Enum rustc_middle::mir::syntax::StatementKind

source ·
pub enum StatementKind<'tcx> {
Show 13 variants Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>), FakeRead(Box<(FakeReadCause, Place<'tcx>)>), SetDiscriminant { place: Box<Place<'tcx>>, variant_index: VariantIdx, }, Deinit(Box<Place<'tcx>>), StorageLive(Local), StorageDead(Local), Retag(RetagKind, Box<Place<'tcx>>), PlaceMention(Box<Place<'tcx>>), AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, Variance), Coverage(CoverageKind), Intrinsic(Box<NonDivergingIntrinsic<'tcx>>), ConstEvalCounter, Nop,
}
Expand description

The various kinds of statements that can appear in MIR.

Not all of these are allowed at every MirPhase. Check the documentation there to see which ones you do not have to worry about. The MIR validator will generally enforce such restrictions, causing an ICE if they are violated.

Variants§

§

Assign(Box<(Place<'tcx>, Rvalue<'tcx>)>)

Assign statements roughly correspond to an assignment in Rust proper (x = ...) except without the possibility of dropping the previous value (that must be done separately, if at all). The exact way this works is undecided. It probably does something like evaluating the LHS to a place and the RHS to a value, and then storing the value to the place. Various parts of this may do type specific things that are more complicated than simply copying bytes.

Needs clarification: The implication of the above idea would be that assignment implies that the resulting value is initialized. I believe we could commit to this separately from committing to whatever part of the memory model we would need to decide on to make the above paragraph precise. Do we want to?

Assignments in which the types of the place and rvalue differ are not well-formed.

Needs clarification: Do we ever want to worry about non-free (in the body) lifetimes for the typing requirement in post drop-elaboration MIR? I think probably not - I’m not sure we could meaningfully require this anyway. How about free lifetimes? Is ignoring this interesting for optimizations? Do we want to allow such optimizations?

Needs clarification: We currently require that the LHS place not overlap with any place read as part of computation of the RHS for some rvalues (generally those not producing primitives). This requirement is under discussion in #68364. As a part of this discussion, it is also unclear in what order the components are evaluated.

See Rvalue documentation for details on each of those.

§

FakeRead(Box<(FakeReadCause, Place<'tcx>)>)

This represents all the reading that a pattern match may do (e.g., inspecting constants and discriminant values), and the kind of pattern it comes from. This is in order to adapt potential error messages to these specific patterns.

Note that this also is emitted for regular let bindings to ensure that locals that are never accessed still get some sanity checks for, e.g., let x: ! = ..;

When executed at runtime this is a nop.

Disallowed after drop elaboration.

§

SetDiscriminant

Write the discriminant for a variant to the enum Place.

This is permitted for both coroutines and ADTs. This does not necessarily write to the entire place; instead, it writes to the minimum set of bytes as required by the layout for the type.

Fields

§place: Box<Place<'tcx>>
§variant_index: VariantIdx
§

Deinit(Box<Place<'tcx>>)

Deinitializes the place.

This writes uninit bytes to the entire place.

§

StorageLive(Local)

StorageLive and StorageDead statements mark the live range of a local.

At any point during the execution of a function, each local is either allocated or unallocated. Except as noted below, all locals except function parameters are initially unallocated. StorageLive statements cause memory to be allocated for the local while StorageDead statements cause the memory to be freed. In other words, StorageLive/StorageDead act like the heap operations allocate/deallocate, but for stack-allocated local variables. Using a local in any way (not only reading/writing from it) while it is unallocated is UB.

Some locals have no StorageLive or StorageDead statements within the entire MIR body. These locals are implicitly allocated for the full duration of the function. There is a convenience method at rustc_mir_dataflow::storage::always_storage_live_locals for computing these locals.

If the local is already allocated, calling StorageLive again will implicitly free the local and then allocate fresh uninitilized memory. If a local is already deallocated, calling StorageDead again is a NOP.

§

StorageDead(Local)

See StorageLive above.

§

Retag(RetagKind, Box<Place<'tcx>>)

Retag references in the given place, ensuring they got fresh tags.

This is part of the Stacked Borrows model. These statements are currently only interpreted by miri and only generated when -Z mir-emit-retag is passed. See https://internals.rust-lang.org/t/stacked-borrows-an-aliasing-model-for-rust/8153/ for more details.

For code that is not specific to stacked borrows, you should consider retags to read and modify the place in an opaque way.

Only RetagKind::Default and RetagKind::FnEntry are permitted.

§

PlaceMention(Box<Place<'tcx>>)

This statement exists to preserve a trace of a scrutinee matched against a wildcard binding. This is especially useful for let _ = PLACE; bindings that desugar to a single PlaceMention(PLACE).

When executed at runtime, this computes the given place, but then discards it without doing a load. let _ = *ptr; is fine even if the pointer is dangling.

§

AscribeUserType(Box<(Place<'tcx>, UserTypeProjection)>, Variance)

Encodes a user’s type ascription. These need to be preserved intact so that NLL can respect them. For example:

let a: T = y;

The effect of this annotation is to relate the type T_y of the place y to the user-given type T. The effect depends on the specified variance:

  • Covariant – requires that T_y <: T
  • Contravariant – requires that T_y :> T
  • Invariant – requires that T_y == T
  • Bivariant – no effect

When executed at runtime this is a nop.

Disallowed after drop elaboration.

§

Coverage(CoverageKind)

Carries control-flow-sensitive information injected by -Cinstrument-coverage, such as where to generate physical coverage-counter-increments during codegen.

Coverage statements are used in conjunction with the coverage mappings and other information stored in the function’s mir::Body::function_coverage_info. (For inlined MIR, take care to look up the original function’s coverage info.)

Interpreters and codegen backends that don’t support coverage instrumentation can usually treat this as a no-op.

§

Intrinsic(Box<NonDivergingIntrinsic<'tcx>>)

Denotes a call to an intrinsic that does not require an unwind path and always returns. This avoids adding a new block and a terminator for simple intrinsics.

§

ConstEvalCounter

Instructs the const eval interpreter to increment a counter; this counter is used to track how many steps the interpreter has taken. It is used to prevent the user from writing const code that runs for too long or infinitely. Other than in the const eval interpreter, this is a no-op.

§

Nop

No-op. Useful for deleting instructions without affecting statement indices.

Implementations§

source§

impl<'tcx> StatementKind<'tcx>

source

pub fn as_assign_mut(&mut self) -> Option<&mut (Place<'tcx>, Rvalue<'tcx>)>

source

pub fn as_assign(&self) -> Option<&(Place<'tcx>, Rvalue<'tcx>)>

source§

impl StatementKind<'_>

source

pub const fn name(&self) -> &'static str

Returns a simple string representation of a StatementKind variant, independent of any values it might hold (e.g. StatementKind::Assign always returns "Assign").

Trait Implementations§

source§

impl<'tcx> Clone for StatementKind<'tcx>

source§

fn clone(&self) -> StatementKind<'tcx>

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl<'tcx> Debug for StatementKind<'tcx>

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<'tcx, __D: TyDecoder<I = TyCtxt<'tcx>>> Decodable<__D> for StatementKind<'tcx>

source§

fn decode(__decoder: &mut __D) -> Self

source§

impl<'tcx, __E: TyEncoder<I = TyCtxt<'tcx>>> Encodable<__E> for StatementKind<'tcx>

source§

fn encode(&self, __encoder: &mut __E)

source§

impl<'tcx> Hash for StatementKind<'tcx>

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'tcx, '__ctx> HashStable<StableHashingContext<'__ctx>> for StatementKind<'tcx>

source§

fn hash_stable( &self, __hcx: &mut StableHashingContext<'__ctx>, __hasher: &mut StableHasher, )

source§

impl<'tcx> PartialEq for StatementKind<'tcx>

source§

fn eq(&self, other: &StatementKind<'tcx>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for StatementKind<'tcx>

source§

fn try_fold_with<__F: FallibleTypeFolder<TyCtxt<'tcx>>>( self, __folder: &mut __F, ) -> Result<Self, __F::Error>

The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
source§

fn fold_with<F>(self, folder: &mut F) -> Self
where F: TypeFolder<I>,

A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with.
source§

impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for StatementKind<'tcx>

source§

fn visit_with<__V: TypeVisitor<TyCtxt<'tcx>>>( &self, __visitor: &mut __V, ) -> __V::Result

The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
source§

impl<'tcx> StructuralPartialEq for StatementKind<'tcx>

Auto Trait Implementations§

§

impl<'tcx> Freeze for StatementKind<'tcx>

§

impl<'tcx> !RefUnwindSafe for StatementKind<'tcx>

§

impl<'tcx> !Send for StatementKind<'tcx>

§

impl<'tcx> !Sync for StatementKind<'tcx>

§

impl<'tcx> Unpin for StatementKind<'tcx>

§

impl<'tcx> !UnwindSafe for StatementKind<'tcx>

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = _

Alignment of Self.
source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> AnyEq for T
where T: Any + PartialEq,

source§

fn equals(&self, other: &(dyn Any + 'static)) -> bool

source§

fn as_any(&self) -> &(dyn Any + 'static)

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T, R> CollectAndApply<T, R> for T

source§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

source§

type Output = R

source§

impl<Tcx, T> DepNodeParams<Tcx> for T
where Tcx: DepContext, T: for<'a> HashStable<StableHashingContext<'a>> + Debug,

source§

default fn fingerprint_style() -> FingerprintStyle

source§

default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint

This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous).
source§

default fn to_debug_str(&self, _: Tcx) -> String

source§

default fn recover(_: Tcx, _: &DepNode) -> Option<T>

This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it.
source§

impl<T> Filterable for T

source§

fn filterable( self, filter_name: &'static str, ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>

Creates a filterable data provider with the given name for debugging. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<P> IntoQueryParam<P> for P

source§

impl<'tcx, T> IsSuggestable<'tcx> for T
where T: TypeVisitable<TyCtxt<'tcx>> + TypeFoldable<TyCtxt<'tcx>>,

source§

fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool

Whether this makes sense to suggest in a diagnostic. Read more
source§

fn make_suggestable( self, tcx: TyCtxt<'tcx>, infer_suggestable: bool, placeholder: Option<Ty<'tcx>>, ) -> Option<T>

source§

impl<T> MaybeResult<T> for T

source§

type Error = !

source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

source§

impl<T> Same for T

source§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

source§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<I, T> TypeVisitableExt<I> for T
where I: Interner, T: TypeVisitable<I>,

source§

fn has_type_flags(&self, flags: TypeFlags) -> bool

source§

fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool

Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free.
source§

fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>

source§

fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool

Returns true if this type has any regions that escape binder (and hence are not bound by it).
source§

fn has_escaping_bound_vars(&self) -> bool

Return true if this type has regions that are not a part of the type. For example, for<'a> fn(&'a i32) return false, while fn(&'a i32) would return true. The latter can occur when traversing through the former. Read more
source§

fn has_aliases(&self) -> bool

source§

fn has_opaque_types(&self) -> bool

source§

fn has_coroutines(&self) -> bool

source§

fn references_error(&self) -> bool

source§

fn has_non_region_param(&self) -> bool

source§

fn has_infer_regions(&self) -> bool

source§

fn has_infer_types(&self) -> bool

source§

fn has_non_region_infer(&self) -> bool

source§

fn has_infer(&self) -> bool

source§

fn has_placeholders(&self) -> bool

source§

fn has_non_region_placeholders(&self) -> bool

source§

fn has_param(&self) -> bool

source§

fn has_free_regions(&self) -> bool

“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound.
source§

fn has_erased_regions(&self) -> bool

source§

fn has_erasable_regions(&self) -> bool

True if there are any un-erased free regions.
source§

fn is_global(&self) -> bool

Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching.
source§

fn has_bound_regions(&self) -> bool

True if there are any late-bound regions
source§

fn has_non_region_bound_vars(&self) -> bool

True if there are any late-bound non-region variables
source§

fn has_bound_vars(&self) -> bool

True if there are any bound variables
source§

fn still_further_specializable(&self) -> bool

Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization.
source§

impl<I, T, U> Upcast<I, U> for T
where U: UpcastFrom<I, T>,

source§

fn upcast(self, interner: I) -> U

source§

impl<I, T> UpcastFrom<I, T> for T

source§

fn upcast_from(from: T, _tcx: I) -> T

source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<Tcx, T> Value<Tcx> for T
where Tcx: DepContext,

source§

default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed, ) -> T

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<'a, T> Captures<'a> for T
where T: ?Sized,

source§

impl<T> ErasedDestructor for T
where T: 'static,

source§

impl<T> MaybeSendSync for T

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 16 bytes

Size for each variant:

  • Assign: 15 bytes
  • FakeRead: 15 bytes
  • SetDiscriminant: 15 bytes
  • Deinit: 15 bytes
  • StorageLive: 7 bytes
  • StorageDead: 7 bytes
  • Retag: 15 bytes
  • PlaceMention: 15 bytes
  • AscribeUserType: 15 bytes
  • Coverage: 11 bytes
  • Intrinsic: 15 bytes
  • ConstEvalCounter: 0 bytes
  • Nop: 0 bytes