1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
//! Linux `eventfd` implementation.
use std::cell::{Cell, RefCell};
use std::io;
use std::io::{Error, ErrorKind};
use std::mem;

use rustc_target::abi::Endian;

use crate::shims::unix::fd::FileDescriptionRef;
use crate::shims::unix::linux::epoll::{EpollReadyEvents, EvalContextExt as _};
use crate::shims::unix::*;
use crate::{concurrency::VClock, *};

// We'll only do reads and writes in chunks of size u64.
const U64_ARRAY_SIZE: usize = mem::size_of::<u64>();

/// Maximum value that the eventfd counter can hold.
const MAX_COUNTER: u64 = u64::MAX - 1;

/// A kind of file descriptor created by `eventfd`.
/// The `Event` type isn't currently written to by `eventfd`.
/// The interface is meant to keep track of objects associated
/// with a file descriptor. For more information see the man
/// page below:
///
/// <https://man.netbsd.org/eventfd.2>
#[derive(Debug)]
struct Event {
    /// The object contains an unsigned 64-bit integer (uint64_t) counter that is maintained by the
    /// kernel. This counter is initialized with the value specified in the argument initval.
    counter: Cell<u64>,
    is_nonblock: bool,
    clock: RefCell<VClock>,
}

impl FileDescription for Event {
    fn name(&self) -> &'static str {
        "event"
    }

    fn get_epoll_ready_events<'tcx>(&self) -> InterpResult<'tcx, EpollReadyEvents> {
        // We only check the status of EPOLLIN and EPOLLOUT flags for eventfd. If other event flags
        // need to be supported in the future, the check should be added here.

        Ok(EpollReadyEvents {
            epollin: self.counter.get() != 0,
            epollout: self.counter.get() != MAX_COUNTER,
            ..EpollReadyEvents::new()
        })
    }

    fn close<'tcx>(
        self: Box<Self>,
        _communicate_allowed: bool,
        _ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<()>> {
        Ok(Ok(()))
    }

    /// Read the counter in the buffer and return the counter if succeeded.
    fn read<'tcx>(
        &self,
        self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        bytes: &mut [u8],
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        // Check the size of slice, and return error only if the size of the slice < 8.
        let Some(bytes) = bytes.first_chunk_mut::<U64_ARRAY_SIZE>() else {
            return Ok(Err(Error::from(ErrorKind::InvalidInput)));
        };
        // Block when counter == 0.
        let counter = self.counter.get();
        if counter == 0 {
            if self.is_nonblock {
                return Ok(Err(Error::from(ErrorKind::WouldBlock)));
            } else {
                //FIXME: blocking is not supported
                throw_unsup_format!("eventfd: blocking is unsupported");
            }
        } else {
            // Synchronize with all prior `write` calls to this FD.
            ecx.acquire_clock(&self.clock.borrow());
            // Return the counter in the host endianness using the buffer provided by caller.
            *bytes = match ecx.tcx.sess.target.endian {
                Endian::Little => counter.to_le_bytes(),
                Endian::Big => counter.to_be_bytes(),
            };
            self.counter.set(0);
            // When any of the event happened, we check and update the status of all supported event
            // types for current file description.
            ecx.check_and_update_readiness(self_ref)?;

            return Ok(Ok(U64_ARRAY_SIZE));
        }
    }

    /// A write call adds the 8-byte integer value supplied in
    /// its buffer (in native endianness) to the counter.  The maximum value that may be
    /// stored in the counter is the largest unsigned 64-bit value
    /// minus 1 (i.e., 0xfffffffffffffffe).  If the addition would
    /// cause the counter's value to exceed the maximum, then the
    /// write either blocks until a read is performed on the
    /// file descriptor, or fails with the error EAGAIN if the
    /// file descriptor has been made nonblocking.

    /// A write fails with the error EINVAL if the size of the
    /// supplied buffer is less than 8 bytes, or if an attempt is
    /// made to write the value 0xffffffffffffffff.
    fn write<'tcx>(
        &self,
        self_ref: &FileDescriptionRef,
        _communicate_allowed: bool,
        bytes: &[u8],
        ecx: &mut MiriInterpCx<'tcx>,
    ) -> InterpResult<'tcx, io::Result<usize>> {
        // Check the size of slice, and return error only if the size of the slice < 8.
        let Some(bytes) = bytes.first_chunk::<U64_ARRAY_SIZE>() else {
            return Ok(Err(Error::from(ErrorKind::InvalidInput)));
        };
        // Convert from bytes to int according to host endianness.
        let num = match ecx.tcx.sess.target.endian {
            Endian::Little => u64::from_le_bytes(*bytes),
            Endian::Big => u64::from_be_bytes(*bytes),
        };
        // u64::MAX as input is invalid because the maximum value of counter is u64::MAX - 1.
        if num == u64::MAX {
            return Ok(Err(Error::from(ErrorKind::InvalidInput)));
        }
        // If the addition does not let the counter to exceed the maximum value, update the counter.
        // Else, block.
        match self.counter.get().checked_add(num) {
            Some(new_count @ 0..=MAX_COUNTER) => {
                // Future `read` calls will synchronize with this write, so update the FD clock.
                if let Some(clock) = &ecx.release_clock() {
                    self.clock.borrow_mut().join(clock);
                }
                self.counter.set(new_count);
            }
            None | Some(u64::MAX) => {
                if self.is_nonblock {
                    return Ok(Err(Error::from(ErrorKind::WouldBlock)));
                } else {
                    //FIXME: blocking is not supported
                    throw_unsup_format!("eventfd: blocking is unsupported");
                }
            }
        };
        // When any of the event happened, we check and update the status of all supported event
        // types for current file description.
        ecx.check_and_update_readiness(self_ref)?;

        Ok(Ok(U64_ARRAY_SIZE))
    }
}

impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
pub trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
    /// This function creates an `Event` that is used as an event wait/notify mechanism by
    /// user-space applications, and by the kernel to notify user-space applications of events.
    /// The `Event` contains an `u64` counter maintained by the kernel. The counter is initialized
    /// with the value specified in the `initval` argument.
    ///
    /// A new file descriptor referring to the `Event` is returned. The `read`, `write`, `poll`,
    /// `select`, and `close` operations can be performed on the file descriptor. For more
    /// information on these operations, see the man page linked below.
    ///
    /// The `flags` are not currently implemented for eventfd.
    /// The `flags` may be bitwise ORed to change the behavior of `eventfd`:
    /// `EFD_CLOEXEC` - Set the close-on-exec (`FD_CLOEXEC`) flag on the new file descriptor.
    /// `EFD_NONBLOCK` - Set the `O_NONBLOCK` file status flag on the new open file description.
    /// `EFD_SEMAPHORE` - miri does not support semaphore-like semantics.
    ///
    /// <https://linux.die.net/man/2/eventfd>
    fn eventfd(&mut self, val: &OpTy<'tcx>, flags: &OpTy<'tcx>) -> InterpResult<'tcx, Scalar> {
        let this = self.eval_context_mut();

        // eventfd is Linux specific.
        this.assert_target_os("linux", "eventfd");

        let val = this.read_scalar(val)?.to_u32()?;
        let mut flags = this.read_scalar(flags)?.to_i32()?;

        let efd_cloexec = this.eval_libc_i32("EFD_CLOEXEC");
        let efd_nonblock = this.eval_libc_i32("EFD_NONBLOCK");
        let efd_semaphore = this.eval_libc_i32("EFD_SEMAPHORE");

        if flags & efd_semaphore == efd_semaphore {
            throw_unsup_format!("eventfd: EFD_SEMAPHORE is unsupported");
        }

        let mut is_nonblock = false;
        // Unset the flag that we support.
        // After unloading, flags != 0 means other flags are used.
        if flags & efd_cloexec == efd_cloexec {
            // cloexec is ignored because Miri does not support exec.
            flags &= !efd_cloexec;
        }
        if flags & efd_nonblock == efd_nonblock {
            flags &= !efd_nonblock;
            is_nonblock = true;
        }
        if flags != 0 {
            throw_unsup_format!("eventfd: encountered unknown unsupported flags {:#x}", flags);
        }

        let fds = &mut this.machine.fds;

        let fd_value = fds.insert_new(Event {
            counter: Cell::new(val.into()),
            is_nonblock,
            clock: RefCell::new(VClock::default()),
        });

        Ok(Scalar::from_i32(fd_value))
    }
}