miri/shims/unix/linux/sync.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
use crate::*;
/// Implementation of the SYS_futex syscall.
/// `args` is the arguments *after* the syscall number.
pub fn futex<'tcx>(
this: &mut MiriInterpCx<'tcx>,
args: &[OpTy<'tcx>],
dest: &MPlaceTy<'tcx>,
) -> InterpResult<'tcx> {
// The amount of arguments used depends on the type of futex operation.
// The full futex syscall takes six arguments (excluding the syscall
// number), which is also the maximum amount of arguments a linux syscall
// can take on most architectures.
// However, not all futex operations use all six arguments. The unused ones
// may or may not be left out from the `syscall()` call.
// Therefore we don't use `check_arg_count` here, but only check for the
// number of arguments to fall within a range.
let [addr, op, val, ..] = args else {
throw_ub_format!(
"incorrect number of arguments for `futex` syscall: got {}, expected at least 3",
args.len()
);
};
// The first three arguments (after the syscall number itself) are the same to all futex operations:
// (int *addr, int op, int val).
// We checked above that these definitely exist.
let addr = this.read_pointer(addr)?;
let op = this.read_scalar(op)?.to_i32()?;
let val = this.read_scalar(val)?.to_i32()?;
// This is a vararg function so we have to bring our own type for this pointer.
let addr = this.ptr_to_mplace(addr, this.machine.layouts.i32);
let addr_usize = addr.ptr().addr().bytes();
let futex_private = this.eval_libc_i32("FUTEX_PRIVATE_FLAG");
let futex_wait = this.eval_libc_i32("FUTEX_WAIT");
let futex_wait_bitset = this.eval_libc_i32("FUTEX_WAIT_BITSET");
let futex_wake = this.eval_libc_i32("FUTEX_WAKE");
let futex_wake_bitset = this.eval_libc_i32("FUTEX_WAKE_BITSET");
let futex_realtime = this.eval_libc_i32("FUTEX_CLOCK_REALTIME");
// FUTEX_PRIVATE enables an optimization that stops it from working across processes.
// Miri doesn't support that anyway, so we ignore that flag.
match op & !futex_private {
// FUTEX_WAIT: (int *addr, int op = FUTEX_WAIT, int val, const timespec *timeout)
// Blocks the thread if *addr still equals val. Wakes up when FUTEX_WAKE is called on the same address,
// or *timeout expires. `timeout == null` for an infinite timeout.
//
// FUTEX_WAIT_BITSET: (int *addr, int op = FUTEX_WAIT_BITSET, int val, const timespec *timeout, int *_ignored, unsigned int bitset)
// This is identical to FUTEX_WAIT, except:
// - The timeout is absolute rather than relative.
// - You can specify the bitset to selecting what WAKE operations to respond to.
op if op & !futex_realtime == futex_wait || op & !futex_realtime == futex_wait_bitset => {
let wait_bitset = op & !futex_realtime == futex_wait_bitset;
let bitset = if wait_bitset {
let [_, _, _, timeout, uaddr2, bitset, ..] = args else {
throw_ub_format!(
"incorrect number of arguments for `futex` syscall with `op=FUTEX_WAIT_BITSET`: got {}, expected at least 6",
args.len()
);
};
let _timeout = this.read_pointer(timeout)?;
let _uaddr2 = this.read_pointer(uaddr2)?;
this.read_scalar(bitset)?.to_u32()?
} else {
if args.len() < 4 {
throw_ub_format!(
"incorrect number of arguments for `futex` syscall with `op=FUTEX_WAIT`: got {}, expected at least 4",
args.len()
);
}
u32::MAX
};
if bitset == 0 {
this.set_last_error(LibcError("EINVAL"))?;
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
return interp_ok(());
}
let timeout = this.deref_pointer_as(&args[3], this.libc_ty_layout("timespec"))?;
let timeout = if this.ptr_is_null(timeout.ptr())? {
None
} else {
let duration = match this.read_timespec(&timeout)? {
Some(duration) => duration,
None => {
this.set_last_error(LibcError("EINVAL"))?;
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
return interp_ok(());
}
};
let timeout_clock = if op & futex_realtime == futex_realtime {
this.check_no_isolation(
"`futex` syscall with `op=FUTEX_WAIT` and non-null timeout with `FUTEX_CLOCK_REALTIME`",
)?;
TimeoutClock::RealTime
} else {
TimeoutClock::Monotonic
};
let timeout_anchor = if wait_bitset {
// FUTEX_WAIT_BITSET uses an absolute timestamp.
TimeoutAnchor::Absolute
} else {
// FUTEX_WAIT uses a relative timestamp.
TimeoutAnchor::Relative
};
Some((timeout_clock, timeout_anchor, duration))
};
// There may be a concurrent thread changing the value of addr
// and then invoking the FUTEX_WAKE syscall. It is critical that the
// effects of this and the other thread are correctly observed,
// otherwise we will deadlock.
//
// There are two scenarios to consider:
// 1. If we (FUTEX_WAIT) execute first, we'll push ourselves into
// the waiters queue and go to sleep. They (addr write & FUTEX_WAKE)
// will see us in the queue and wake us up.
// 2. If they (addr write & FUTEX_WAKE) execute first, we must observe
// addr's new value. If we see an outdated value that happens to equal
// the expected val, then we'll put ourselves to sleep with no one to wake us
// up, so we end up with a deadlock. This is prevented by having a SeqCst
// fence inside FUTEX_WAKE syscall, and another SeqCst fence
// below, the atomic read on addr after the SeqCst fence is guaranteed
// not to see any value older than the addr write immediately before
// calling FUTEX_WAKE. We'll see futex_val != val and return without
// sleeping.
//
// Note that the fences do not create any happens-before relationship.
// The read sees the write immediately before the fence not because
// one happens after the other, but is instead due to a guarantee unique
// to SeqCst fences that restricts what an atomic read placed AFTER the
// fence can see. The read still has to be atomic, otherwise it's a data
// race. This guarantee cannot be achieved with acquire-release fences
// since they only talk about reads placed BEFORE a fence - and places
// no restrictions on what the read itself can see, only that there is
// a happens-before between the fences IF the read happens to see the
// right value. This is useless to us, since we need the read itself
// to see an up-to-date value.
//
// The above case distinction is valid since both FUTEX_WAIT and FUTEX_WAKE
// contain a SeqCst fence, therefore inducing a total order between the operations.
// It is also critical that the fence, the atomic load, and the comparison in FUTEX_WAIT
// altogether happen atomically. If the other thread's fence in FUTEX_WAKE
// gets interleaved after our fence, then we lose the guarantee on the
// atomic load being up-to-date; if the other thread's write on addr and FUTEX_WAKE
// call are interleaved after the load but before the comparison, then we get a TOCTOU
// race condition, and go to sleep thinking the other thread will wake us up,
// even though they have already finished.
//
// Thankfully, preemptions cannot happen inside a Miri shim, so we do not need to
// do anything special to guarantee fence-load-comparison atomicity.
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
// Read an `i32` through the pointer, regardless of any wrapper types.
// It's not uncommon for `addr` to be passed as another type than `*mut i32`, such as `*const AtomicI32`.
let futex_val = this.read_scalar_atomic(&addr, AtomicReadOrd::Relaxed)?.to_i32()?;
if val == futex_val {
// The value still matches, so we block the thread and make it wait for FUTEX_WAKE.
this.futex_wait(
addr_usize,
bitset,
timeout,
Scalar::from_target_isize(0, this), // retval_succ
Scalar::from_target_isize(-1, this), // retval_timeout
dest.clone(),
this.eval_libc("ETIMEDOUT"),
);
} else {
// The futex value doesn't match the expected value, so we return failure
// right away without sleeping: -1 and errno set to EAGAIN.
let eagain = this.eval_libc("EAGAIN");
this.set_last_error(eagain)?;
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
}
}
// FUTEX_WAKE: (int *addr, int op = FUTEX_WAKE, int val)
// Wakes at most `val` threads waiting on the futex at `addr`.
// Returns the amount of threads woken up.
// Does not access the futex value at *addr.
// FUTEX_WAKE_BITSET: (int *addr, int op = FUTEX_WAKE, int val, const timespect *_unused, int *_unused, unsigned int bitset)
// Same as FUTEX_WAKE, but allows you to specify a bitset to select which threads to wake up.
op if op == futex_wake || op == futex_wake_bitset => {
let bitset = if op == futex_wake_bitset {
let [_, _, _, timeout, uaddr2, bitset, ..] = args else {
throw_ub_format!(
"incorrect number of arguments for `futex` syscall with `op=FUTEX_WAKE_BITSET`: got {}, expected at least 6",
args.len()
);
};
let _timeout = this.read_pointer(timeout)?;
let _uaddr2 = this.read_pointer(uaddr2)?;
this.read_scalar(bitset)?.to_u32()?
} else {
u32::MAX
};
if bitset == 0 {
this.set_last_error(LibcError("EINVAL"))?;
this.write_scalar(Scalar::from_target_isize(-1, this), dest)?;
return interp_ok(());
}
// Together with the SeqCst fence in futex_wait, this makes sure that futex_wait
// will see the latest value on addr which could be changed by our caller
// before doing the syscall.
this.atomic_fence(AtomicFenceOrd::SeqCst)?;
let mut n = 0;
#[allow(clippy::arithmetic_side_effects)]
for _ in 0..val {
if this.futex_wake(addr_usize, bitset)? {
n += 1;
} else {
break;
}
}
this.write_scalar(Scalar::from_target_isize(n, this), dest)?;
}
op => throw_unsup_format!("Miri does not support `futex` syscall with op={}", op),
}
interp_ok(())
}