, this method returns `MIN`

itself.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_div_euclid(10), 10); assert_eq!((-128i8).wrapping_div_euclid(-1), -128);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_rem(self, rhs: i32) -> i32`

1.2.0 (const: 1.52.0)[src]

Wrapping (modular) remainder. Computes `self % rhs`

, wrapping around at the
boundary of the type.

Such wrap-around never actually occurs mathematically; implementation artifacts make `x % y`

invalid for `MIN / -1`

on a signed type (where `MIN`

is the negative minimal value). In such a case,
this function returns `0`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_rem(10), 0); assert_eq!((-128i8).wrapping_rem(-1), 0);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_rem_euclid(self, rhs: i32) -> i32`

1.38.0 (const: 1.52.0)[src]

Wrapping Euclidean remainder. Computes `self.rem_euclid(rhs)`

, wrapping around
at the boundary of the type.

Wrapping will only occur in `MIN % -1`

on a signed type (where `MIN`

is the negative minimal value
for the type). In this case, this method returns 0.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_rem_euclid(10), 0); assert_eq!((-128i8).wrapping_rem_euclid(-1), 0);Run

`pub const fn wrapping_neg(self) -> i32`

1.2.0 (const: 1.32.0)[src]

Wrapping (modular) negation. Computes `-self`

, wrapping around at the boundary
of the type.

The only case where such wrapping can occur is when one negates `MIN`

on a signed type (where `MIN`

is the negative minimal value for the type); this is a positive value that is too large to represent
in the type. In such a case, this function returns `MIN`

itself.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_neg(), -100); assert_eq!(i32::MIN.wrapping_neg(), i32::MIN);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_shl(self, rhs: u32) -> i32`

1.2.0 (const: 1.32.0)[src]

Panic-free bitwise shift-left; yields `self << mask(rhs)`

, where `mask`

removes
any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is restricted to
the range of the type, rather than the bits shifted out of the LHS being returned to the other end.
The primitive integer types all implement a `rotate_left`

function,
which may be what you want instead.

# Examples

Basic usage:

assert_eq!((-1i32).wrapping_shl(7), -128); assert_eq!((-1i32).wrapping_shl(128), -1);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_shr(self, rhs: u32) -> i32`

1.2.0 (const: 1.32.0)[src]

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

, where `mask`

removes any high-order bits of `rhs`

that would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is restricted
to the range of the type, rather than the bits shifted out of the LHS being returned to the other
end. The primitive integer types all implement a `rotate_right`

function,
which may be what you want instead.

# Examples

Basic usage:

assert_eq!((-128i32).wrapping_shr(7), -1); assert_eq!((-128i16).wrapping_shr(64), -128);Run

`pub const fn wrapping_abs(self) -> i32`

1.13.0 (const: 1.32.0)[src]

Wrapping (modular) absolute value. Computes `self.abs()`

, wrapping around at
the boundary of the type.

The only case where such wrapping can occur is when one takes the absolute value of the negative
minimal value for the type; this is a positive value that is too large to represent in the type. In
such a case, this function returns `MIN`

itself.

# Examples

Basic usage:

assert_eq!(100i32.wrapping_abs(), 100); assert_eq!((-100i32).wrapping_abs(), 100); assert_eq!(i32::MIN.wrapping_abs(), i32::MIN); assert_eq!((-128i8).wrapping_abs() as u8, 128);Run

`pub const fn unsigned_abs(self) -> u32`

1.51.0 (const: 1.51.0)[src]

Computes the absolute value of `self`

without any wrapping
or panicking.

# Examples

Basic usage:

assert_eq!(100i32.unsigned_abs(), 100u32); assert_eq!((-100i32).unsigned_abs(), 100u32); assert_eq!((-128i8).unsigned_abs(), 128u8);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn wrapping_pow(self, exp: u32) -> i32`

1.34.0 (const: 1.50.0)[src]

Wrapping (modular) exponentiation. Computes `self.pow(exp)`

,
wrapping around at the boundary of the type.

# Examples

Basic usage:

assert_eq!(3i32.wrapping_pow(4), 81); assert_eq!(3i8.wrapping_pow(5), -13); assert_eq!(3i8.wrapping_pow(6), -39);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_add(self, rhs: i32) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_add(2), (7, false)); assert_eq!(i32::MAX.overflowing_add(1), (i32::MIN, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_sub(self, rhs: i32) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_sub(2), (3, false)); assert_eq!(i32::MIN.overflowing_sub(1), (i32::MAX, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_mul(self, rhs: i32) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000i32.overflowing_mul(10), (1410065408, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_div(self, rhs: i32) -> (i32, bool)`

1.7.0 (const: 1.52.0)[src]

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then self is returned.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_div(2), (2, false)); assert_eq!(i32::MIN.overflowing_div(-1), (i32::MIN, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_div_euclid(self, rhs: i32) -> (i32, bool)`

1.38.0 (const: 1.52.0)[src]

Calculates the quotient of Euclidean division `self.div_euclid(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating whether an arithmetic overflow would
occur. If an overflow would occur then `self`

is returned.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_div_euclid(2), (2, false)); assert_eq!(i32::MIN.overflowing_div_euclid(-1), (i32::MIN, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_rem(self, rhs: i32) -> (i32, bool)`

1.7.0 (const: 1.52.0)[src]

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_rem(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem(-1), (0, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_rem_euclid(self, rhs: i32) -> (i32, bool)`

1.38.0 (const: 1.52.0)[src]

Overflowing Euclidean remainder. Calculates `self.rem_euclid(rhs)`

.

Returns a tuple of the remainder after dividing along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would occur then 0 is returned.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(5i32.overflowing_rem_euclid(2), (1, false)); assert_eq!(i32::MIN.overflowing_rem_euclid(-1), (0, true));Run

`pub const fn overflowing_neg(self) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Negates self, overflowing if this is equal to the minimum value.

Returns a tuple of the negated version of self along with a boolean indicating whether an overflow
happened. If `self`

is the minimum value (e.g., `i32::MIN`

for values of type `i32`

), then the
minimum value will be returned again and `true`

will be returned for an overflow happening.

# Examples

Basic usage:

assert_eq!(2i32.overflowing_neg(), (-2, false)); assert_eq!(i32::MIN.overflowing_neg(), (i32::MIN, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_shl(self, rhs: u32) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage:

assert_eq!(0x1i32.overflowing_shl(4), (0x10, false)); assert_eq!(0x1i32.overflowing_shl(36), (0x10, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_shr(self, rhs: u32) -> (i32, bool)`

1.7.0 (const: 1.32.0)[src]

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage:

assert_eq!(0x10i32.overflowing_shr(4), (0x1, false)); assert_eq!(0x10i32.overflowing_shr(36), (0x1, true));Run

`pub const fn overflowing_abs(self) -> (i32, bool)`

1.13.0 (const: 1.32.0)[src]

Computes the absolute value of `self`

.

Returns a tuple of the absolute version of self along with a boolean indicating whether an overflow happened. If self is the minimum value (e.g., i32::MIN for values of type i32), then the minimum value will be returned again and true will be returned for an overflow happening.

# Examples

Basic usage:

assert_eq!(10i32.overflowing_abs(), (10, false)); assert_eq!((-10i32).overflowing_abs(), (10, false)); assert_eq!((i32::MIN).overflowing_abs(), (i32::MIN, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn overflowing_pow(self, exp: u32) -> (i32, bool)`

1.34.0 (const: 1.50.0)[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

# Examples

Basic usage:

assert_eq!(3i32.overflowing_pow(4), (81, false)); assert_eq!(3i8.overflowing_pow(5), (-13, true));Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn pow(self, exp: u32) -> i32`

1.0.0 (const: 1.50.0)[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

# Examples

Basic usage:

let x: i32 = 2; // or any other integer type assert_eq!(x.pow(5), 32);Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn div_euclid(self, rhs: i32) -> i32`

1.38.0 (const: 1.52.0)[src]

Calculates the quotient of Euclidean division of `self`

by `rhs`

.

This computes the integer `q`

such that `self = q * rhs + r`

, with
`r = self.rem_euclid(rhs)`

and `0 <= r < abs(rhs)`

.

In other words, the result is `self / rhs`

rounded to the integer `q`

such that `self >= q * rhs`

.
If `self > 0`

, this is equal to round towards zero (the default in Rust);
if `self < 0`

, this is equal to round towards +/- infinity.

# Panics

This function will panic if `rhs`

is 0 or the division results in overflow.

# Examples

Basic usage:

let a: i32 = 7; // or any other integer type let b = 4; assert_eq!(a.div_euclid(b), 1); // 7 >= 4 * 1 assert_eq!(a.div_euclid(-b), -1); // 7 >= -4 * -1 assert_eq!((-a).div_euclid(b), -2); // -7 >= 4 * -2 assert_eq!((-a).div_euclid(-b), 2); // -7 >= -4 * 2Run

`#[must_use = "this returns the result of the operation, \ without modifying the original"]pub const fn rem_euclid(self, rhs: i32) -> i32`

1.38.0 (const: 1.52.0)[src]

Calculates the least nonnegative remainder of `self (mod rhs)`

.

This is done as if by the Euclidean division algorithm – given
`r = self.rem_euclid(rhs)`

, `self = rhs * self.div_euclid(rhs) + r`

, and
`0 <= r < abs(rhs)`

.

# Panics

This function will panic if `rhs`

is 0 or the division results in overflow.

# Examples

Basic usage:

let a: i32 = 7; // or any other integer type let b = 4; assert_eq!(a.rem_euclid(b), 3); assert_eq!((-a).rem_euclid(b), 1); assert_eq!(a.rem_euclid(-b), 3); assert_eq!((-a).rem_euclid(-b), 1);Run

`pub const fn abs(self) -> i32`

1.0.0 (const: 1.32.0)[src]

Computes the absolute value of `self`

.

# Overflow behavior

The absolute value of
`i32::MIN`

cannot be represented as an
`i32`

,
and attempting to calculate it will cause an overflow. This means
that code in debug mode will trigger a panic on this case and
optimized code will return
`i32::MIN`

without a panic.

# Examples

Basic usage:

assert_eq!(10i32.abs(), 10); assert_eq!((-10i32).abs(), 10);Run

`pub const fn signum(self) -> i32`

1.0.0 (const: 1.47.0)[src]

Returns a number representing sign of `self`

.

`0`

if the number is zero`1`

if the number is positive`-1`

if the number is negative

# Examples

Basic usage:

assert_eq!(10i32.signum(), 1); assert_eq!(0i32.signum(), 0); assert_eq!((-10i32).signum(), -1);Run

`pub const fn is_positive(self) -> bool`

1.0.0 (const: 1.32.0)[src]

Returns `true`

if `self`

is positive and `false`

if the number is zero or
negative.

# Examples

Basic usage:

assert!(10i32.is_positive()); assert!(!(-10i32).is_positive());Run

`pub const fn is_negative(self) -> bool`

1.0.0 (const: 1.32.0)[src]

Returns `true`

if `self`

is negative and `false`

if the number is zero or
positive.

# Examples

Basic usage:

assert!((-10i32).is_negative()); assert!(!10i32.is_negative());Run

`pub const fn to_be_bytes(self) -> [u8; 4]`

1.32.0 (const: 1.44.0)[src]

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

# Examples

let bytes = 0x12345678i32.to_be_bytes(); assert_eq!(bytes, [0x12, 0x34, 0x56, 0x78]);Run

`pub const fn to_le_bytes(self) -> [u8; 4]`

1.32.0 (const: 1.44.0)[src]

Return the memory representation of this integer as a byte array in little-endian byte order.

# Examples

let bytes = 0x12345678i32.to_le_bytes(); assert_eq!(bytes, [0x78, 0x56, 0x34, 0x12]);Run

`pub const fn to_ne_bytes(self) -> [u8; 4]`

1.32.0 (const: 1.44.0)[src]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform’s native endianness is used, portable code
should use `to_be_bytes`

or `to_le_bytes`

, as appropriate,
instead.

# Examples

let bytes = 0x12345678i32.to_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78] } else { [0x78, 0x56, 0x34, 0x12] } );Run

`pub fn as_ne_bytes(&self) -> &[u8; 4]`

[src]

Return the memory representation of this integer as a byte array in native byte order.

`to_ne_bytes`

should be preferred over this whenever possible.

# Examples

#![feature(num_as_ne_bytes)] let num = 0x12345678i32; let bytes = num.as_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { &[0x12, 0x34, 0x56, 0x78] } else { &[0x78, 0x56, 0x34, 0x12] } );Run

`pub const fn from_be_bytes(bytes: [u8; 4]) -> i32`

1.32.0 (const: 1.44.0)[src]

Create an integer value from its representation as a byte array in big endian.

# Examples

let value = i32::from_be_bytes([0x12, 0x34, 0x56, 0x78]); assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_be_i32(input: &mut &[u8]) -> i32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>()); *input = rest; i32::from_be_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn from_le_bytes(bytes: [u8; 4]) -> i32`

1.32.0 (const: 1.44.0)[src]

Create an integer value from its representation as a byte array in little endian.

# Examples

let value = i32::from_le_bytes([0x78, 0x56, 0x34, 0x12]); assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_le_i32(input: &mut &[u8]) -> i32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>()); *input = rest; i32::from_le_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn from_ne_bytes(bytes: [u8; 4]) -> i32`

1.32.0 (const: 1.44.0)[src]

Create an integer value from its memory representation as a byte array in native endianness.

As the target platform’s native endianness is used, portable code
likely wants to use `from_be_bytes`

or `from_le_bytes`

, as
appropriate instead.

# Examples

let value = i32::from_ne_bytes(if cfg!(target_endian = "big") { [0x12, 0x34, 0x56, 0x78] } else { [0x78, 0x56, 0x34, 0x12] }); assert_eq!(value, 0x12345678);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_ne_i32(input: &mut &[u8]) -> i32 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<i32>()); *input = rest; i32::from_ne_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn min_value() -> i32`

1.0.0 (const: 1.32.0)[src]

replaced by the `MIN`

associated constant on this type

New code should prefer to use
`i32::MIN`

instead.

Returns the smallest value that can be represented by this integer type.

`pub const fn max_value() -> i32`

1.0.0 (const: 1.32.0)[src]

replaced by the `MAX`

associated constant on this type

New code should prefer to use
`i32::MAX`

instead.

Returns the largest value that can be represented by this integer type.

## Trait Implementations

`impl<'_> BitAndAssign<&'_ i32> for i32`

1.22.0[src]

`impl<'_> BitAndAssign<&'_ i32> for i32`

1.22.0[src]`pub fn bitand_assign(&mut self, other: &i32)`

[src]

`impl BitAndAssign<i32> for i32`

1.8.0[src]

`impl BitAndAssign<i32> for i32`

1.8.0[src]`pub fn bitand_assign(&mut self, other: i32)`

[src]

`impl BitOr<NonZeroI32> for i32`

1.45.0[src]

`impl BitOr<NonZeroI32> for i32`

1.45.0[src]`type Output = NonZeroI32`

The resulting type after applying the `|`

operator.

`pub fn bitor(self, rhs: NonZeroI32) -> <i32 as BitOr<NonZeroI32>>::Output`

[src]

`impl<'_> BitOrAssign<&'_ i32> for i32`

1.22.0[src]

`impl<'_> BitOrAssign<&'_ i32> for i32`

1.22.0[src]`pub fn bitor_assign(&mut self, other: &i32)`

[src]

`impl BitOrAssign<i32> for i32`

1.8.0[src]

`impl BitOrAssign<i32> for i32`

1.8.0[src]`pub fn bitor_assign(&mut self, other: i32)`

[src]

`impl<'_> BitXorAssign<&'_ i32> for i32`

1.22.0[src]

`impl<'_> BitXorAssign<&'_ i32> for i32`

1.22.0[src]`pub fn bitxor_assign(&mut self, other: &i32)`

[src]

`impl BitXorAssign<i32> for i32`

1.8.0[src]

`impl BitXorAssign<i32> for i32`

1.8.0[src]`pub fn bitxor_assign(&mut self, other: i32)`

[src]

`impl Div<i32> for i32`

[src]

`impl Div<i32> for i32`

[src]This operation rounds towards zero, truncating any fractional part of the exact result.

# Panics

This operation will panic if `other == 0`

or the division results in overflow.

`impl From<NonZeroI32> for i32`

1.31.0[src]

`impl From<NonZeroI32> for i32`

1.31.0[src]`pub fn from(nonzero: NonZeroI32) -> i32`

[src]

Converts a `NonZeroI32`

into an `i32`

`impl FromStr for i32`

[src]

`impl FromStr for i32`

[src]`type Err = ParseIntError`

The associated error which can be returned from parsing.

`pub fn from_str(src: &str) -> Result<i32, ParseIntError>`

[src]

`impl PartialOrd<i32> for i32`

[src]

`impl PartialOrd<i32> for i32`

[src]`impl Rem<i32> for i32`

[src]

`impl Rem<i32> for i32`

[src]This operation satisfies `n % d == n - (n / d) * d`

. The
result has the same sign as the left operand.

# Panics

This operation will panic if `other == 0`

or if `self / other`

results in overflow.

`impl Step for i32`

[src]

`impl Step for i32`

[src]`pub unsafe fn forward_unchecked(start: i32, n: usize) -> i32`

[src]

`pub unsafe fn backward_unchecked(start: i32, n: usize) -> i32`

[src]

`pub fn forward(start: i32, n: usize) -> i32`

[src]

`pub fn backward(start: i32, n: usize) -> i32`

[src]

`pub fn steps_between(start: &i32, end: &i32) -> Option<usize>`

[src]

`pub fn forward_checked(start: i32, n: usize) -> Option<i32>`

[src]

`pub fn backward_checked(start: i32, n: usize) -> Option<i32>`

[src]

`impl TryFrom<i128> for i32`

1.34.0[src]

`impl TryFrom<i128> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: i128) -> Result<i32, <i32 as TryFrom<i128>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<i64> for i32`

1.34.0[src]

`impl TryFrom<i64> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: i64) -> Result<i32, <i32 as TryFrom<i64>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<isize> for i32`

1.34.0[src]

`impl TryFrom<isize> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: isize) -> Result<i32, <i32 as TryFrom<isize>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<u128> for i32`

1.34.0[src]

`impl TryFrom<u128> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: u128) -> Result<i32, <i32 as TryFrom<u128>>::Error>`

[src]

`impl TryFrom<u32> for i32`

1.34.0[src]

`impl TryFrom<u32> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: u32) -> Result<i32, <i32 as TryFrom<u32>>::Error>`

[src]

`impl TryFrom<u64> for i32`

1.34.0[src]

`impl TryFrom<u64> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: u64) -> Result<i32, <i32 as TryFrom<u64>>::Error>`

[src]

`impl TryFrom<usize> for i32`

1.34.0[src]

`impl TryFrom<usize> for i32`

1.34.0[src]`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`pub fn try_from(u: usize) -> Result<i32, <i32 as TryFrom<usize>>::Error>`

[src]

`impl Copy for i32`

[src]

`impl Eq for i32`

[src]

## Auto Trait Implementations

`impl RefUnwindSafe for i32`

`impl Send for i32`

`impl Sync for i32`

`impl Unpin for i32`

`impl UnwindSafe for i32`

## Blanket Implementations

`impl<T> Borrow<T> for T where`

T: ?Sized,

[src]

`impl<T> Borrow<T> for T where`

T: ?Sized,

[src]`pub fn borrow(&self) -> &Tⓘ`### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for &mut Rimpl<W: Write + ?Sized> Write for &mut W

[src]

### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for &mut Rimpl<W: Write + ?Sized> Write for &mut W

`impl<T> BorrowMut<T> for T where`

T: ?Sized,

[src]

`impl<T> BorrowMut<T> for T where`

T: ?Sized,

[src]`pub fn borrow_mut(&mut self) -> &mut Tⓘ`### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for &mut Rimpl<W: Write + ?Sized> Write for &mut W

[src]

### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Future + Unpin + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized> Read for &mut Rimpl<W: Write + ?Sized> Write for &mut W