Struct rustc_target::abi::LayoutS

source ·
pub struct LayoutS<FieldIdx, VariantIdx>
where FieldIdx: Idx, VariantIdx: Idx,
{ pub fields: FieldsShape<FieldIdx>, pub variants: Variants<FieldIdx, VariantIdx>, pub abi: Abi, pub largest_niche: Option<Niche>, pub align: AbiAndPrefAlign, pub size: Size, pub max_repr_align: Option<Align>, pub unadjusted_abi_align: Align, }

Fields§

§fields: FieldsShape<FieldIdx>

Says where the fields are located within the layout.

§variants: Variants<FieldIdx, VariantIdx>

Encodes information about multi-variant layouts. Even with Multiple variants, a layout still has its own fields! Those are then shared between all variants. One of them will be the discriminant, but e.g. coroutines can have more.

To access all fields of this layout, both fields and the fields of the active variant must be taken into account.

§abi: Abi

The abi defines how this data is passed between functions, and it defines value restrictions via valid_range.

Note that this is entirely orthogonal to the recursive structure defined by variants and fields; for example, ManuallyDrop<Result<isize, isize>> has Abi::ScalarPair! So, even with non-Aggregate abi, fields and variants have to be taken into account to find all fields of this layout.

§largest_niche: Option<Niche>

The leaf scalar with the largest number of invalid values (i.e. outside of its valid_range), if it exists.

§align: AbiAndPrefAlign§size: Size§max_repr_align: Option<Align>

The largest alignment explicitly requested with repr(align) on this type or any field. Only used on i686-windows, where the argument passing ABI is different when alignment is requested, even if the requested alignment is equal to the natural alignment.

§unadjusted_abi_align: Align

The alignment the type would have, ignoring any repr(align) but including repr(packed). Only used on aarch64-linux, where the argument passing ABI ignores the requested alignment in some cases.

Auto Trait Implementations§

§

impl<FieldIdx, VariantIdx> RefUnwindSafe for LayoutS<FieldIdx, VariantIdx>
where VariantIdx: RefUnwindSafe,

§

impl<FieldIdx, VariantIdx> Send for LayoutS<FieldIdx, VariantIdx>
where VariantIdx: Send,

§

impl<FieldIdx, VariantIdx> Sync for LayoutS<FieldIdx, VariantIdx>
where VariantIdx: Sync,

§

impl<FieldIdx, VariantIdx> Unpin for LayoutS<FieldIdx, VariantIdx>
where VariantIdx: Unpin,

§

impl<FieldIdx, VariantIdx> UnwindSafe for LayoutS<FieldIdx, VariantIdx>
where VariantIdx: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.

Layout§

Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.