# 1.0.0[−][src]Struct alloc::collections::binary_heap::BinaryHeap

A priority queue implemented with a binary heap.

This will be a max-heap.

It is a logic error for an item to be modified in such a way that the
item's ordering relative to any other item, as determined by the `Ord`

trait, changes while it is in the heap. This is normally only possible
through `Cell`

, `RefCell`

, global state, I/O, or unsafe code.

# Examples

use std::collections::BinaryHeap; // Type inference lets us omit an explicit type signature (which // would be `BinaryHeap<i32>` in this example). let mut heap = BinaryHeap::new(); // We can use peek to look at the next item in the heap. In this case, // there's no items in there yet so we get None. assert_eq!(heap.peek(), None); // Let's add some scores... heap.push(1); heap.push(5); heap.push(2); // Now peek shows the most important item in the heap. assert_eq!(heap.peek(), Some(&5)); // We can check the length of a heap. assert_eq!(heap.len(), 3); // We can iterate over the items in the heap, although they are returned in // a random order. for x in &heap { println!("{}", x); } // If we instead pop these scores, they should come back in order. assert_eq!(heap.pop(), Some(5)); assert_eq!(heap.pop(), Some(2)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None); // We can clear the heap of any remaining items. heap.clear(); // The heap should now be empty. assert!(heap.is_empty())Run

## Min-heap

Either `std::cmp::Reverse`

or a custom `Ord`

implementation can be used to
make `BinaryHeap`

a min-heap. This makes `heap.pop()`

return the smallest
value instead of the greatest one.

use std::collections::BinaryHeap; use std::cmp::Reverse; let mut heap = BinaryHeap::new(); // Wrap values in `Reverse` heap.push(Reverse(1)); heap.push(Reverse(5)); heap.push(Reverse(2)); // If we pop these scores now, they should come back in the reverse order. assert_eq!(heap.pop(), Some(Reverse(1))); assert_eq!(heap.pop(), Some(Reverse(2))); assert_eq!(heap.pop(), Some(Reverse(5))); assert_eq!(heap.pop(), None);Run

# Time complexity

push | pop | peek/peek_mut |
---|---|---|

O(1)~ | O(log(n)) | O(1) |

The value for `push`

is an expected cost; the method documentation gives a
more detailed analysis.

## Implementations

`impl<T: Ord> BinaryHeap<T>`

[src]

`pub fn new() -> BinaryHeap<T>`

[src]

Creates an empty `BinaryHeap`

as a max-heap.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.push(4);Run

`pub fn with_capacity(capacity: usize) -> BinaryHeap<T>`

[src]

Creates an empty `BinaryHeap`

with a specific capacity.
This preallocates enough memory for `capacity`

elements,
so that the `BinaryHeap`

does not have to be reallocated
until it contains at least that many values.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::with_capacity(10); heap.push(4);Run

`pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>>`

1.12.0[src]

Returns a mutable reference to the greatest item in the binary heap, or
`None`

if it is empty.

Note: If the `PeekMut`

value is leaked, the heap may be in an
inconsistent state.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert!(heap.peek_mut().is_none()); heap.push(1); heap.push(5); heap.push(2); { let mut val = heap.peek_mut().unwrap(); *val = 0; } assert_eq!(heap.peek(), Some(&2));Run

# Time complexity

If the item is modified then the worst case time complexity is *O*(log(*n*)),
otherwise it's *O*(1).

`pub fn pop(&mut self) -> Option<T>`

[src]

Removes the greatest item from the binary heap and returns it, or `None`

if it
is empty.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 3]); assert_eq!(heap.pop(), Some(3)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None);Run

# Time complexity

The worst case cost of `pop`

on a heap containing *n* elements is *O*(log(*n*)).

`pub fn push(&mut self, item: T)`

[src]

Pushes an item onto the binary heap.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.push(3); heap.push(5); heap.push(1); assert_eq!(heap.len(), 3); assert_eq!(heap.peek(), Some(&5));Run

# Time complexity

The expected cost of `push`

, averaged over every possible ordering of
the elements being pushed, and over a sufficiently large number of
pushes, is *O*(1). This is the most meaningful cost metric when pushing
elements that are *not* already in any sorted pattern.

The time complexity degrades if elements are pushed in predominantly
ascending order. In the worst case, elements are pushed in ascending
sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
containing *n* elements.

The worst case cost of a *single* call to `push`

is *O*(*n*). The worst case
occurs when capacity is exhausted and needs a resize. The resize cost
has been amortized in the previous figures.

`pub fn into_sorted_vec(self) -> Vec<T>`

1.5.0[src]

Consumes the `BinaryHeap`

and returns a vector in sorted
(ascending) order.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); heap.push(6); heap.push(3); let vec = heap.into_sorted_vec(); assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);Run

`pub fn append(&mut self, other: &mut Self)`

1.11.0[src]

Moves all the elements of `other`

into `self`

, leaving `other`

empty.

# Examples

Basic usage:

use std::collections::BinaryHeap; let v = vec![-10, 1, 2, 3, 3]; let mut a = BinaryHeap::from(v); let v = vec![-20, 5, 43]; let mut b = BinaryHeap::from(v); a.append(&mut b); assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); assert!(b.is_empty());Run

`pub fn drain_sorted(&mut self) -> DrainSorted<'_, T>ⓘ`### Notable traits for DrainSorted<'_, T>

`impl<T: Ord, '_> Iterator for DrainSorted<'_, T> type Item = T;`

[src]

### Notable traits for DrainSorted<'_, T>

`impl<T: Ord, '_> Iterator for DrainSorted<'_, T> type Item = T;`

Returns an iterator which retrieves elements in heap order. The retrieved elements are removed from the original heap. The remaining elements will be removed on drop in heap order.

Note:

`.drain_sorted()`

is*O*(*n** log(*n*)); much slower than`.drain()`

. You should use the latter for most cases.

# Examples

Basic usage:

#![feature(binary_heap_drain_sorted)] use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]); assert_eq!(heap.len(), 5); drop(heap.drain_sorted()); // removes all elements in heap order assert_eq!(heap.len(), 0);Run

`pub fn retain<F>(&mut self, f: F) where`

F: FnMut(&T) -> bool,

[src]

F: FnMut(&T) -> bool,

Retains only the elements specified by the predicate.

In other words, remove all elements `e`

such that `f(&e)`

returns
`false`

. The elements are visited in unsorted (and unspecified) order.

# Examples

Basic usage:

#![feature(binary_heap_retain)] use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![-10, -5, 1, 2, 4, 13]); heap.retain(|x| x % 2 == 0); // only keep even numbers assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])Run

`impl<T> BinaryHeap<T>`

[src]

`pub fn iter(&self) -> Iter<'_, T>ⓘ`

[src]

Returns an iterator visiting all values in the underlying vector, in arbitrary order.

# Examples

Basic usage:

use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4]); // Print 1, 2, 3, 4 in arbitrary order for x in heap.iter() { println!("{}", x); }Run

`pub fn into_iter_sorted(self) -> IntoIterSorted<T>ⓘ`### Notable traits for IntoIterSorted<T>

`impl<T: Ord> Iterator for IntoIterSorted<T> type Item = T;`

[src]

### Notable traits for IntoIterSorted<T>

`impl<T: Ord> Iterator for IntoIterSorted<T> type Item = T;`

Returns an iterator which retrieves elements in heap order. This method consumes the original heap.

# Examples

Basic usage:

#![feature(binary_heap_into_iter_sorted)] use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]); assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), vec![5, 4]);Run

`pub fn peek(&self) -> Option<&T>`

[src]

Returns the greatest item in the binary heap, or `None`

if it is empty.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert_eq!(heap.peek(), None); heap.push(1); heap.push(5); heap.push(2); assert_eq!(heap.peek(), Some(&5));Run

# Time complexity

Cost is *O*(1) in the worst case.

`pub fn capacity(&self) -> usize`

[src]

Returns the number of elements the binary heap can hold without reallocating.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.push(4);Run

`pub fn reserve_exact(&mut self, additional: usize)`

[src]

Reserves the minimum capacity for exactly `additional`

more elements to be inserted in the
given `BinaryHeap`

. Does nothing if the capacity is already sufficient.

Note that the allocator may give the collection more space than it requests. Therefore
capacity can not be relied upon to be precisely minimal. Prefer `reserve`

if future
insertions are expected.

# Panics

Panics if the new capacity overflows `usize`

.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.reserve_exact(100); assert!(heap.capacity() >= 100); heap.push(4);Run

`pub fn reserve(&mut self, additional: usize)`

[src]

Reserves capacity for at least `additional`

more elements to be inserted in the
`BinaryHeap`

. The collection may reserve more space to avoid frequent reallocations.

# Panics

Panics if the new capacity overflows `usize`

.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.reserve(100); assert!(heap.capacity() >= 100); heap.push(4);Run

`pub fn shrink_to_fit(&mut self)`

[src]

Discards as much additional capacity as possible.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.shrink_to_fit(); assert!(heap.capacity() == 0);Run

`pub fn shrink_to(&mut self, min_capacity: usize)`

[src]

## 🔬 This is a nightly-only experimental API. (`shrink_to`

#56431)

new API

Discards capacity with a lower bound.

The capacity will remain at least as large as both the length and the supplied value.

Panics if the current capacity is smaller than the supplied minimum capacity.

# Examples

#![feature(shrink_to)] use std::collections::BinaryHeap; let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.shrink_to(10); assert!(heap.capacity() >= 10);Run

`pub fn into_vec(self) -> Vec<T>`

1.5.0[src]

Consumes the `BinaryHeap`

and returns the underlying vector
in arbitrary order.

# Examples

Basic usage:

use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); let vec = heap.into_vec(); // Will print in some order for x in vec { println!("{}", x); }Run

`pub fn len(&self) -> usize`

[src]

Returns the length of the binary heap.

# Examples

Basic usage:

use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 3]); assert_eq!(heap.len(), 2);Run

`pub fn is_empty(&self) -> bool`

[src]

Checks if the binary heap is empty.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert!(heap.is_empty()); heap.push(3); heap.push(5); heap.push(1); assert!(!heap.is_empty());Run

`pub fn drain(&mut self) -> Drain<'_, T>ⓘ`

1.6.0[src]

Clears the binary heap, returning an iterator over the removed elements.

The elements are removed in arbitrary order.

# Examples

Basic usage:

use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 3]); assert!(!heap.is_empty()); for x in heap.drain() { println!("{}", x); } assert!(heap.is_empty());Run

`pub fn clear(&mut self)`

[src]

## Trait Implementations

`impl<T: Clone> Clone for BinaryHeap<T>`

[src]

`fn clone(&self) -> Self`

[src]

`fn clone_from(&mut self, source: &Self)`

[src]

`impl<T: Debug> Debug for BinaryHeap<T>`

1.4.0[src]

`impl<T: Ord> Default for BinaryHeap<T>`

[src]

`fn default() -> BinaryHeap<T>`

[src]

Creates an empty `BinaryHeap<T>`

.

`impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T>`

1.2.0[src]

`fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I)`

[src]

`fn extend_one(&mut self, item: &'a T)`

[src]

`fn extend_reserve(&mut self, additional: usize)`

[src]

`impl<T: Ord> Extend<T> for BinaryHeap<T>`

[src]

`fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I)`

[src]

`fn extend_one(&mut self, item: T)`

[src]

`fn extend_reserve(&mut self, additional: usize)`

[src]

`impl<T> From<BinaryHeap<T>> for Vec<T>`

1.5.0[src]

`fn from(heap: BinaryHeap<T>) -> Vec<T>`

[src]

Converts a `BinaryHeap<T>`

into a `Vec<T>`

.

This conversion requires no data movement or allocation, and has constant time complexity.

`impl<T: Ord> From<Vec<T>> for BinaryHeap<T>`

1.5.0[src]

`fn from(vec: Vec<T>) -> BinaryHeap<T>`

[src]

Converts a `Vec<T>`

into a `BinaryHeap<T>`

.

This conversion happens in-place, and has *O*(*n*) time complexity.

`impl<T: Ord> FromIterator<T> for BinaryHeap<T>`

[src]

`fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T>`

[src]

`impl<T> IntoIterator for BinaryHeap<T>`

[src]

`type Item = T`

The type of the elements being iterated over.

`type IntoIter = IntoIter<T>`

Which kind of iterator are we turning this into?

`fn into_iter(self) -> IntoIter<T>ⓘ`

[src]

Creates a consuming iterator, that is, one that moves each value out of the binary heap in arbitrary order. The binary heap cannot be used after calling this.

# Examples

Basic usage:

use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4]); // Print 1, 2, 3, 4 in arbitrary order for x in heap.into_iter() { // x has type i32, not &i32 println!("{}", x); }Run

`impl<'a, T> IntoIterator for &'a BinaryHeap<T>`

[src]

## Auto Trait Implementations

`impl<T> Send for BinaryHeap<T> where`

T: Send,

T: Send,

`impl<T> Sync for BinaryHeap<T> where`

T: Sync,

T: Sync,

`impl<T> Unpin for BinaryHeap<T> where`

T: Unpin,

T: Unpin,

## Blanket Implementations

`impl<T> Any for T where`

T: 'static + ?Sized,

[src]

T: 'static + ?Sized,

`impl<T> Borrow<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`impl<T> BorrowMut<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`pub fn borrow_mut(&mut self) -> &mut T`

[src]

`impl<T> From<T> for T`

[src]

`impl<T, U> Into<U> for T where`

U: From<T>,

[src]

U: From<T>,

`impl<I> IntoIterator for I where`

I: Iterator,

[src]

I: Iterator,

`type Item = <I as Iterator>::Item`

The type of the elements being iterated over.

`type IntoIter = I`

Which kind of iterator are we turning this into?

`pub fn into_iter(self) -> I`

[src]

`impl<T> ToOwned for T where`

T: Clone,

[src]

T: Clone,

`type Owned = T`

The resulting type after obtaining ownership.

`pub fn to_owned(&Self) -> T`

[src]

`pub fn clone_into(&Self, &mut T)`

[src]

`impl<T, U> TryFrom<U> for T where`

U: Into<T>,

[src]

U: Into<T>,

`type Error = Infallible`

The type returned in the event of a conversion error.

`pub fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]

`impl<T, U> TryInto<U> for T where`

U: TryFrom<T>,

[src]

U: TryFrom<T>,