1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
//! Unix-specific extensions to primitives in the `std::process` module.

#![stable(feature = "rust1", since = "1.0.0")]

use crate::ffi::OsStr;
use crate::io;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::process;
use crate::sealed::Sealed;
use crate::sys;
use crate::sys_common::{AsInner, AsInnerMut, FromInner, IntoInner};

/// Unix-specific extensions to the [`process::Command`] builder.
///
/// This trait is sealed: it cannot be implemented outside the standard library.
/// This is so that future additional methods are not breaking changes.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait CommandExt: Sealed {
    /// Sets the child process's user ID. This translates to a
    /// `setuid` call in the child process. Failure in the `setuid`
    /// call will cause the spawn to fail.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn uid(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] id: u32,
        #[cfg(target_os = "vxworks")] id: u16,
    ) -> &mut process::Command;

    /// Similar to `uid`, but sets the group ID of the child process. This has
    /// the same semantics as the `uid` field.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn gid(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] id: u32,
        #[cfg(target_os = "vxworks")] id: u16,
    ) -> &mut process::Command;

    /// Sets the supplementary group IDs for the calling process. Translates to
    /// a `setgroups` call in the child process.
    #[unstable(feature = "setgroups", issue = "38527", reason = "")]
    fn groups(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] groups: &[u32],
        #[cfg(target_os = "vxworks")] groups: &[u16],
    ) -> &mut process::Command;

    /// Schedules a closure to be run just before the `exec` function is
    /// invoked.
    ///
    /// The closure is allowed to return an I/O error whose OS error code will
    /// be communicated back to the parent and returned as an error from when
    /// the spawn was requested.
    ///
    /// Multiple closures can be registered and they will be called in order of
    /// their registration. If a closure returns `Err` then no further closures
    /// will be called and the spawn operation will immediately return with a
    /// failure.
    ///
    /// # Notes and Safety
    ///
    /// This closure will be run in the context of the child process after a
    /// `fork`. This primarily means that any modifications made to memory on
    /// behalf of this closure will **not** be visible to the parent process.
    /// This is often a very constrained environment where normal operations
    /// like `malloc`, accessing environment variables through [`std::env`]
    /// or acquiring a mutex are not guaranteed to work (due to
    /// other threads perhaps still running when the `fork` was run).
    ///
    /// For further details refer to the [POSIX fork() specification]
    /// and the equivalent documentation for any targeted
    /// platform, especially the requirements around *async-signal-safety*.
    ///
    /// This also means that all resources such as file descriptors and
    /// memory-mapped regions got duplicated. It is your responsibility to make
    /// sure that the closure does not violate library invariants by making
    /// invalid use of these duplicates.
    ///
    /// When this closure is run, aspects such as the stdio file descriptors and
    /// working directory have successfully been changed, so output to these
    /// locations may not appear where intended.
    ///
    /// [POSIX fork() specification]:
    ///     https://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
    /// [`std::env`]: mod@crate::env
    #[stable(feature = "process_pre_exec", since = "1.34.0")]
    unsafe fn pre_exec<F>(&mut self, f: F) -> &mut process::Command
    where
        F: FnMut() -> io::Result<()> + Send + Sync + 'static;

    /// Schedules a closure to be run just before the `exec` function is
    /// invoked.
    ///
    /// This method is stable and usable, but it should be unsafe. To fix
    /// that, it got deprecated in favor of the unsafe [`pre_exec`].
    ///
    /// [`pre_exec`]: CommandExt::pre_exec
    #[stable(feature = "process_exec", since = "1.15.0")]
    #[rustc_deprecated(since = "1.37.0", reason = "should be unsafe, use `pre_exec` instead")]
    fn before_exec<F>(&mut self, f: F) -> &mut process::Command
    where
        F: FnMut() -> io::Result<()> + Send + Sync + 'static,
    {
        unsafe { self.pre_exec(f) }
    }

    /// Performs all the required setup by this `Command`, followed by calling
    /// the `execvp` syscall.
    ///
    /// On success this function will not return, and otherwise it will return
    /// an error indicating why the exec (or another part of the setup of the
    /// `Command`) failed.
    ///
    /// `exec` not returning has the same implications as calling
    /// [`process::exit`] – no destructors on the current stack or any other
    /// thread’s stack will be run. Therefore, it is recommended to only call
    /// `exec` at a point where it is fine to not run any destructors. Note,
    /// that the `execvp` syscall independently guarantees that all memory is
    /// freed and all file descriptors with the `CLOEXEC` option (set by default
    /// on all file descriptors opened by the standard library) are closed.
    ///
    /// This function, unlike `spawn`, will **not** `fork` the process to create
    /// a new child. Like spawn, however, the default behavior for the stdio
    /// descriptors will be to inherited from the current process.
    ///
    /// # Notes
    ///
    /// The process may be in a "broken state" if this function returns in
    /// error. For example the working directory, environment variables, signal
    /// handling settings, various user/group information, or aspects of stdio
    /// file descriptors may have changed. If a "transactional spawn" is
    /// required to gracefully handle errors it is recommended to use the
    /// cross-platform `spawn` instead.
    #[stable(feature = "process_exec2", since = "1.9.0")]
    fn exec(&mut self) -> io::Error;

    /// Set executable argument
    ///
    /// Set the first process argument, `argv[0]`, to something other than the
    /// default executable path.
    #[stable(feature = "process_set_argv0", since = "1.45.0")]
    fn arg0<S>(&mut self, arg: S) -> &mut process::Command
    where
        S: AsRef<OsStr>;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl CommandExt for process::Command {
    fn uid(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] id: u32,
        #[cfg(target_os = "vxworks")] id: u16,
    ) -> &mut process::Command {
        self.as_inner_mut().uid(id);
        self
    }

    fn gid(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] id: u32,
        #[cfg(target_os = "vxworks")] id: u16,
    ) -> &mut process::Command {
        self.as_inner_mut().gid(id);
        self
    }

    fn groups(
        &mut self,
        #[cfg(not(target_os = "vxworks"))] groups: &[u32],
        #[cfg(target_os = "vxworks")] groups: &[u16],
    ) -> &mut process::Command {
        self.as_inner_mut().groups(groups);
        self
    }

    unsafe fn pre_exec<F>(&mut self, f: F) -> &mut process::Command
    where
        F: FnMut() -> io::Result<()> + Send + Sync + 'static,
    {
        self.as_inner_mut().pre_exec(Box::new(f));
        self
    }

    fn exec(&mut self) -> io::Error {
        // NOTE: This may *not* be safe to call after `libc::fork`, because it
        // may allocate. That may be worth fixing at some point in the future.
        self.as_inner_mut().exec(sys::process::Stdio::Inherit)
    }

    fn arg0<S>(&mut self, arg: S) -> &mut process::Command
    where
        S: AsRef<OsStr>,
    {
        self.as_inner_mut().set_arg_0(arg.as_ref());
        self
    }
}

/// Unix-specific extensions to [`process::ExitStatus`].
///
/// On Unix, `ExitStatus` **does not necessarily represent an exit status**, as passed to the
/// `exit` system call or returned by [`ExitStatus::code()`](crate::process::ExitStatus::code).
/// It represents **any wait status**, as returned by one of the `wait` family of system calls.
///
/// This is because a Unix wait status (a Rust `ExitStatus`) can represent a Unix exit status, but
/// can also represent other kinds of process event.
///
/// This trait is sealed: it cannot be implemented outside the standard library.
/// This is so that future additional methods are not breaking changes.
#[stable(feature = "rust1", since = "1.0.0")]
pub trait ExitStatusExt: Sealed {
    /// Creates a new `ExitStatus` from the raw underlying integer status value from `wait`
    ///
    /// The value should be a **wait status, not an exit status**.
    #[stable(feature = "exit_status_from", since = "1.12.0")]
    fn from_raw(raw: i32) -> Self;

    /// If the process was terminated by a signal, returns that signal.
    ///
    /// In other words, if `WIFSIGNALED`, this returns `WTERMSIG`.
    #[stable(feature = "rust1", since = "1.0.0")]
    fn signal(&self) -> Option<i32>;

    /// If the process was terminated by a signal, says whether it dumped core.
    #[unstable(feature = "unix_process_wait_more", issue = "80695")]
    fn core_dumped(&self) -> bool;

    /// If the process was stopped by a signal, returns that signal.
    ///
    /// In other words, if `WIFSTOPPED`, this returns `WSTOPSIG`.  This is only possible if the status came from
    /// a `wait` system call which was passed `WUNTRACED`, was then converted into an `ExitStatus`.
    #[unstable(feature = "unix_process_wait_more", issue = "80695")]
    fn stopped_signal(&self) -> Option<i32>;

    /// Whether the process was continued from a stopped status.
    ///
    /// Ie, `WIFCONTINUED`.  This is only possible if the status came from a `wait` system call
    /// which was passed `WCONTINUED`, was then converted into an `ExitStatus`.
    #[unstable(feature = "unix_process_wait_more", issue = "80695")]
    fn continued(&self) -> bool;

    /// Returns the underlying raw `wait` status.
    ///
    /// The returned integer is a **wait status, not an exit status**.
    #[unstable(feature = "unix_process_wait_more", issue = "80695")]
    fn into_raw(self) -> i32;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl ExitStatusExt for process::ExitStatus {
    fn from_raw(raw: i32) -> Self {
        process::ExitStatus::from_inner(From::from(raw))
    }

    fn signal(&self) -> Option<i32> {
        self.as_inner().signal()
    }

    fn core_dumped(&self) -> bool {
        self.as_inner().core_dumped()
    }

    fn stopped_signal(&self) -> Option<i32> {
        self.as_inner().stopped_signal()
    }

    fn continued(&self) -> bool {
        self.as_inner().continued()
    }

    fn into_raw(self) -> i32 {
        self.as_inner().into_raw().into()
    }
}

#[stable(feature = "process_extensions", since = "1.2.0")]
impl FromRawFd for process::Stdio {
    unsafe fn from_raw_fd(fd: RawFd) -> process::Stdio {
        let fd = sys::fd::FileDesc::new(fd);
        let io = sys::process::Stdio::Fd(fd);
        process::Stdio::from_inner(io)
    }
}

#[stable(feature = "process_extensions", since = "1.2.0")]
impl AsRawFd for process::ChildStdin {
    fn as_raw_fd(&self) -> RawFd {
        self.as_inner().fd().raw()
    }
}

#[stable(feature = "process_extensions", since = "1.2.0")]
impl AsRawFd for process::ChildStdout {
    fn as_raw_fd(&self) -> RawFd {
        self.as_inner().fd().raw()
    }
}

#[stable(feature = "process_extensions", since = "1.2.0")]
impl AsRawFd for process::ChildStderr {
    fn as_raw_fd(&self) -> RawFd {
        self.as_inner().fd().raw()
    }
}

#[stable(feature = "into_raw_os", since = "1.4.0")]
impl IntoRawFd for process::ChildStdin {
    fn into_raw_fd(self) -> RawFd {
        self.into_inner().into_fd().into_raw()
    }
}

#[stable(feature = "into_raw_os", since = "1.4.0")]
impl IntoRawFd for process::ChildStdout {
    fn into_raw_fd(self) -> RawFd {
        self.into_inner().into_fd().into_raw()
    }
}

#[stable(feature = "into_raw_os", since = "1.4.0")]
impl IntoRawFd for process::ChildStderr {
    fn into_raw_fd(self) -> RawFd {
        self.into_inner().into_fd().into_raw()
    }
}

/// Returns the OS-assigned process identifier associated with this process's parent.
#[stable(feature = "unix_ppid", since = "1.27.0")]
pub fn parent_id() -> u32 {
    crate::sys::os::getppid()
}