std_detect/detect/os/x86.rs
1//! x86 run-time feature detection is OS independent.
2
3#[cfg(target_arch = "x86")]
4use core::arch::x86::*;
5#[cfg(target_arch = "x86_64")]
6use core::arch::x86_64::*;
7use core::mem;
8
9use crate::detect::{Feature, bit, cache};
10
11/// Run-time feature detection on x86 works by using the CPUID instruction.
12///
13/// The [CPUID Wikipedia page][wiki_cpuid] contains
14/// all the information about which flags to set to query which values, and in
15/// which registers these are reported.
16///
17/// The definitive references are:
18/// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
19/// Instruction Set Reference, A-Z][intel64_ref].
20/// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
21/// System Instructions][amd64_ref].
22///
23/// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
24/// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
25/// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
26#[allow(clippy::similar_names)]
27pub(crate) fn detect_features() -> cache::Initializer {
28 let mut value = cache::Initializer::default();
29
30 if cfg!(target_env = "sgx") {
31 // doesn't support this because it is untrusted data
32 return value;
33 }
34
35 // Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
36 // has `cpuid` support.
37
38 // 0. EAX = 0: Basic Information:
39 // - EAX returns the "Highest Function Parameter", that is, the maximum
40 // leaf value for subsequent calls of `cpuinfo` in range [0,
41 // 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
42 // returned in EBX, EDX, and ECX (in that order):
43 let (max_basic_leaf, vendor_id) = {
44 let CpuidResult { eax: max_basic_leaf, ebx, ecx, edx } = __cpuid(0);
45 let vendor_id: [[u8; 4]; 3] = [ebx.to_ne_bytes(), edx.to_ne_bytes(), ecx.to_ne_bytes()];
46 let vendor_id: [u8; 12] = unsafe { mem::transmute(vendor_id) };
47 (max_basic_leaf, vendor_id)
48 };
49
50 if max_basic_leaf < 1 {
51 // Earlier Intel 486, CPUID not implemented
52 return value;
53 }
54
55 // EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
56 // Contains information about most x86 features.
57 let CpuidResult { ecx: proc_info_ecx, edx: proc_info_edx, .. } = __cpuid(0x0000_0001_u32);
58
59 // EAX = 7: Queries "Extended Features";
60 // Contains information about bmi,bmi2, and avx2 support.
61 let (
62 extended_features_ebx,
63 extended_features_ecx,
64 extended_features_edx,
65 extended_features_eax_leaf_1,
66 extended_features_edx_leaf_1,
67 ) = if max_basic_leaf >= 7 {
68 let CpuidResult { ebx, ecx, edx, .. } = __cpuid(0x0000_0007_u32);
69 let CpuidResult { eax: eax_1, edx: edx_1, .. } =
70 __cpuid_count(0x0000_0007_u32, 0x0000_0001_u32);
71 (ebx, ecx, edx, eax_1, edx_1)
72 } else {
73 (0, 0, 0, 0, 0) // CPUID does not support "Extended Features"
74 };
75
76 // EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
77 // - EAX returns the max leaf value for extended information, that is,
78 // `cpuid` calls in range [0x8000_0000; u32::MAX]:
79 let CpuidResult { eax: extended_max_basic_leaf, .. } = __cpuid(0x8000_0000_u32);
80
81 // EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
82 // Bits"
83 let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
84 let CpuidResult { ecx, .. } = __cpuid(0x8000_0001_u32);
85 ecx
86 } else {
87 0
88 };
89
90 {
91 // borrows value till the end of this scope:
92 let mut enable = |r, rb, f| {
93 let present = bit::test(r as usize, rb);
94 if present {
95 value.set(f as u32);
96 }
97 present
98 };
99
100 enable(proc_info_ecx, 0, Feature::sse3);
101 enable(proc_info_ecx, 1, Feature::pclmulqdq);
102 enable(proc_info_ecx, 9, Feature::ssse3);
103 enable(proc_info_ecx, 13, Feature::cmpxchg16b);
104 enable(proc_info_ecx, 19, Feature::sse4_1);
105 enable(proc_info_ecx, 20, Feature::sse4_2);
106 enable(proc_info_ecx, 22, Feature::movbe);
107 enable(proc_info_ecx, 23, Feature::popcnt);
108 enable(proc_info_ecx, 25, Feature::aes);
109 let f16c = enable(proc_info_ecx, 29, Feature::f16c);
110 enable(proc_info_ecx, 30, Feature::rdrand);
111 enable(extended_features_ebx, 18, Feature::rdseed);
112 enable(extended_features_ebx, 19, Feature::adx);
113 enable(extended_features_ebx, 11, Feature::rtm);
114 enable(proc_info_edx, 4, Feature::tsc);
115 enable(proc_info_edx, 23, Feature::mmx);
116 enable(proc_info_edx, 24, Feature::fxsr);
117 enable(proc_info_edx, 25, Feature::sse);
118 enable(proc_info_edx, 26, Feature::sse2);
119 enable(extended_features_ebx, 29, Feature::sha);
120
121 enable(extended_features_ecx, 8, Feature::gfni);
122 enable(extended_features_ecx, 9, Feature::vaes);
123 enable(extended_features_ecx, 10, Feature::vpclmulqdq);
124
125 enable(extended_features_ebx, 3, Feature::bmi1);
126 enable(extended_features_ebx, 8, Feature::bmi2);
127
128 enable(extended_features_ebx, 9, Feature::ermsb);
129
130 enable(extended_features_eax_leaf_1, 31, Feature::movrs);
131
132 // Detect if CPUID.19h available
133 if bit::test(extended_features_ecx as usize, 23) {
134 let CpuidResult { ebx, .. } = __cpuid(0x19);
135 enable(ebx, 0, Feature::kl);
136 enable(ebx, 2, Feature::widekl);
137 }
138
139 // This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
140 // On intel CPUs with popcnt, lzcnt implements the
141 // "missing part" of ABM, so we map both to the same
142 // internal feature.
143 //
144 // The `is_x86_feature_detected!("lzcnt")` macro then
145 // internally maps to Feature::abm.
146 enable(extended_proc_info_ecx, 5, Feature::lzcnt);
147
148 // As Hygon Dhyana originates from AMD technology and shares most of the architecture with
149 // AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
150 // number(Family 18h).
151 //
152 // For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
153 // family 17h.
154 //
155 // Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
156 // Related Hygon kernel patch can be found on
157 // http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
158 if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
159 // These features are available on AMD arch CPUs:
160 enable(extended_proc_info_ecx, 6, Feature::sse4a);
161 enable(extended_proc_info_ecx, 21, Feature::tbm);
162 enable(extended_proc_info_ecx, 11, Feature::xop);
163 }
164
165 // `XSAVE` and `AVX` support:
166 let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
167 if cpu_xsave {
168 // 0. Here the CPU supports `XSAVE`.
169
170 // 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
171 // supports saving the state of the AVX/AVX2 vector registers on
172 // context-switches, see:
173 //
174 // - [intel: is avx enabled?][is_avx_enabled],
175 // - [mozilla: sse.cpp][mozilla_sse_cpp].
176 //
177 // [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
178 // [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
179 let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
180
181 if cpu_osxsave {
182 // 2. The OS must have signaled the CPU that it supports saving and
183 // restoring the:
184 //
185 // * SSE -> `XCR0.SSE[1]`
186 // * AVX -> `XCR0.AVX[2]`
187 // * AVX-512 -> `XCR0.AVX-512[7:5]`.
188 // * AMX -> `XCR0.AMX[18:17]`
189 // * APX -> `XCR0.APX[19]`
190 //
191 // by setting the corresponding bits of `XCR0` to `1`.
192 //
193 // This is safe because the CPU supports `xsave`
194 // and the OS has set `osxsave`.
195 let xcr0 = unsafe { _xgetbv(0) };
196 // Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
197 let os_avx_support = xcr0 & 6 == 6;
198 // Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 0xe0`:
199 let os_avx512_support = xcr0 & 0xe0 == 0xe0;
200 // Test `XCR0.AMX[18:17]` with the mask `0b110_0000_0000_0000_0000 == 0x60000`
201 let os_amx_support = xcr0 & 0x60000 == 0x60000;
202 // Test `XCR0.APX[19]` with the mask `0b1000_0000_0000_0000_0000 == 0x80000`
203 let os_apx_support = xcr0 & 0x80000 == 0x80000;
204
205 // Only if the OS and the CPU support saving/restoring the AVX
206 // registers we enable `xsave` support:
207 if os_avx_support {
208 // See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
209 // FEATURES" in the "Intel® 64 and IA-32 Architectures Software
210 // Developer’s Manual, Volume 1: Basic Architecture":
211 //
212 // "Software enables the XSAVE feature set by setting
213 // CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
214 // instruction). If this bit is 0, execution of any of XGETBV,
215 // XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
216 // causes an invalid-opcode exception (#UD)"
217 //
218 enable(proc_info_ecx, 26, Feature::xsave);
219
220 // For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
221 // Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
222 // ECX = 1):
223 if max_basic_leaf >= 0xd {
224 let CpuidResult { eax: proc_extended_state1_eax, .. } =
225 __cpuid_count(0xd_u32, 1);
226 enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
227 enable(proc_extended_state1_eax, 1, Feature::xsavec);
228 enable(proc_extended_state1_eax, 3, Feature::xsaves);
229 }
230
231 // FMA (uses 256-bit wide registers):
232 let fma = enable(proc_info_ecx, 12, Feature::fma);
233
234 // And AVX/AVX2:
235 enable(proc_info_ecx, 28, Feature::avx);
236 enable(extended_features_ebx, 5, Feature::avx2);
237
238 // "Short" versions of AVX512 instructions
239 enable(extended_features_eax_leaf_1, 4, Feature::avxvnni);
240 enable(extended_features_eax_leaf_1, 23, Feature::avxifma);
241 enable(extended_features_edx_leaf_1, 4, Feature::avxvnniint8);
242 enable(extended_features_edx_leaf_1, 5, Feature::avxneconvert);
243 enable(extended_features_edx_leaf_1, 10, Feature::avxvnniint16);
244
245 enable(extended_features_eax_leaf_1, 0, Feature::sha512);
246 enable(extended_features_eax_leaf_1, 1, Feature::sm3);
247 enable(extended_features_eax_leaf_1, 2, Feature::sm4);
248
249 // For AVX-512 the OS also needs to support saving/restoring
250 // the extended state, only then we enable AVX-512 support:
251 // Also, Rust makes `avx512f` imply `fma` and `f16c`, because
252 // otherwise the assembler is broken. But Intel doesn't guarantee
253 // that `fma` and `f16c` are available with `avx512f`, so we
254 // need to check for them separately.
255 if os_avx512_support && f16c && fma {
256 enable(extended_features_ebx, 16, Feature::avx512f);
257 enable(extended_features_ebx, 17, Feature::avx512dq);
258 enable(extended_features_ebx, 21, Feature::avx512ifma);
259 enable(extended_features_ebx, 26, Feature::avx512pf);
260 enable(extended_features_ebx, 27, Feature::avx512er);
261 enable(extended_features_ebx, 28, Feature::avx512cd);
262 enable(extended_features_ebx, 30, Feature::avx512bw);
263 enable(extended_features_ebx, 31, Feature::avx512vl);
264 enable(extended_features_ecx, 1, Feature::avx512vbmi);
265 enable(extended_features_ecx, 6, Feature::avx512vbmi2);
266 enable(extended_features_ecx, 11, Feature::avx512vnni);
267 enable(extended_features_ecx, 12, Feature::avx512bitalg);
268 enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
269 enable(extended_features_edx, 8, Feature::avx512vp2intersect);
270 enable(extended_features_edx, 23, Feature::avx512fp16);
271 enable(extended_features_eax_leaf_1, 5, Feature::avx512bf16);
272 }
273 }
274
275 if os_amx_support {
276 enable(extended_features_edx, 24, Feature::amx_tile);
277 enable(extended_features_edx, 25, Feature::amx_int8);
278 enable(extended_features_edx, 22, Feature::amx_bf16);
279 enable(extended_features_eax_leaf_1, 21, Feature::amx_fp16);
280 enable(extended_features_edx_leaf_1, 8, Feature::amx_complex);
281
282 if max_basic_leaf >= 0x1e {
283 let CpuidResult { eax: amx_feature_flags_eax, .. } =
284 __cpuid_count(0x1e_u32, 1);
285
286 enable(amx_feature_flags_eax, 4, Feature::amx_fp8);
287 enable(amx_feature_flags_eax, 6, Feature::amx_tf32);
288 enable(amx_feature_flags_eax, 7, Feature::amx_avx512);
289 enable(amx_feature_flags_eax, 8, Feature::amx_movrs);
290 }
291 }
292
293 if os_apx_support {
294 enable(extended_features_edx_leaf_1, 21, Feature::apxf);
295 }
296
297 let avx10_1 = enable(extended_features_edx_leaf_1, 19, Feature::avx10_1);
298 if avx10_1 {
299 let CpuidResult { ebx, .. } = __cpuid(0x24);
300 let avx10_version = ebx & 0xff;
301 if avx10_version >= 2 {
302 value.set(Feature::avx10_2 as u32);
303 }
304 }
305 }
306 }
307 }
308
309 // Unfortunately, some Skylake chips erroneously report support for BMI1 and
310 // BMI2 without actual support. These chips don't support AVX, and it seems
311 // that all Intel chips with non-erroneous support BMI do (I didn't check
312 // other vendors), so we can disable these flags for chips that don't also
313 // report support for AVX.
314 //
315 // It's possible this will pessimize future chips that do support BMI and
316 // not AVX, but this seems minor compared to a hard crash you get when
317 // executing an unsupported instruction (to put it another way, it's safe
318 // for us to under-report CPU features, but not to over-report them). Still,
319 // to limit any impact this may have in the future, we only do this for
320 // Intel chips, as it's a bug only present in their chips.
321 //
322 // This bug is documented as `SKL052` in the errata section of this document:
323 // http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/desktop-6th-gen-core-family-spec-update.pdf
324 if vendor_id == *b"GenuineIntel" && !value.test(Feature::avx as u32) {
325 value.unset(Feature::bmi1 as u32);
326 value.unset(Feature::bmi2 as u32);
327 }
328
329 value
330}