1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
use crate::abi::call::{ArgAttribute, FnAbi, PassMode, Reg, RegKind};
use crate::abi::{Abi, Align, HasDataLayout, TyAbiInterface, TyAndLayout};
use crate::spec::HasTargetSpec;
#[derive(PartialEq)]
pub enum Flavor {
General,
FastcallOrVectorcall,
}
pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>, flavor: Flavor)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout + HasTargetSpec,
{
if !fn_abi.ret.is_ignore() {
if fn_abi.ret.layout.is_aggregate() && fn_abi.ret.layout.is_sized() {
// Returning a structure. Most often, this will use
// a hidden first argument. On some platforms, though,
// small structs are returned as integers.
//
// Some links:
// https://www.angelcode.com/dev/callconv/callconv.html
// Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp
let t = cx.target_spec();
if t.abi_return_struct_as_int {
// According to Clang, everyone but MSVC returns single-element
// float aggregates directly in a floating-point register.
if !t.is_like_msvc && fn_abi.ret.layout.is_single_fp_element(cx) {
match fn_abi.ret.layout.size.bytes() {
4 => fn_abi.ret.cast_to(Reg::f32()),
8 => fn_abi.ret.cast_to(Reg::f64()),
_ => fn_abi.ret.make_indirect(),
}
} else {
match fn_abi.ret.layout.size.bytes() {
1 => fn_abi.ret.cast_to(Reg::i8()),
2 => fn_abi.ret.cast_to(Reg::i16()),
4 => fn_abi.ret.cast_to(Reg::i32()),
8 => fn_abi.ret.cast_to(Reg::i64()),
_ => fn_abi.ret.make_indirect(),
}
}
} else {
fn_abi.ret.make_indirect();
}
} else {
fn_abi.ret.extend_integer_width_to(32);
}
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() || !arg.layout.is_sized() {
continue;
}
// FIXME: MSVC 2015+ will pass the first 3 vector arguments in [XYZ]MM0-2
// See https://reviews.llvm.org/D72114 for Clang behavior
let t = cx.target_spec();
let align_4 = Align::from_bytes(4).unwrap();
let align_16 = Align::from_bytes(16).unwrap();
if t.is_like_msvc
&& arg.layout.is_adt()
&& let Some(max_repr_align) = arg.layout.max_repr_align
&& max_repr_align > align_4
{
// MSVC has special rules for overaligned arguments: https://reviews.llvm.org/D72114.
// Summarized here:
// - Arguments with _requested_ alignment > 4 are passed indirectly.
// - For backwards compatibility, arguments with natural alignment > 4 are still passed
// on stack (via `byval`). For example, this includes `double`, `int64_t`,
// and structs containing them, provided they lack an explicit alignment attribute.
assert!(
arg.layout.align.abi >= max_repr_align,
"abi alignment {:?} less than requested alignment {max_repr_align:?}",
arg.layout.align.abi,
);
arg.make_indirect();
} else if arg.layout.is_aggregate() {
// We need to compute the alignment of the `byval` argument. The rules can be found in
// `X86_32ABIInfo::getTypeStackAlignInBytes` in Clang's `TargetInfo.cpp`. Summarized
// here, they are:
//
// 1. If the natural alignment of the type is <= 4, the alignment is 4.
//
// 2. Otherwise, on Linux, the alignment of any vector type is the natural alignment.
// This doesn't matter here because we only pass aggregates via `byval`, not vectors.
//
// 3. Otherwise, on Apple platforms, the alignment of anything that contains a vector
// type is 16.
//
// 4. If none of these conditions are true, the alignment is 4.
fn contains_vector<'a, Ty, C>(cx: &C, layout: TyAndLayout<'a, Ty>) -> bool
where
Ty: TyAbiInterface<'a, C> + Copy,
{
match layout.abi {
Abi::Uninhabited | Abi::Scalar(_) | Abi::ScalarPair(..) => false,
Abi::Vector { .. } => true,
Abi::Aggregate { .. } => {
for i in 0..layout.fields.count() {
if contains_vector(cx, layout.field(cx, i)) {
return true;
}
}
false
}
}
}
let byval_align = if arg.layout.align.abi < align_4 {
// (1.)
align_4
} else if t.is_like_osx && contains_vector(cx, arg.layout) {
// (3.)
align_16
} else {
// (4.)
align_4
};
arg.make_indirect_byval(Some(byval_align));
} else {
arg.extend_integer_width_to(32);
}
}
if flavor == Flavor::FastcallOrVectorcall {
// Mark arguments as InReg like clang does it,
// so our fastcall/vectorcall is compatible with C/C++ fastcall/vectorcall.
// Clang reference: lib/CodeGen/TargetInfo.cpp
// See X86_32ABIInfo::shouldPrimitiveUseInReg(), X86_32ABIInfo::updateFreeRegs()
// IsSoftFloatABI is only set to true on ARM platforms,
// which in turn can't be x86?
let mut free_regs = 2;
for arg in fn_abi.args.iter_mut() {
let attrs = match arg.mode {
PassMode::Ignore
| PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ } => {
continue;
}
PassMode::Direct(ref mut attrs) => attrs,
PassMode::Pair(..)
| PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ }
| PassMode::Cast { .. } => {
unreachable!("x86 shouldn't be passing arguments by {:?}", arg.mode)
}
};
// At this point we know this must be a primitive of sorts.
let unit = arg.layout.homogeneous_aggregate(cx).unwrap().unit().unwrap();
assert_eq!(unit.size, arg.layout.size);
if unit.kind == RegKind::Float {
continue;
}
let size_in_regs = (arg.layout.size.bits() + 31) / 32;
if size_in_regs == 0 {
continue;
}
if size_in_regs > free_regs {
break;
}
free_regs -= size_in_regs;
if arg.layout.size.bits() <= 32 && unit.kind == RegKind::Integer {
attrs.set(ArgAttribute::InReg);
}
if free_regs == 0 {
break;
}
}
}
}