rustc_proc_macro/
lib.rs

1//! A support library for macro authors when defining new macros.
2//!
3//! This library, provided by the standard distribution, provides the types
4//! consumed in the interfaces of procedurally defined macro definitions such as
5//! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
6//! custom derive attributes`#[proc_macro_derive]`.
7//!
8//! See [the book] for more.
9//!
10//! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
11
12#![stable(feature = "proc_macro_lib", since = "1.15.0")]
13#![deny(missing_docs)]
14#![doc(
15    html_playground_url = "https://play.rust-lang.org/",
16    issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
17    test(no_crate_inject, attr(deny(warnings))),
18    test(attr(allow(dead_code, deprecated, unused_variables, unused_mut)))
19)]
20#![doc(rust_logo)]
21#![feature(rustdoc_internals)]
22#![feature(staged_api)]
23#![feature(allow_internal_unstable)]
24#![feature(decl_macro)]
25#![feature(maybe_uninit_write_slice)]
26#![feature(negative_impls)]
27#![feature(panic_can_unwind)]
28#![feature(restricted_std)]
29#![feature(rustc_attrs)]
30#![feature(extend_one)]
31#![recursion_limit = "256"]
32#![allow(internal_features)]
33#![deny(ffi_unwind_calls)]
34#![allow(rustc::internal)] // Can't use FxHashMap when compiled as part of the standard library
35#![warn(rustdoc::unescaped_backticks)]
36#![warn(unreachable_pub)]
37#![deny(unsafe_op_in_unsafe_fn)]
38
39#[unstable(feature = "proc_macro_internals", issue = "27812")]
40#[doc(hidden)]
41pub mod bridge;
42
43mod diagnostic;
44mod escape;
45mod to_tokens;
46
47use core::ops::BitOr;
48use std::ffi::CStr;
49use std::ops::{Range, RangeBounds};
50use std::path::PathBuf;
51use std::str::FromStr;
52use std::{error, fmt};
53
54#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
55pub use diagnostic::{Diagnostic, Level, MultiSpan};
56#[unstable(feature = "proc_macro_value", issue = "136652")]
57pub use rustc_literal_escaper::EscapeError;
58use rustc_literal_escaper::{MixedUnit, unescape_byte_str, unescape_c_str, unescape_str};
59#[unstable(feature = "proc_macro_totokens", issue = "130977")]
60pub use to_tokens::ToTokens;
61
62use crate::escape::{EscapeOptions, escape_bytes};
63
64/// Errors returned when trying to retrieve a literal unescaped value.
65#[unstable(feature = "proc_macro_value", issue = "136652")]
66#[derive(Debug, PartialEq, Eq)]
67pub enum ConversionErrorKind {
68    /// The literal failed to be escaped, take a look at [`EscapeError`] for more information.
69    FailedToUnescape(EscapeError),
70    /// Trying to convert a literal with the wrong type.
71    InvalidLiteralKind,
72}
73
74/// Determines whether proc_macro has been made accessible to the currently
75/// running program.
76///
77/// The proc_macro crate is only intended for use inside the implementation of
78/// procedural macros. All the functions in this crate panic if invoked from
79/// outside of a procedural macro, such as from a build script or unit test or
80/// ordinary Rust binary.
81///
82/// With consideration for Rust libraries that are designed to support both
83/// macro and non-macro use cases, `proc_macro::is_available()` provides a
84/// non-panicking way to detect whether the infrastructure required to use the
85/// API of proc_macro is presently available. Returns true if invoked from
86/// inside of a procedural macro, false if invoked from any other binary.
87#[stable(feature = "proc_macro_is_available", since = "1.57.0")]
88pub fn is_available() -> bool {
89    bridge::client::is_available()
90}
91
92/// The main type provided by this crate, representing an abstract stream of
93/// tokens, or, more specifically, a sequence of token trees.
94/// The type provides interfaces for iterating over those token trees and, conversely,
95/// collecting a number of token trees into one stream.
96///
97/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
98/// and `#[proc_macro_derive]` definitions.
99#[cfg_attr(feature = "rustc-dep-of-std", rustc_diagnostic_item = "TokenStream")]
100#[stable(feature = "proc_macro_lib", since = "1.15.0")]
101#[derive(Clone)]
102pub struct TokenStream(Option<bridge::client::TokenStream>);
103
104#[stable(feature = "proc_macro_lib", since = "1.15.0")]
105impl !Send for TokenStream {}
106#[stable(feature = "proc_macro_lib", since = "1.15.0")]
107impl !Sync for TokenStream {}
108
109/// Error returned from `TokenStream::from_str`.
110#[stable(feature = "proc_macro_lib", since = "1.15.0")]
111#[non_exhaustive]
112#[derive(Debug)]
113pub struct LexError;
114
115#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
116impl fmt::Display for LexError {
117    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
118        f.write_str("cannot parse string into token stream")
119    }
120}
121
122#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
123impl error::Error for LexError {}
124
125#[stable(feature = "proc_macro_lib", since = "1.15.0")]
126impl !Send for LexError {}
127#[stable(feature = "proc_macro_lib", since = "1.15.0")]
128impl !Sync for LexError {}
129
130/// Error returned from `TokenStream::expand_expr`.
131#[unstable(feature = "proc_macro_expand", issue = "90765")]
132#[non_exhaustive]
133#[derive(Debug)]
134pub struct ExpandError;
135
136#[unstable(feature = "proc_macro_expand", issue = "90765")]
137impl fmt::Display for ExpandError {
138    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
139        f.write_str("macro expansion failed")
140    }
141}
142
143#[unstable(feature = "proc_macro_expand", issue = "90765")]
144impl error::Error for ExpandError {}
145
146#[unstable(feature = "proc_macro_expand", issue = "90765")]
147impl !Send for ExpandError {}
148
149#[unstable(feature = "proc_macro_expand", issue = "90765")]
150impl !Sync for ExpandError {}
151
152impl TokenStream {
153    /// Returns an empty `TokenStream` containing no token trees.
154    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
155    pub fn new() -> TokenStream {
156        TokenStream(None)
157    }
158
159    /// Checks if this `TokenStream` is empty.
160    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
161    pub fn is_empty(&self) -> bool {
162        self.0.as_ref().map(|h| h.is_empty()).unwrap_or(true)
163    }
164
165    /// Parses this `TokenStream` as an expression and attempts to expand any
166    /// macros within it. Returns the expanded `TokenStream`.
167    ///
168    /// Currently only expressions expanding to literals will succeed, although
169    /// this may be relaxed in the future.
170    ///
171    /// NOTE: In error conditions, `expand_expr` may leave macros unexpanded,
172    /// report an error, failing compilation, and/or return an `Err(..)`. The
173    /// specific behavior for any error condition, and what conditions are
174    /// considered errors, is unspecified and may change in the future.
175    #[unstable(feature = "proc_macro_expand", issue = "90765")]
176    pub fn expand_expr(&self) -> Result<TokenStream, ExpandError> {
177        let stream = self.0.as_ref().ok_or(ExpandError)?;
178        match bridge::client::TokenStream::expand_expr(stream) {
179            Ok(stream) => Ok(TokenStream(Some(stream))),
180            Err(_) => Err(ExpandError),
181        }
182    }
183}
184
185/// Attempts to break the string into tokens and parse those tokens into a token stream.
186/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
187/// or characters not existing in the language.
188/// All tokens in the parsed stream get `Span::call_site()` spans.
189///
190/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
191/// change these errors into `LexError`s later.
192#[stable(feature = "proc_macro_lib", since = "1.15.0")]
193impl FromStr for TokenStream {
194    type Err = LexError;
195
196    fn from_str(src: &str) -> Result<TokenStream, LexError> {
197        Ok(TokenStream(Some(bridge::client::TokenStream::from_str(src))))
198    }
199}
200
201/// Prints the token stream as a string that is supposed to be losslessly convertible back
202/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
203/// with `Delimiter::None` delimiters and negative numeric literals.
204///
205/// Note: the exact form of the output is subject to change, e.g. there might
206/// be changes in the whitespace used between tokens. Therefore, you should
207/// *not* do any kind of simple substring matching on the output string (as
208/// produced by `to_string`) to implement a proc macro, because that matching
209/// might stop working if such changes happen. Instead, you should work at the
210/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
211/// `TokenTree::Punct`, or `TokenTree::Literal`.
212#[stable(feature = "proc_macro_lib", since = "1.15.0")]
213impl fmt::Display for TokenStream {
214    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
215    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
216        match &self.0 {
217            Some(ts) => write!(f, "{}", ts.to_string()),
218            None => Ok(()),
219        }
220    }
221}
222
223/// Prints token in a form convenient for debugging.
224#[stable(feature = "proc_macro_lib", since = "1.15.0")]
225impl fmt::Debug for TokenStream {
226    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
227        f.write_str("TokenStream ")?;
228        f.debug_list().entries(self.clone()).finish()
229    }
230}
231
232#[stable(feature = "proc_macro_token_stream_default", since = "1.45.0")]
233impl Default for TokenStream {
234    fn default() -> Self {
235        TokenStream::new()
236    }
237}
238
239#[unstable(feature = "proc_macro_quote", issue = "54722")]
240pub use quote::{HasIterator, RepInterp, ThereIsNoIteratorInRepetition, ext, quote, quote_span};
241
242fn tree_to_bridge_tree(
243    tree: TokenTree,
244) -> bridge::TokenTree<bridge::client::TokenStream, bridge::client::Span, bridge::client::Symbol> {
245    match tree {
246        TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
247        TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
248        TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
249        TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
250    }
251}
252
253/// Creates a token stream containing a single token tree.
254#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
255impl From<TokenTree> for TokenStream {
256    fn from(tree: TokenTree) -> TokenStream {
257        TokenStream(Some(bridge::client::TokenStream::from_token_tree(tree_to_bridge_tree(tree))))
258    }
259}
260
261/// Non-generic helper for implementing `FromIterator<TokenTree>` and
262/// `Extend<TokenTree>` with less monomorphization in calling crates.
263struct ConcatTreesHelper {
264    trees: Vec<
265        bridge::TokenTree<
266            bridge::client::TokenStream,
267            bridge::client::Span,
268            bridge::client::Symbol,
269        >,
270    >,
271}
272
273impl ConcatTreesHelper {
274    fn new(capacity: usize) -> Self {
275        ConcatTreesHelper { trees: Vec::with_capacity(capacity) }
276    }
277
278    fn push(&mut self, tree: TokenTree) {
279        self.trees.push(tree_to_bridge_tree(tree));
280    }
281
282    fn build(self) -> TokenStream {
283        if self.trees.is_empty() {
284            TokenStream(None)
285        } else {
286            TokenStream(Some(bridge::client::TokenStream::concat_trees(None, self.trees)))
287        }
288    }
289
290    fn append_to(self, stream: &mut TokenStream) {
291        if self.trees.is_empty() {
292            return;
293        }
294        stream.0 = Some(bridge::client::TokenStream::concat_trees(stream.0.take(), self.trees))
295    }
296}
297
298/// Non-generic helper for implementing `FromIterator<TokenStream>` and
299/// `Extend<TokenStream>` with less monomorphization in calling crates.
300struct ConcatStreamsHelper {
301    streams: Vec<bridge::client::TokenStream>,
302}
303
304impl ConcatStreamsHelper {
305    fn new(capacity: usize) -> Self {
306        ConcatStreamsHelper { streams: Vec::with_capacity(capacity) }
307    }
308
309    fn push(&mut self, stream: TokenStream) {
310        if let Some(stream) = stream.0 {
311            self.streams.push(stream);
312        }
313    }
314
315    fn build(mut self) -> TokenStream {
316        if self.streams.len() <= 1 {
317            TokenStream(self.streams.pop())
318        } else {
319            TokenStream(Some(bridge::client::TokenStream::concat_streams(None, self.streams)))
320        }
321    }
322
323    fn append_to(mut self, stream: &mut TokenStream) {
324        if self.streams.is_empty() {
325            return;
326        }
327        let base = stream.0.take();
328        if base.is_none() && self.streams.len() == 1 {
329            stream.0 = self.streams.pop();
330        } else {
331            stream.0 = Some(bridge::client::TokenStream::concat_streams(base, self.streams));
332        }
333    }
334}
335
336/// Collects a number of token trees into a single stream.
337#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
338impl FromIterator<TokenTree> for TokenStream {
339    fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
340        let iter = trees.into_iter();
341        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
342        iter.for_each(|tree| builder.push(tree));
343        builder.build()
344    }
345}
346
347/// A "flattening" operation on token streams, collects token trees
348/// from multiple token streams into a single stream.
349#[stable(feature = "proc_macro_lib", since = "1.15.0")]
350impl FromIterator<TokenStream> for TokenStream {
351    fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
352        let iter = streams.into_iter();
353        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
354        iter.for_each(|stream| builder.push(stream));
355        builder.build()
356    }
357}
358
359#[stable(feature = "token_stream_extend", since = "1.30.0")]
360impl Extend<TokenTree> for TokenStream {
361    fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
362        let iter = trees.into_iter();
363        let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
364        iter.for_each(|tree| builder.push(tree));
365        builder.append_to(self);
366    }
367}
368
369#[stable(feature = "token_stream_extend", since = "1.30.0")]
370impl Extend<TokenStream> for TokenStream {
371    fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
372        let iter = streams.into_iter();
373        let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
374        iter.for_each(|stream| builder.push(stream));
375        builder.append_to(self);
376    }
377}
378
379macro_rules! extend_items {
380    ($($item:ident)*) => {
381        $(
382            #[stable(feature = "token_stream_extend_tt_items", since = "CURRENT_RUSTC_VERSION")]
383            impl Extend<$item> for TokenStream {
384                fn extend<T: IntoIterator<Item = $item>>(&mut self, iter: T) {
385                    self.extend(iter.into_iter().map(TokenTree::$item));
386                }
387            }
388        )*
389    };
390}
391
392extend_items!(Group Literal Punct Ident);
393
394/// Public implementation details for the `TokenStream` type, such as iterators.
395#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
396pub mod token_stream {
397    use crate::{Group, Ident, Literal, Punct, TokenStream, TokenTree, bridge};
398
399    /// An iterator over `TokenStream`'s `TokenTree`s.
400    /// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
401    /// and returns whole groups as token trees.
402    #[derive(Clone)]
403    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
404    pub struct IntoIter(
405        std::vec::IntoIter<
406            bridge::TokenTree<
407                bridge::client::TokenStream,
408                bridge::client::Span,
409                bridge::client::Symbol,
410            >,
411        >,
412    );
413
414    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
415    impl Iterator for IntoIter {
416        type Item = TokenTree;
417
418        fn next(&mut self) -> Option<TokenTree> {
419            self.0.next().map(|tree| match tree {
420                bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
421                bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
422                bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
423                bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
424            })
425        }
426
427        fn size_hint(&self) -> (usize, Option<usize>) {
428            self.0.size_hint()
429        }
430
431        fn count(self) -> usize {
432            self.0.count()
433        }
434    }
435
436    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
437    impl IntoIterator for TokenStream {
438        type Item = TokenTree;
439        type IntoIter = IntoIter;
440
441        fn into_iter(self) -> IntoIter {
442            IntoIter(self.0.map(|v| v.into_trees()).unwrap_or_default().into_iter())
443        }
444    }
445}
446
447/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
448/// For example, `quote!(a + b)` will produce an expression, that, when evaluated, constructs
449/// the `TokenStream` `[Ident("a"), Punct('+', Alone), Ident("b")]`.
450///
451/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
452/// To quote `$` itself, use `$$`.
453#[unstable(feature = "proc_macro_quote", issue = "54722")]
454#[allow_internal_unstable(proc_macro_def_site, proc_macro_internals, proc_macro_totokens)]
455#[rustc_builtin_macro]
456pub macro quote($($t:tt)*) {
457    /* compiler built-in */
458}
459
460#[unstable(feature = "proc_macro_internals", issue = "27812")]
461#[doc(hidden)]
462mod quote;
463
464/// A region of source code, along with macro expansion information.
465#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
466#[derive(Copy, Clone)]
467pub struct Span(bridge::client::Span);
468
469#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
470impl !Send for Span {}
471#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
472impl !Sync for Span {}
473
474macro_rules! diagnostic_method {
475    ($name:ident, $level:expr) => {
476        /// Creates a new `Diagnostic` with the given `message` at the span
477        /// `self`.
478        #[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
479        pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
480            Diagnostic::spanned(self, $level, message)
481        }
482    };
483}
484
485impl Span {
486    /// A span that resolves at the macro definition site.
487    #[unstable(feature = "proc_macro_def_site", issue = "54724")]
488    pub fn def_site() -> Span {
489        Span(bridge::client::Span::def_site())
490    }
491
492    /// The span of the invocation of the current procedural macro.
493    /// Identifiers created with this span will be resolved as if they were written
494    /// directly at the macro call location (call-site hygiene) and other code
495    /// at the macro call site will be able to refer to them as well.
496    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
497    pub fn call_site() -> Span {
498        Span(bridge::client::Span::call_site())
499    }
500
501    /// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
502    /// definition site (local variables, labels, `$crate`) and sometimes at the macro
503    /// call site (everything else).
504    /// The span location is taken from the call-site.
505    #[stable(feature = "proc_macro_mixed_site", since = "1.45.0")]
506    pub fn mixed_site() -> Span {
507        Span(bridge::client::Span::mixed_site())
508    }
509
510    /// The `Span` for the tokens in the previous macro expansion from which
511    /// `self` was generated from, if any.
512    #[unstable(feature = "proc_macro_span", issue = "54725")]
513    pub fn parent(&self) -> Option<Span> {
514        self.0.parent().map(Span)
515    }
516
517    /// The span for the origin source code that `self` was generated from. If
518    /// this `Span` wasn't generated from other macro expansions then the return
519    /// value is the same as `*self`.
520    #[unstable(feature = "proc_macro_span", issue = "54725")]
521    pub fn source(&self) -> Span {
522        Span(self.0.source())
523    }
524
525    /// Returns the span's byte position range in the source file.
526    #[unstable(feature = "proc_macro_span", issue = "54725")]
527    pub fn byte_range(&self) -> Range<usize> {
528        self.0.byte_range()
529    }
530
531    /// Creates an empty span pointing to directly before this span.
532    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
533    pub fn start(&self) -> Span {
534        Span(self.0.start())
535    }
536
537    /// Creates an empty span pointing to directly after this span.
538    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
539    pub fn end(&self) -> Span {
540        Span(self.0.end())
541    }
542
543    /// The one-indexed line of the source file where the span starts.
544    ///
545    /// To obtain the line of the span's end, use `span.end().line()`.
546    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
547    pub fn line(&self) -> usize {
548        self.0.line()
549    }
550
551    /// The one-indexed column of the source file where the span starts.
552    ///
553    /// To obtain the column of the span's end, use `span.end().column()`.
554    #[stable(feature = "proc_macro_span_location", since = "1.88.0")]
555    pub fn column(&self) -> usize {
556        self.0.column()
557    }
558
559    /// The path to the source file in which this span occurs, for display purposes.
560    ///
561    /// This might not correspond to a valid file system path.
562    /// It might be remapped (e.g. `"/src/lib.rs"`) or an artificial path (e.g. `"<command line>"`).
563    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
564    pub fn file(&self) -> String {
565        self.0.file()
566    }
567
568    /// The path to the source file in which this span occurs on the local file system.
569    ///
570    /// This is the actual path on disk. It is unaffected by path remapping.
571    ///
572    /// This path should not be embedded in the output of the macro; prefer `file()` instead.
573    #[stable(feature = "proc_macro_span_file", since = "1.88.0")]
574    pub fn local_file(&self) -> Option<PathBuf> {
575        self.0.local_file().map(|s| PathBuf::from(s))
576    }
577
578    /// Creates a new span encompassing `self` and `other`.
579    ///
580    /// Returns `None` if `self` and `other` are from different files.
581    #[unstable(feature = "proc_macro_span", issue = "54725")]
582    pub fn join(&self, other: Span) -> Option<Span> {
583        self.0.join(other.0).map(Span)
584    }
585
586    /// Creates a new span with the same line/column information as `self` but
587    /// that resolves symbols as though it were at `other`.
588    #[stable(feature = "proc_macro_span_resolved_at", since = "1.45.0")]
589    pub fn resolved_at(&self, other: Span) -> Span {
590        Span(self.0.resolved_at(other.0))
591    }
592
593    /// Creates a new span with the same name resolution behavior as `self` but
594    /// with the line/column information of `other`.
595    #[stable(feature = "proc_macro_span_located_at", since = "1.45.0")]
596    pub fn located_at(&self, other: Span) -> Span {
597        other.resolved_at(*self)
598    }
599
600    /// Compares two spans to see if they're equal.
601    #[unstable(feature = "proc_macro_span", issue = "54725")]
602    pub fn eq(&self, other: &Span) -> bool {
603        self.0 == other.0
604    }
605
606    /// Returns the source text behind a span. This preserves the original source
607    /// code, including spaces and comments. It only returns a result if the span
608    /// corresponds to real source code.
609    ///
610    /// Note: The observable result of a macro should only rely on the tokens and
611    /// not on this source text. The result of this function is a best effort to
612    /// be used for diagnostics only.
613    #[stable(feature = "proc_macro_source_text", since = "1.66.0")]
614    pub fn source_text(&self) -> Option<String> {
615        self.0.source_text()
616    }
617
618    // Used by the implementation of `Span::quote`
619    #[doc(hidden)]
620    #[unstable(feature = "proc_macro_internals", issue = "27812")]
621    pub fn save_span(&self) -> usize {
622        self.0.save_span()
623    }
624
625    // Used by the implementation of `Span::quote`
626    #[doc(hidden)]
627    #[unstable(feature = "proc_macro_internals", issue = "27812")]
628    pub fn recover_proc_macro_span(id: usize) -> Span {
629        Span(bridge::client::Span::recover_proc_macro_span(id))
630    }
631
632    diagnostic_method!(error, Level::Error);
633    diagnostic_method!(warning, Level::Warning);
634    diagnostic_method!(note, Level::Note);
635    diagnostic_method!(help, Level::Help);
636}
637
638/// Prints a span in a form convenient for debugging.
639#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
640impl fmt::Debug for Span {
641    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
642        self.0.fmt(f)
643    }
644}
645
646/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
647#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
648#[derive(Clone)]
649pub enum TokenTree {
650    /// A token stream surrounded by bracket delimiters.
651    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
652    Group(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Group),
653    /// An identifier.
654    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
655    Ident(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Ident),
656    /// A single punctuation character (`+`, `,`, `$`, etc.).
657    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
658    Punct(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Punct),
659    /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
660    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
661    Literal(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Literal),
662}
663
664#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
665impl !Send for TokenTree {}
666#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
667impl !Sync for TokenTree {}
668
669impl TokenTree {
670    /// Returns the span of this tree, delegating to the `span` method of
671    /// the contained token or a delimited stream.
672    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
673    pub fn span(&self) -> Span {
674        match *self {
675            TokenTree::Group(ref t) => t.span(),
676            TokenTree::Ident(ref t) => t.span(),
677            TokenTree::Punct(ref t) => t.span(),
678            TokenTree::Literal(ref t) => t.span(),
679        }
680    }
681
682    /// Configures the span for *only this token*.
683    ///
684    /// Note that if this token is a `Group` then this method will not configure
685    /// the span of each of the internal tokens, this will simply delegate to
686    /// the `set_span` method of each variant.
687    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
688    pub fn set_span(&mut self, span: Span) {
689        match *self {
690            TokenTree::Group(ref mut t) => t.set_span(span),
691            TokenTree::Ident(ref mut t) => t.set_span(span),
692            TokenTree::Punct(ref mut t) => t.set_span(span),
693            TokenTree::Literal(ref mut t) => t.set_span(span),
694        }
695    }
696}
697
698/// Prints token tree in a form convenient for debugging.
699#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
700impl fmt::Debug for TokenTree {
701    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
702        // Each of these has the name in the struct type in the derived debug,
703        // so don't bother with an extra layer of indirection
704        match *self {
705            TokenTree::Group(ref tt) => tt.fmt(f),
706            TokenTree::Ident(ref tt) => tt.fmt(f),
707            TokenTree::Punct(ref tt) => tt.fmt(f),
708            TokenTree::Literal(ref tt) => tt.fmt(f),
709        }
710    }
711}
712
713#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
714impl From<Group> for TokenTree {
715    fn from(g: Group) -> TokenTree {
716        TokenTree::Group(g)
717    }
718}
719
720#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
721impl From<Ident> for TokenTree {
722    fn from(g: Ident) -> TokenTree {
723        TokenTree::Ident(g)
724    }
725}
726
727#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
728impl From<Punct> for TokenTree {
729    fn from(g: Punct) -> TokenTree {
730        TokenTree::Punct(g)
731    }
732}
733
734#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
735impl From<Literal> for TokenTree {
736    fn from(g: Literal) -> TokenTree {
737        TokenTree::Literal(g)
738    }
739}
740
741/// Prints the token tree as a string that is supposed to be losslessly convertible back
742/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
743/// with `Delimiter::None` delimiters and negative numeric literals.
744///
745/// Note: the exact form of the output is subject to change, e.g. there might
746/// be changes in the whitespace used between tokens. Therefore, you should
747/// *not* do any kind of simple substring matching on the output string (as
748/// produced by `to_string`) to implement a proc macro, because that matching
749/// might stop working if such changes happen. Instead, you should work at the
750/// `TokenTree` level, e.g. matching against `TokenTree::Ident`,
751/// `TokenTree::Punct`, or `TokenTree::Literal`.
752#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
753impl fmt::Display for TokenTree {
754    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
755    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
756        match self {
757            TokenTree::Group(t) => write!(f, "{t}"),
758            TokenTree::Ident(t) => write!(f, "{t}"),
759            TokenTree::Punct(t) => write!(f, "{t}"),
760            TokenTree::Literal(t) => write!(f, "{t}"),
761        }
762    }
763}
764
765/// A delimited token stream.
766///
767/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
768#[derive(Clone)]
769#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
770pub struct Group(bridge::Group<bridge::client::TokenStream, bridge::client::Span>);
771
772#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
773impl !Send for Group {}
774#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
775impl !Sync for Group {}
776
777/// Describes how a sequence of token trees is delimited.
778#[derive(Copy, Clone, Debug, PartialEq, Eq)]
779#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
780pub enum Delimiter {
781    /// `( ... )`
782    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
783    Parenthesis,
784    /// `{ ... }`
785    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
786    Brace,
787    /// `[ ... ]`
788    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
789    Bracket,
790    /// `∅ ... ∅`
791    /// An invisible delimiter, that may, for example, appear around tokens coming from a
792    /// "macro variable" `$var`. It is important to preserve operator priorities in cases like
793    /// `$var * 3` where `$var` is `1 + 2`.
794    /// Invisible delimiters might not survive roundtrip of a token stream through a string.
795    ///
796    /// <div class="warning">
797    ///
798    /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
799    /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
800    /// of a proc_macro macro are preserved, and only in very specific circumstances.
801    /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
802    /// operator priorities as indicated above. The other `Delimiter` variants should be used
803    /// instead in this context. This is a rustc bug. For details, see
804    /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
805    ///
806    /// </div>
807    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
808    None,
809}
810
811impl Group {
812    /// Creates a new `Group` with the given delimiter and token stream.
813    ///
814    /// This constructor will set the span for this group to
815    /// `Span::call_site()`. To change the span you can use the `set_span`
816    /// method below.
817    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
818    pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
819        Group(bridge::Group {
820            delimiter,
821            stream: stream.0,
822            span: bridge::DelimSpan::from_single(Span::call_site().0),
823        })
824    }
825
826    /// Returns the delimiter of this `Group`
827    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
828    pub fn delimiter(&self) -> Delimiter {
829        self.0.delimiter
830    }
831
832    /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
833    ///
834    /// Note that the returned token stream does not include the delimiter
835    /// returned above.
836    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
837    pub fn stream(&self) -> TokenStream {
838        TokenStream(self.0.stream.clone())
839    }
840
841    /// Returns the span for the delimiters of this token stream, spanning the
842    /// entire `Group`.
843    ///
844    /// ```text
845    /// pub fn span(&self) -> Span {
846    ///            ^^^^^^^
847    /// ```
848    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
849    pub fn span(&self) -> Span {
850        Span(self.0.span.entire)
851    }
852
853    /// Returns the span pointing to the opening delimiter of this group.
854    ///
855    /// ```text
856    /// pub fn span_open(&self) -> Span {
857    ///                 ^
858    /// ```
859    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
860    pub fn span_open(&self) -> Span {
861        Span(self.0.span.open)
862    }
863
864    /// Returns the span pointing to the closing delimiter of this group.
865    ///
866    /// ```text
867    /// pub fn span_close(&self) -> Span {
868    ///                        ^
869    /// ```
870    #[stable(feature = "proc_macro_group_span", since = "1.55.0")]
871    pub fn span_close(&self) -> Span {
872        Span(self.0.span.close)
873    }
874
875    /// Configures the span for this `Group`'s delimiters, but not its internal
876    /// tokens.
877    ///
878    /// This method will **not** set the span of all the internal tokens spanned
879    /// by this group, but rather it will only set the span of the delimiter
880    /// tokens at the level of the `Group`.
881    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
882    pub fn set_span(&mut self, span: Span) {
883        self.0.span = bridge::DelimSpan::from_single(span.0);
884    }
885}
886
887/// Prints the group as a string that should be losslessly convertible back
888/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
889/// with `Delimiter::None` delimiters.
890#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
891impl fmt::Display for Group {
892    #[allow(clippy::recursive_format_impl)] // clippy doesn't see the specialization
893    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
894        write!(f, "{}", TokenStream::from(TokenTree::from(self.clone())))
895    }
896}
897
898#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
899impl fmt::Debug for Group {
900    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
901        f.debug_struct("Group")
902            .field("delimiter", &self.delimiter())
903            .field("stream", &self.stream())
904            .field("span", &self.span())
905            .finish()
906    }
907}
908
909/// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
910///
911/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
912/// forms of `Spacing` returned.
913#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
914#[derive(Clone)]
915pub struct Punct(bridge::Punct<bridge::client::Span>);
916
917#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
918impl !Send for Punct {}
919#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
920impl !Sync for Punct {}
921
922/// Indicates whether a `Punct` token can join with the following token
923/// to form a multi-character operator.
924#[derive(Copy, Clone, Debug, PartialEq, Eq)]
925#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
926pub enum Spacing {
927    /// A `Punct` token can join with the following token to form a multi-character operator.
928    ///
929    /// In token streams constructed using proc macro interfaces, `Joint` punctuation tokens can be
930    /// followed by any other tokens. However, in token streams parsed from source code, the
931    /// compiler will only set spacing to `Joint` in the following cases.
932    /// - When a `Punct` is immediately followed by another `Punct` without a whitespace. E.g. `+`
933    ///   is `Joint` in `+=` and `++`.
934    /// - When a single quote `'` is immediately followed by an identifier without a whitespace.
935    ///   E.g. `'` is `Joint` in `'lifetime`.
936    ///
937    /// This list may be extended in the future to enable more token combinations.
938    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
939    Joint,
940    /// A `Punct` token cannot join with the following token to form a multi-character operator.
941    ///
942    /// `Alone` punctuation tokens can be followed by any other tokens. In token streams parsed
943    /// from source code, the compiler will set spacing to `Alone` in all cases not covered by the
944    /// conditions for `Joint` above. E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`. In
945    /// particular, tokens not followed by anything will be marked as `Alone`.
946    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
947    Alone,
948}
949
950impl Punct {
951    /// Creates a new `Punct` from the given character and spacing.
952    /// The `ch` argument must be a valid punctuation character permitted by the language,
953    /// otherwise the function will panic.
954    ///
955    /// The returned `Punct` will have the default span of `Span::call_site()`
956    /// which can be further configured with the `set_span` method below.
957    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
958    pub fn new(ch: char, spacing: Spacing) -> Punct {
959        const LEGAL_CHARS: &[char] = &[
960            '=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^', '&', '|', '@', '.', ',', ';',
961            ':', '#', '$', '?', '\'',
962        ];
963        if !LEGAL_CHARS.contains(&ch) {
964            panic!("unsupported character `{:?}`", ch);
965        }
966        Punct(bridge::Punct {
967            ch: ch as u8,
968            joint: spacing == Spacing::Joint,
969            span: Span::call_site().0,
970        })
971    }
972
973    /// Returns the value of this punctuation character as `char`.
974    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
975    pub fn as_char(&self) -> char {
976        self.0.ch as char
977    }
978
979    /// Returns the spacing of this punctuation character, indicating whether it can be potentially
980    /// combined into a multi-character operator with the following token (`Joint`), or whether the
981    /// operator has definitely ended (`Alone`).
982    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
983    pub fn spacing(&self) -> Spacing {
984        if self.0.joint { Spacing::Joint } else { Spacing::Alone }
985    }
986
987    /// Returns the span for this punctuation character.
988    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
989    pub fn span(&self) -> Span {
990        Span(self.0.span)
991    }
992
993    /// Configure the span for this punctuation character.
994    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
995    pub fn set_span(&mut self, span: Span) {
996        self.0.span = span.0;
997    }
998}
999
1000/// Prints the punctuation character as a string that should be losslessly convertible
1001/// back into the same character.
1002#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1003impl fmt::Display for Punct {
1004    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1005        write!(f, "{}", self.as_char())
1006    }
1007}
1008
1009#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1010impl fmt::Debug for Punct {
1011    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1012        f.debug_struct("Punct")
1013            .field("ch", &self.as_char())
1014            .field("spacing", &self.spacing())
1015            .field("span", &self.span())
1016            .finish()
1017    }
1018}
1019
1020#[stable(feature = "proc_macro_punct_eq", since = "1.50.0")]
1021impl PartialEq<char> for Punct {
1022    fn eq(&self, rhs: &char) -> bool {
1023        self.as_char() == *rhs
1024    }
1025}
1026
1027#[stable(feature = "proc_macro_punct_eq_flipped", since = "1.52.0")]
1028impl PartialEq<Punct> for char {
1029    fn eq(&self, rhs: &Punct) -> bool {
1030        *self == rhs.as_char()
1031    }
1032}
1033
1034/// An identifier (`ident`).
1035#[derive(Clone)]
1036#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1037pub struct Ident(bridge::Ident<bridge::client::Span, bridge::client::Symbol>);
1038
1039impl Ident {
1040    /// Creates a new `Ident` with the given `string` as well as the specified
1041    /// `span`.
1042    /// The `string` argument must be a valid identifier permitted by the
1043    /// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
1044    ///
1045    /// Note that `span`, currently in rustc, configures the hygiene information
1046    /// for this identifier.
1047    ///
1048    /// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
1049    /// meaning that identifiers created with this span will be resolved as if they were written
1050    /// directly at the location of the macro call, and other code at the macro call site will be
1051    /// able to refer to them as well.
1052    ///
1053    /// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
1054    /// meaning that identifiers created with this span will be resolved at the location of the
1055    /// macro definition and other code at the macro call site will not be able to refer to them.
1056    ///
1057    /// Due to the current importance of hygiene this constructor, unlike other
1058    /// tokens, requires a `Span` to be specified at construction.
1059    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1060    pub fn new(string: &str, span: Span) -> Ident {
1061        Ident(bridge::Ident {
1062            sym: bridge::client::Symbol::new_ident(string, false),
1063            is_raw: false,
1064            span: span.0,
1065        })
1066    }
1067
1068    /// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
1069    /// The `string` argument be a valid identifier permitted by the language
1070    /// (including keywords, e.g. `fn`). Keywords which are usable in path segments
1071    /// (e.g. `self`, `super`) are not supported, and will cause a panic.
1072    #[stable(feature = "proc_macro_raw_ident", since = "1.47.0")]
1073    pub fn new_raw(string: &str, span: Span) -> Ident {
1074        Ident(bridge::Ident {
1075            sym: bridge::client::Symbol::new_ident(string, true),
1076            is_raw: true,
1077            span: span.0,
1078        })
1079    }
1080
1081    /// Returns the span of this `Ident`, encompassing the entire string returned
1082    /// by [`to_string`](ToString::to_string).
1083    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1084    pub fn span(&self) -> Span {
1085        Span(self.0.span)
1086    }
1087
1088    /// Configures the span of this `Ident`, possibly changing its hygiene context.
1089    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1090    pub fn set_span(&mut self, span: Span) {
1091        self.0.span = span.0;
1092    }
1093}
1094
1095/// Prints the identifier as a string that should be losslessly convertible back
1096/// into the same identifier.
1097#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1098impl fmt::Display for Ident {
1099    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1100        if self.0.is_raw {
1101            f.write_str("r#")?;
1102        }
1103        fmt::Display::fmt(&self.0.sym, f)
1104    }
1105}
1106
1107#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1108impl fmt::Debug for Ident {
1109    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1110        f.debug_struct("Ident")
1111            .field("ident", &self.to_string())
1112            .field("span", &self.span())
1113            .finish()
1114    }
1115}
1116
1117/// A literal string (`"hello"`), byte string (`b"hello"`), C string (`c"hello"`),
1118/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
1119/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1120/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
1121#[derive(Clone)]
1122#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1123pub struct Literal(bridge::Literal<bridge::client::Span, bridge::client::Symbol>);
1124
1125macro_rules! suffixed_int_literals {
1126    ($($name:ident => $kind:ident,)*) => ($(
1127        /// Creates a new suffixed integer literal with the specified value.
1128        ///
1129        /// This function will create an integer like `1u32` where the integer
1130        /// value specified is the first part of the token and the integral is
1131        /// also suffixed at the end.
1132        /// Literals created from negative numbers might not survive round-trips through
1133        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1134        ///
1135        /// Literals created through this method have the `Span::call_site()`
1136        /// span by default, which can be configured with the `set_span` method
1137        /// below.
1138        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1139        pub fn $name(n: $kind) -> Literal {
1140            Literal(bridge::Literal {
1141                kind: bridge::LitKind::Integer,
1142                symbol: bridge::client::Symbol::new(&n.to_string()),
1143                suffix: Some(bridge::client::Symbol::new(stringify!($kind))),
1144                span: Span::call_site().0,
1145            })
1146        }
1147    )*)
1148}
1149
1150macro_rules! unsuffixed_int_literals {
1151    ($($name:ident => $kind:ident,)*) => ($(
1152        /// Creates a new unsuffixed integer literal with the specified value.
1153        ///
1154        /// This function will create an integer like `1` where the integer
1155        /// value specified is the first part of the token. No suffix is
1156        /// specified on this token, meaning that invocations like
1157        /// `Literal::i8_unsuffixed(1)` are equivalent to
1158        /// `Literal::u32_unsuffixed(1)`.
1159        /// Literals created from negative numbers might not survive rountrips through
1160        /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1161        ///
1162        /// Literals created through this method have the `Span::call_site()`
1163        /// span by default, which can be configured with the `set_span` method
1164        /// below.
1165        #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1166        pub fn $name(n: $kind) -> Literal {
1167            Literal(bridge::Literal {
1168                kind: bridge::LitKind::Integer,
1169                symbol: bridge::client::Symbol::new(&n.to_string()),
1170                suffix: None,
1171                span: Span::call_site().0,
1172            })
1173        }
1174    )*)
1175}
1176
1177impl Literal {
1178    fn new(kind: bridge::LitKind, value: &str, suffix: Option<&str>) -> Self {
1179        Literal(bridge::Literal {
1180            kind,
1181            symbol: bridge::client::Symbol::new(value),
1182            suffix: suffix.map(bridge::client::Symbol::new),
1183            span: Span::call_site().0,
1184        })
1185    }
1186
1187    suffixed_int_literals! {
1188        u8_suffixed => u8,
1189        u16_suffixed => u16,
1190        u32_suffixed => u32,
1191        u64_suffixed => u64,
1192        u128_suffixed => u128,
1193        usize_suffixed => usize,
1194        i8_suffixed => i8,
1195        i16_suffixed => i16,
1196        i32_suffixed => i32,
1197        i64_suffixed => i64,
1198        i128_suffixed => i128,
1199        isize_suffixed => isize,
1200    }
1201
1202    unsuffixed_int_literals! {
1203        u8_unsuffixed => u8,
1204        u16_unsuffixed => u16,
1205        u32_unsuffixed => u32,
1206        u64_unsuffixed => u64,
1207        u128_unsuffixed => u128,
1208        usize_unsuffixed => usize,
1209        i8_unsuffixed => i8,
1210        i16_unsuffixed => i16,
1211        i32_unsuffixed => i32,
1212        i64_unsuffixed => i64,
1213        i128_unsuffixed => i128,
1214        isize_unsuffixed => isize,
1215    }
1216
1217    /// Creates a new unsuffixed floating-point literal.
1218    ///
1219    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1220    /// the float's value is emitted directly into the token but no suffix is
1221    /// used, so it may be inferred to be a `f64` later in the compiler.
1222    /// Literals created from negative numbers might not survive rountrips through
1223    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1224    ///
1225    /// # Panics
1226    ///
1227    /// This function requires that the specified float is finite, for
1228    /// example if it is infinity or NaN this function will panic.
1229    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1230    pub fn f32_unsuffixed(n: f32) -> Literal {
1231        if !n.is_finite() {
1232            panic!("Invalid float literal {n}");
1233        }
1234        let mut repr = n.to_string();
1235        if !repr.contains('.') {
1236            repr.push_str(".0");
1237        }
1238        Literal::new(bridge::LitKind::Float, &repr, None)
1239    }
1240
1241    /// Creates a new suffixed floating-point literal.
1242    ///
1243    /// This constructor will create a literal like `1.0f32` where the value
1244    /// specified is the preceding part of the token and `f32` is the suffix of
1245    /// the token. This token will always be inferred to be an `f32` in the
1246    /// compiler.
1247    /// Literals created from negative numbers might not survive rountrips through
1248    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1249    ///
1250    /// # Panics
1251    ///
1252    /// This function requires that the specified float is finite, for
1253    /// example if it is infinity or NaN this function will panic.
1254    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1255    pub fn f32_suffixed(n: f32) -> Literal {
1256        if !n.is_finite() {
1257            panic!("Invalid float literal {n}");
1258        }
1259        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f32"))
1260    }
1261
1262    /// Creates a new unsuffixed floating-point literal.
1263    ///
1264    /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1265    /// the float's value is emitted directly into the token but no suffix is
1266    /// used, so it may be inferred to be a `f64` later in the compiler.
1267    /// Literals created from negative numbers might not survive rountrips through
1268    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1269    ///
1270    /// # Panics
1271    ///
1272    /// This function requires that the specified float is finite, for
1273    /// example if it is infinity or NaN this function will panic.
1274    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1275    pub fn f64_unsuffixed(n: f64) -> Literal {
1276        if !n.is_finite() {
1277            panic!("Invalid float literal {n}");
1278        }
1279        let mut repr = n.to_string();
1280        if !repr.contains('.') {
1281            repr.push_str(".0");
1282        }
1283        Literal::new(bridge::LitKind::Float, &repr, None)
1284    }
1285
1286    /// Creates a new suffixed floating-point literal.
1287    ///
1288    /// This constructor will create a literal like `1.0f64` where the value
1289    /// specified is the preceding part of the token and `f64` is the suffix of
1290    /// the token. This token will always be inferred to be an `f64` in the
1291    /// compiler.
1292    /// Literals created from negative numbers might not survive rountrips through
1293    /// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
1294    ///
1295    /// # Panics
1296    ///
1297    /// This function requires that the specified float is finite, for
1298    /// example if it is infinity or NaN this function will panic.
1299    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1300    pub fn f64_suffixed(n: f64) -> Literal {
1301        if !n.is_finite() {
1302            panic!("Invalid float literal {n}");
1303        }
1304        Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f64"))
1305    }
1306
1307    /// String literal.
1308    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1309    pub fn string(string: &str) -> Literal {
1310        let escape = EscapeOptions {
1311            escape_single_quote: false,
1312            escape_double_quote: true,
1313            escape_nonascii: false,
1314        };
1315        let repr = escape_bytes(string.as_bytes(), escape);
1316        Literal::new(bridge::LitKind::Str, &repr, None)
1317    }
1318
1319    /// Character literal.
1320    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1321    pub fn character(ch: char) -> Literal {
1322        let escape = EscapeOptions {
1323            escape_single_quote: true,
1324            escape_double_quote: false,
1325            escape_nonascii: false,
1326        };
1327        let repr = escape_bytes(ch.encode_utf8(&mut [0u8; 4]).as_bytes(), escape);
1328        Literal::new(bridge::LitKind::Char, &repr, None)
1329    }
1330
1331    /// Byte character literal.
1332    #[stable(feature = "proc_macro_byte_character", since = "1.79.0")]
1333    pub fn byte_character(byte: u8) -> Literal {
1334        let escape = EscapeOptions {
1335            escape_single_quote: true,
1336            escape_double_quote: false,
1337            escape_nonascii: true,
1338        };
1339        let repr = escape_bytes(&[byte], escape);
1340        Literal::new(bridge::LitKind::Byte, &repr, None)
1341    }
1342
1343    /// Byte string literal.
1344    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1345    pub fn byte_string(bytes: &[u8]) -> Literal {
1346        let escape = EscapeOptions {
1347            escape_single_quote: false,
1348            escape_double_quote: true,
1349            escape_nonascii: true,
1350        };
1351        let repr = escape_bytes(bytes, escape);
1352        Literal::new(bridge::LitKind::ByteStr, &repr, None)
1353    }
1354
1355    /// C string literal.
1356    #[stable(feature = "proc_macro_c_str_literals", since = "1.79.0")]
1357    pub fn c_string(string: &CStr) -> Literal {
1358        let escape = EscapeOptions {
1359            escape_single_quote: false,
1360            escape_double_quote: true,
1361            escape_nonascii: false,
1362        };
1363        let repr = escape_bytes(string.to_bytes(), escape);
1364        Literal::new(bridge::LitKind::CStr, &repr, None)
1365    }
1366
1367    /// Returns the span encompassing this literal.
1368    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1369    pub fn span(&self) -> Span {
1370        Span(self.0.span)
1371    }
1372
1373    /// Configures the span associated for this literal.
1374    #[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1375    pub fn set_span(&mut self, span: Span) {
1376        self.0.span = span.0;
1377    }
1378
1379    /// Returns a `Span` that is a subset of `self.span()` containing only the
1380    /// source bytes in range `range`. Returns `None` if the would-be trimmed
1381    /// span is outside the bounds of `self`.
1382    // FIXME(SergioBenitez): check that the byte range starts and ends at a
1383    // UTF-8 boundary of the source. otherwise, it's likely that a panic will
1384    // occur elsewhere when the source text is printed.
1385    // FIXME(SergioBenitez): there is no way for the user to know what
1386    // `self.span()` actually maps to, so this method can currently only be
1387    // called blindly. For example, `to_string()` for the character 'c' returns
1388    // "'\u{63}'"; there is no way for the user to know whether the source text
1389    // was 'c' or whether it was '\u{63}'.
1390    #[unstable(feature = "proc_macro_span", issue = "54725")]
1391    pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1392        self.0.span.subspan(range.start_bound().cloned(), range.end_bound().cloned()).map(Span)
1393    }
1394
1395    fn with_symbol_and_suffix<R>(&self, f: impl FnOnce(&str, &str) -> R) -> R {
1396        self.0.symbol.with(|symbol| match self.0.suffix {
1397            Some(suffix) => suffix.with(|suffix| f(symbol, suffix)),
1398            None => f(symbol, ""),
1399        })
1400    }
1401
1402    /// Invokes the callback with a `&[&str]` consisting of each part of the
1403    /// literal's representation. This is done to allow the `ToString` and
1404    /// `Display` implementations to borrow references to symbol values, and
1405    /// both be optimized to reduce overhead.
1406    fn with_stringify_parts<R>(&self, f: impl FnOnce(&[&str]) -> R) -> R {
1407        /// Returns a string containing exactly `num` '#' characters.
1408        /// Uses a 256-character source string literal which is always safe to
1409        /// index with a `u8` index.
1410        fn get_hashes_str(num: u8) -> &'static str {
1411            const HASHES: &str = "\
1412            ################################################################\
1413            ################################################################\
1414            ################################################################\
1415            ################################################################\
1416            ";
1417            const _: () = assert!(HASHES.len() == 256);
1418            &HASHES[..num as usize]
1419        }
1420
1421        self.with_symbol_and_suffix(|symbol, suffix| match self.0.kind {
1422            bridge::LitKind::Byte => f(&["b'", symbol, "'", suffix]),
1423            bridge::LitKind::Char => f(&["'", symbol, "'", suffix]),
1424            bridge::LitKind::Str => f(&["\"", symbol, "\"", suffix]),
1425            bridge::LitKind::StrRaw(n) => {
1426                let hashes = get_hashes_str(n);
1427                f(&["r", hashes, "\"", symbol, "\"", hashes, suffix])
1428            }
1429            bridge::LitKind::ByteStr => f(&["b\"", symbol, "\"", suffix]),
1430            bridge::LitKind::ByteStrRaw(n) => {
1431                let hashes = get_hashes_str(n);
1432                f(&["br", hashes, "\"", symbol, "\"", hashes, suffix])
1433            }
1434            bridge::LitKind::CStr => f(&["c\"", symbol, "\"", suffix]),
1435            bridge::LitKind::CStrRaw(n) => {
1436                let hashes = get_hashes_str(n);
1437                f(&["cr", hashes, "\"", symbol, "\"", hashes, suffix])
1438            }
1439
1440            bridge::LitKind::Integer | bridge::LitKind::Float | bridge::LitKind::ErrWithGuar => {
1441                f(&[symbol, suffix])
1442            }
1443        })
1444    }
1445
1446    /// Returns the unescaped string value if the current literal is a string or a string literal.
1447    #[unstable(feature = "proc_macro_value", issue = "136652")]
1448    pub fn str_value(&self) -> Result<String, ConversionErrorKind> {
1449        self.0.symbol.with(|symbol| match self.0.kind {
1450            bridge::LitKind::Str => {
1451                if symbol.contains('\\') {
1452                    let mut buf = String::with_capacity(symbol.len());
1453                    let mut error = None;
1454                    // Force-inlining here is aggressive but the closure is
1455                    // called on every char in the string, so it can be hot in
1456                    // programs with many long strings containing escapes.
1457                    unescape_str(
1458                        symbol,
1459                        #[inline(always)]
1460                        |_, c| match c {
1461                            Ok(c) => buf.push(c),
1462                            Err(err) => {
1463                                if err.is_fatal() {
1464                                    error = Some(ConversionErrorKind::FailedToUnescape(err));
1465                                }
1466                            }
1467                        },
1468                    );
1469                    if let Some(error) = error { Err(error) } else { Ok(buf) }
1470                } else {
1471                    Ok(symbol.to_string())
1472                }
1473            }
1474            bridge::LitKind::StrRaw(_) => Ok(symbol.to_string()),
1475            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1476        })
1477    }
1478
1479    /// Returns the unescaped string value if the current literal is a c-string or a c-string
1480    /// literal.
1481    #[unstable(feature = "proc_macro_value", issue = "136652")]
1482    pub fn cstr_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1483        self.0.symbol.with(|symbol| match self.0.kind {
1484            bridge::LitKind::CStr => {
1485                let mut error = None;
1486                let mut buf = Vec::with_capacity(symbol.len());
1487
1488                unescape_c_str(symbol, |_span, res| match res {
1489                    Ok(MixedUnit::Char(c)) => {
1490                        buf.extend_from_slice(c.get().encode_utf8(&mut [0; 4]).as_bytes())
1491                    }
1492                    Ok(MixedUnit::HighByte(b)) => buf.push(b.get()),
1493                    Err(err) => {
1494                        if err.is_fatal() {
1495                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1496                        }
1497                    }
1498                });
1499                if let Some(error) = error {
1500                    Err(error)
1501                } else {
1502                    buf.push(0);
1503                    Ok(buf)
1504                }
1505            }
1506            bridge::LitKind::CStrRaw(_) => {
1507                // Raw strings have no escapes so we can convert the symbol
1508                // directly to a `Lrc<u8>` after appending the terminating NUL
1509                // char.
1510                let mut buf = symbol.to_owned().into_bytes();
1511                buf.push(0);
1512                Ok(buf)
1513            }
1514            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1515        })
1516    }
1517
1518    /// Returns the unescaped string value if the current literal is a byte string or a byte string
1519    /// literal.
1520    #[unstable(feature = "proc_macro_value", issue = "136652")]
1521    pub fn byte_str_value(&self) -> Result<Vec<u8>, ConversionErrorKind> {
1522        self.0.symbol.with(|symbol| match self.0.kind {
1523            bridge::LitKind::ByteStr => {
1524                let mut buf = Vec::with_capacity(symbol.len());
1525                let mut error = None;
1526
1527                unescape_byte_str(symbol, |_, res| match res {
1528                    Ok(b) => buf.push(b),
1529                    Err(err) => {
1530                        if err.is_fatal() {
1531                            error = Some(ConversionErrorKind::FailedToUnescape(err));
1532                        }
1533                    }
1534                });
1535                if let Some(error) = error { Err(error) } else { Ok(buf) }
1536            }
1537            bridge::LitKind::ByteStrRaw(_) => {
1538                // Raw strings have no escapes so we can convert the symbol
1539                // directly to a `Lrc<u8>`.
1540                Ok(symbol.to_owned().into_bytes())
1541            }
1542            _ => Err(ConversionErrorKind::InvalidLiteralKind),
1543        })
1544    }
1545}
1546
1547/// Parse a single literal from its stringified representation.
1548///
1549/// In order to parse successfully, the input string must not contain anything
1550/// but the literal token. Specifically, it must not contain whitespace or
1551/// comments in addition to the literal.
1552///
1553/// The resulting literal token will have a `Span::call_site()` span.
1554///
1555/// NOTE: some errors may cause panics instead of returning `LexError`. We
1556/// reserve the right to change these errors into `LexError`s later.
1557#[stable(feature = "proc_macro_literal_parse", since = "1.54.0")]
1558impl FromStr for Literal {
1559    type Err = LexError;
1560
1561    fn from_str(src: &str) -> Result<Self, LexError> {
1562        match bridge::client::FreeFunctions::literal_from_str(src) {
1563            Ok(literal) => Ok(Literal(literal)),
1564            Err(()) => Err(LexError),
1565        }
1566    }
1567}
1568
1569/// Prints the literal as a string that should be losslessly convertible
1570/// back into the same literal (except for possible rounding for floating point literals).
1571#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1572impl fmt::Display for Literal {
1573    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1574        self.with_stringify_parts(|parts| {
1575            for part in parts {
1576                fmt::Display::fmt(part, f)?;
1577            }
1578            Ok(())
1579        })
1580    }
1581}
1582
1583#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
1584impl fmt::Debug for Literal {
1585    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1586        f.debug_struct("Literal")
1587            // format the kind on one line even in {:#?} mode
1588            .field("kind", &format_args!("{:?}", self.0.kind))
1589            .field("symbol", &self.0.symbol)
1590            // format `Some("...")` on one line even in {:#?} mode
1591            .field("suffix", &format_args!("{:?}", self.0.suffix))
1592            .field("span", &self.0.span)
1593            .finish()
1594    }
1595}
1596
1597/// Tracked access to environment variables.
1598#[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1599pub mod tracked_env {
1600    use std::env::{self, VarError};
1601    use std::ffi::OsStr;
1602
1603    /// Retrieve an environment variable and add it to build dependency info.
1604    /// The build system executing the compiler will know that the variable was accessed during
1605    /// compilation, and will be able to rerun the build when the value of that variable changes.
1606    /// Besides the dependency tracking this function should be equivalent to `env::var` from the
1607    /// standard library, except that the argument must be UTF-8.
1608    #[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
1609    pub fn var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
1610        let key: &str = key.as_ref();
1611        let value = crate::bridge::client::FreeFunctions::injected_env_var(key)
1612            .map_or_else(|| env::var(key), Ok);
1613        crate::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
1614        value
1615    }
1616}
1617
1618/// Tracked access to additional files.
1619#[unstable(feature = "track_path", issue = "99515")]
1620pub mod tracked_path {
1621
1622    /// Track a file explicitly.
1623    ///
1624    /// Commonly used for tracking asset preprocessing.
1625    #[unstable(feature = "track_path", issue = "99515")]
1626    pub fn path<P: AsRef<str>>(path: P) {
1627        let path: &str = path.as_ref();
1628        crate::bridge::client::FreeFunctions::track_path(path);
1629    }
1630}