use crate::abi::call::{
ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, CastTarget, FnAbi, PassMode, Reg, Uniform,
};
use crate::abi::{self, HasDataLayout, Size, TyAbiInterface};
fn extend_integer_width_mips<Ty>(arg: &mut ArgAbi<'_, Ty>, bits: u64) {
if let abi::Abi::Scalar(scalar) = arg.layout.abi {
if let abi::Int(i, signed) = scalar.primitive() {
if !signed && i.size().bits() == 32 {
if let PassMode::Direct(ref mut attrs) = arg.mode {
attrs.ext(ArgExtension::Sext);
return;
}
}
}
}
arg.extend_integer_width_to(bits);
}
fn float_reg<'a, Ty, C>(cx: &C, ret: &ArgAbi<'a, Ty>, i: usize) -> Option<Reg>
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
match ret.layout.field(cx, i).abi {
abi::Abi::Scalar(scalar) => match scalar.primitive() {
abi::Float(abi::F32) => Some(Reg::f32()),
abi::Float(abi::F64) => Some(Reg::f64()),
_ => None,
},
_ => None,
}
}
fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !ret.layout.is_aggregate() {
extend_integer_width_mips(ret, 64);
return;
}
let size = ret.layout.size;
let bits = size.bits();
if bits <= 128 {
if let abi::FieldsShape::Arbitrary { .. } = ret.layout.fields {
if ret.layout.fields.count() == 1 {
if let Some(reg) = float_reg(cx, ret, 0) {
ret.cast_to(reg);
return;
}
} else if ret.layout.fields.count() == 2 {
if let Some(reg0) = float_reg(cx, ret, 0) {
if let Some(reg1) = float_reg(cx, ret, 1) {
ret.cast_to(CastTarget::pair(reg0, reg1));
return;
}
}
}
}
ret.cast_to(Uniform::new(Reg::i64(), size));
} else {
ret.make_indirect();
}
}
fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !arg.layout.is_aggregate() {
extend_integer_width_mips(arg, 64);
return;
}
let dl = cx.data_layout();
let size = arg.layout.size;
let mut prefix = [None; 8];
let mut prefix_index = 0;
match arg.layout.fields {
abi::FieldsShape::Primitive => unreachable!(),
abi::FieldsShape::Array { .. } => {
arg.make_indirect();
return;
}
abi::FieldsShape::Union(_) => {
}
abi::FieldsShape::Arbitrary { .. } => {
let mut last_offset = Size::ZERO;
for i in 0..arg.layout.fields.count() {
let field = arg.layout.field(cx, i);
let offset = arg.layout.fields.offset(i);
if let abi::Abi::Scalar(scalar) = field.abi {
if scalar.primitive() == abi::Float(abi::F64) {
if offset.is_aligned(dl.f64_align.abi) {
assert!(last_offset.is_aligned(dl.f64_align.abi));
for _ in 0..((offset - last_offset).bits() / 64)
.min((prefix.len() - prefix_index) as u64)
{
prefix[prefix_index] = Some(Reg::i64());
prefix_index += 1;
}
if prefix_index == prefix.len() {
break;
}
prefix[prefix_index] = Some(Reg::f64());
prefix_index += 1;
last_offset = offset + Reg::f64().size;
}
}
}
}
}
};
let rest_size = size - Size::from_bytes(8) * prefix_index as u64;
arg.cast_to(CastTarget {
prefix,
rest: Uniform::new(Reg::i64(), rest_size),
attrs: ArgAttributes {
regular: ArgAttribute::default(),
arg_ext: ArgExtension::None,
pointee_size: Size::ZERO,
pointee_align: None,
},
});
}
pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
Ty: TyAbiInterface<'a, C> + Copy,
C: HasDataLayout,
{
if !fn_abi.ret.is_ignore() {
classify_ret(cx, &mut fn_abi.ret);
}
for arg in fn_abi.args.iter_mut() {
if arg.is_ignore() {
continue;
}
classify_arg(cx, arg);
}
}