pub struct Receiver<T> { /* private fields */ }
mpmc_channel
#126840)Expand description
The receiving half of Rust’s channel
(or sync_channel
) type.
Different threads can share this Sender
by cloning it.
Messages sent to the channel can be retrieved using recv
.
§Examples
#![feature(mpmc_channel)]
use std::sync::mpmc::channel;
use std::thread;
use std::time::Duration;
let (send, recv) = channel();
let tx_thread = thread::spawn(move || {
send.send("Hello world!").unwrap();
thread::sleep(Duration::from_secs(2)); // block for two seconds
send.send("Delayed for 2 seconds").unwrap();
});
let (rx1, rx2) = (recv.clone(), recv.clone());
let rx_thread_1 = thread::spawn(move || {
println!("{}", rx1.recv().unwrap()); // Received immediately
});
let rx_thread_2 = thread::spawn(move || {
println!("{}", rx2.recv().unwrap()); // Received after 2 seconds
});
tx_thread.join().unwrap();
rx_thread_1.join().unwrap();
rx_thread_2.join().unwrap();
Implementations§
Source§impl<T> Receiver<T>
impl<T> Receiver<T>
Sourcepub fn try_recv(&self) -> Result<T, TryRecvError>
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn try_recv(&self) -> Result<T, TryRecvError>
mpmc_channel
#126840)Attempts to receive a message from the channel without blocking.
This method will never block the caller in order to wait for data to become available. Instead, this will always return immediately with a possible option of pending data on the channel.
If called on a zero-capacity channel, this method will receive a message only if there happens to be a send operation on the other side of the channel at the same time.
This is useful for a flavor of “optimistic check” before deciding to block on a receiver.
Compared with recv
, this function has two failure cases instead of one
(one for disconnection, one for an empty buffer).
§Examples
Sourcepub fn recv(&self) -> Result<T, RecvError>
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn recv(&self) -> Result<T, RecvError>
mpmc_channel
#126840)Attempts to wait for a value on this receiver, returning an error if the corresponding channel has hung up.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent (at least one sender
still exists). Once a message is sent to the corresponding Sender
,
this receiver will wake up and return that message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
#![feature(mpmc_channel)]
use std::sync::mpmc;
use std::thread;
let (send, recv) = mpmc::channel();
let handle = thread::spawn(move || {
send.send(1u8).unwrap();
});
handle.join().unwrap();
assert_eq!(Ok(1), recv.recv());
Buffering behavior:
#![feature(mpmc_channel)]
use std::sync::mpmc;
use std::thread;
use std::sync::mpmc::RecvError;
let (send, recv) = mpmc::channel();
let handle = thread::spawn(move || {
send.send(1u8).unwrap();
send.send(2).unwrap();
send.send(3).unwrap();
drop(send);
});
// wait for the thread to join so we ensure the sender is dropped
handle.join().unwrap();
assert_eq!(Ok(1), recv.recv());
assert_eq!(Ok(2), recv.recv());
assert_eq!(Ok(3), recv.recv());
assert_eq!(Err(RecvError), recv.recv());
Sourcepub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn recv_timeout(&self, timeout: Duration) -> Result<T, RecvTimeoutError>
mpmc_channel
#126840)Attempts to wait for a value on this receiver, returning an error if the
corresponding channel has hung up, or if it waits more than timeout
.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent (at least one sender
still exists). Once a message is sent to the corresponding Sender
,
this receiver will wake up and return that message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
Successfully receiving value before encountering timeout:
#![feature(mpmc_channel)]
use std::thread;
use std::time::Duration;
use std::sync::mpmc;
let (send, recv) = mpmc::channel();
thread::spawn(move || {
send.send('a').unwrap();
});
assert_eq!(
recv.recv_timeout(Duration::from_millis(400)),
Ok('a')
);
Receiving an error upon reaching timeout:
#![feature(mpmc_channel)]
use std::thread;
use std::time::Duration;
use std::sync::mpmc;
let (send, recv) = mpmc::channel();
thread::spawn(move || {
thread::sleep(Duration::from_millis(800));
send.send('a').unwrap();
});
assert_eq!(
recv.recv_timeout(Duration::from_millis(400)),
Err(mpmc::RecvTimeoutError::Timeout)
);
Sourcepub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn recv_deadline(&self, deadline: Instant) -> Result<T, RecvTimeoutError>
mpmc_channel
#126840)Attempts to wait for a value on this receiver, returning an error if the
corresponding channel has hung up, or if deadline
is reached.
This function will always block the current thread if there is no data
available and it’s possible for more data to be sent. Once a message is
sent to the corresponding Sender
, then this receiver will wake up
and return that message.
If the corresponding Sender
has disconnected, or it disconnects while
this call is blocking, this call will wake up and return Err
to
indicate that no more messages can ever be received on this channel.
However, since channels are buffered, messages sent before the disconnect
will still be properly received.
§Examples
Successfully receiving value before reaching deadline:
#![feature(mpmc_channel)]
use std::thread;
use std::time::{Duration, Instant};
use std::sync::mpmc;
let (send, recv) = mpmc::channel();
thread::spawn(move || {
send.send('a').unwrap();
});
assert_eq!(
recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
Ok('a')
);
Receiving an error upon reaching deadline:
#![feature(mpmc_channel)]
use std::thread;
use std::time::{Duration, Instant};
use std::sync::mpmc;
let (send, recv) = mpmc::channel();
thread::spawn(move || {
thread::sleep(Duration::from_millis(800));
send.send('a').unwrap();
});
assert_eq!(
recv.recv_deadline(Instant::now() + Duration::from_millis(400)),
Err(mpmc::RecvTimeoutError::Timeout)
);
Sourcepub fn try_iter(&self) -> TryIter<'_, T> ⓘ
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn try_iter(&self) -> TryIter<'_, T> ⓘ
mpmc_channel
#126840)Returns an iterator that will attempt to yield all pending values.
It will return None
if there are no more pending values or if the
channel has hung up. The iterator will never panic!
or block the
user by waiting for values.
§Examples
#![feature(mpmc_channel)]
use std::sync::mpmc::channel;
use std::thread;
use std::time::Duration;
let (sender, receiver) = channel();
// nothing is in the buffer yet
assert!(receiver.try_iter().next().is_none());
thread::spawn(move || {
thread::sleep(Duration::from_secs(1));
sender.send(1).unwrap();
sender.send(2).unwrap();
sender.send(3).unwrap();
});
// nothing is in the buffer yet
assert!(receiver.try_iter().next().is_none());
// block for two seconds
thread::sleep(Duration::from_secs(2));
let mut iter = receiver.try_iter();
assert_eq!(iter.next(), Some(1));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.next(), Some(3));
assert_eq!(iter.next(), None);
Source§impl<T> Receiver<T>
impl<T> Receiver<T>
Sourcepub fn is_empty(&self) -> bool
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn is_empty(&self) -> bool
mpmc_channel
#126840)Sourcepub fn is_full(&self) -> bool
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn is_full(&self) -> bool
mpmc_channel
#126840)Sourcepub fn len(&self) -> usize
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn len(&self) -> usize
mpmc_channel
#126840)Returns the number of messages in the channel.
§Examples
Sourcepub fn capacity(&self) -> Option<usize>
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn capacity(&self) -> Option<usize>
mpmc_channel
#126840)If the channel is bounded, returns its capacity.
§Examples
Sourcepub fn same_channel(&self, other: &Receiver<T>) -> bool
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn same_channel(&self, other: &Receiver<T>) -> bool
mpmc_channel
#126840)Returns true
if receivers belong to the same channel.
§Examples
Sourcepub fn iter(&self) -> Iter<'_, T> ⓘ
🔬This is a nightly-only experimental API. (mpmc_channel
#126840)
pub fn iter(&self) -> Iter<'_, T> ⓘ
mpmc_channel
#126840)Returns an iterator that will block waiting for messages, but never
panic!
. It will return None
when the channel has hung up.
§Examples
#![feature(mpmc_channel)]
use std::sync::mpmc::channel;
use std::thread;
let (send, recv) = channel();
thread::spawn(move || {
send.send(1).unwrap();
send.send(2).unwrap();
send.send(3).unwrap();
});
let mut iter = recv.iter();
assert_eq!(iter.next(), Some(1));
assert_eq!(iter.next(), Some(2));
assert_eq!(iter.next(), Some(3));
assert_eq!(iter.next(), None);