Tier: 3

NetBSD multi-platform 4.4BSD-based UNIX-like operating system.

The target names follow this format: $ARCH-unknown-netbsd{-$SUFFIX}, where $ARCH specifies the target processor architecture and -$SUFFIX (optional) might indicate the ABI. The following targets are currently defined running NetBSD:

Target nameNetBSD Platform
x86_64-unknown-netbsdamd64 / x86_64 systems
armv7-unknown-netbsd-eabihf32-bit ARMv7 systems with hard-float
armv6-unknown-netbsd-eabihf32-bit ARMv6 systems with hard-float
aarch64-unknown-netbsd64-bit ARM systems, little-endian
aarch64_be-unknown-netbsd64-bit ARM systems, big-endian
i586-unknown-netbsd32-bit i386, restricted to Pentium
i686-unknown-netbsd32-bit i386 with SSE
mipsel-unknown-netbsd32-bit mips, requires mips32 cpu support
powerpc-unknown-netbsdVarious 32-bit PowerPC systems, e.g. MacPPC
riscv64gc-unknown-netbsd64-bit RISC-V
sparc64-unknown-netbsdSun UltraSPARC systems

All use the "native" stdc++ library which goes along with the natively supplied GNU C++ compiler for the given OS version. Many of the bootstraps are built for NetBSD 9.x, although some exceptions exist (some are built for NetBSD 8.x but also work on newer OS versions).

Designated Developers

  • @he32, he@NetBSD.org
  • NetBSD/pkgsrc-wip's rust maintainer (see MAINTAINER variable). This package is part of "pkgsrc work-in-progress" and is used for deployment and testing of new versions of rust
  • NetBSD's pkgsrc lang/rust for the "proper" package in pkgsrc.
  • NetBSD's pkgsrc lang/rust-bin which re-uses the bootstrap kit as a binary distribution and therefore avoids the rather protracted native build time of rust itself

Fallback to pkgsrc-users@NetBSD.org, or fault reporting via NetBSD's bug reporting system.


The x86_64-unknown-netbsd artifacts is being distributed by the rust project.

The other targets are built by the designated developers (see above), and the targets are initially cross-compiled, but many if not most of them are also built natively as part of testing.


The default build mode for the packages is a native build.


These targets can be cross-compiled, and we do that via the pkgsrc package(s).

Cross-compilation typically requires the "tools" and "dest" trees resulting from a normal cross-build of NetBSD itself, ref. our main build script, build.sh.

See e.g. do-cross.mk Makefile for the Makefile used to cross-build all the above NetBSD targets (except for the amd64 target).

The major option for the rust build is whether to build rust with the LLVM rust carries in its distribution, or use the LLVM package installed from pkgsrc. The PKG_OPTIONS.rust option is rust-internal-llvm, ref. the rust package's options.mk make fragment. It defaults to being set for a few of the above platforms, for various reasons (see comments), but is otherwise unset and therefore indicates use of the pkgsrc LLVM.


The Rust testsuite could presumably be run natively.

For the systems where the maintainer can build natively, the rust compiler itself is re-built natively. This involves the rust compiler being re-built with the newly self-built rust compiler, so exercises the result quite extensively.

Additionally, for some systems we build librsvg, and for the more capable systems we build and test firefox (amd64, i386, aarch64).

Building Rust programs

Rust ships pre-compiled artifacts for the x86_64-unknown-netbsd target.

For the other systems mentioned above, using the pkgsrc route is probably the easiest, possibly via the rust-bin package to save time, see the RUST_TYPE variable from the rust.mk Makefile fragment.

The pkgsrc rust package has a few files to assist with building pkgsrc packages written in rust, ref. the rust.mk and cargo.mk Makefile fragments in the lang/rust package.