std/
pipe.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//!  A cross-platform anonymous pipe.
//!
//! This module provides support for anonymous OS pipes, like [pipe] on Linux or [CreatePipe] on
//! Windows.
//!
//! # Behavior
//!
//! A pipe is a synchronous, unidirectional data channel between two or more processes, like an
//! interprocess [`mpsc`](crate::sync::mpsc) provided by the OS. In particular:
//!
//! * A read on a [`PipeReader`] blocks until the pipe is non-empty.
//! * A write on a [`PipeWriter`] blocks when the pipe is full.
//! * When all copies of a [`PipeWriter`] are closed, a read on the corresponding [`PipeReader`]
//!   returns EOF.
//! * [`PipeReader`] can be shared, but only one process will consume the data in the pipe.
//!
//! # Capacity
//!
//! Pipe capacity is platform dependent. To quote the Linux [man page]:
//!
//! > Different implementations have different limits for the pipe capacity. Applications should
//! > not rely on a particular capacity: an application should be designed so that a reading process
//! > consumes data as soon as it is available, so that a writing process does not remain blocked.
//!
//! # Examples
//!
//! ```no_run
//! #![feature(anonymous_pipe)]
//! # #[cfg(miri)] fn main() {}
//! # #[cfg(not(miri))]
//! # fn main() -> std::io::Result<()> {
//! # use std::process::Command;
//! # use std::io::{Read, Write};
//! let (ping_rx, mut ping_tx) = std::pipe::pipe()?;
//! let (mut pong_rx, pong_tx) = std::pipe::pipe()?;
//!
//! // Spawn a process that echoes its input.
//! let mut echo_server = Command::new("cat").stdin(ping_rx).stdout(pong_tx).spawn()?;
//!
//! ping_tx.write_all(b"hello")?;
//! // Close to unblock echo_server's reader.
//! drop(ping_tx);
//!
//! let mut buf = String::new();
//! // Block until echo_server's writer is closed.
//! pong_rx.read_to_string(&mut buf)?;
//! assert_eq!(&buf, "hello");
//!
//! echo_server.wait()?;
//! # Ok(())
//! # }
//! ```
//! [pipe]: https://man7.org/linux/man-pages/man2/pipe.2.html
//! [CreatePipe]: https://learn.microsoft.com/en-us/windows/win32/api/namedpipeapi/nf-namedpipeapi-createpipe
//! [man page]: https://man7.org/linux/man-pages/man7/pipe.7.html
use crate::io;
use crate::sys::anonymous_pipe::{AnonPipe, pipe as pipe_inner};

/// Create anonymous pipe that is close-on-exec and blocking.
///
/// # Examples
///
/// See the [module-level](crate::pipe) documentation for examples.
#[unstable(feature = "anonymous_pipe", issue = "127154")]
#[inline]
pub fn pipe() -> io::Result<(PipeReader, PipeWriter)> {
    pipe_inner().map(|(reader, writer)| (PipeReader(reader), PipeWriter(writer)))
}

/// Read end of the anonymous pipe.
#[unstable(feature = "anonymous_pipe", issue = "127154")]
#[derive(Debug)]
pub struct PipeReader(pub(crate) AnonPipe);

/// Write end of the anonymous pipe.
#[unstable(feature = "anonymous_pipe", issue = "127154")]
#[derive(Debug)]
pub struct PipeWriter(pub(crate) AnonPipe);

impl PipeReader {
    /// Create a new [`PipeReader`] instance that shares the same underlying file description.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// #![feature(anonymous_pipe)]
    /// # #[cfg(miri)] fn main() {}
    /// # #[cfg(not(miri))]
    /// # fn main() -> std::io::Result<()> {
    /// # use std::fs;
    /// # use std::io::Write;
    /// # use std::process::Command;
    /// const NUM_SLOT: u8 = 2;
    /// const NUM_PROC: u8 = 5;
    /// const OUTPUT: &str = "work.txt";
    ///
    /// let mut jobs = vec![];
    /// let (reader, mut writer) = std::pipe::pipe()?;
    ///
    /// // Write NUM_SLOT characters the the pipe.
    /// writer.write_all(&[b'|'; NUM_SLOT as usize])?;
    ///
    /// // Spawn several processes that read a character from the pipe, do some work, then
    /// // write back to the pipe. When the pipe is empty, the processes block, so only
    /// // NUM_SLOT processes can be working at any given time.
    /// for _ in 0..NUM_PROC {
    ///     jobs.push(
    ///         Command::new("bash")
    ///             .args(["-c",
    ///                 &format!(
    ///                      "read -n 1\n\
    ///                       echo -n 'x' >> '{OUTPUT}'\n\
    ///                       echo -n '|'",
    ///                 ),
    ///             ])
    ///             .stdin(reader.try_clone()?)
    ///             .stdout(writer.try_clone()?)
    ///             .spawn()?,
    ///     );
    /// }
    ///
    /// // Wait for all jobs to finish.
    /// for mut job in jobs {
    ///     job.wait()?;
    /// }
    ///
    /// // Check our work and clean up.
    /// let xs = fs::read_to_string(OUTPUT)?;
    /// fs::remove_file(OUTPUT)?;
    /// assert_eq!(xs, "x".repeat(NUM_PROC.into()));
    /// # Ok(())
    /// # }
    /// ```
    #[unstable(feature = "anonymous_pipe", issue = "127154")]
    pub fn try_clone(&self) -> io::Result<Self> {
        self.0.try_clone().map(Self)
    }
}

impl PipeWriter {
    /// Create a new [`PipeWriter`] instance that shares the same underlying file description.
    ///
    /// # Examples
    ///
    /// ```no_run
    /// #![feature(anonymous_pipe)]
    /// # #[cfg(miri)] fn main() {}
    /// # #[cfg(not(miri))]
    /// # fn main() -> std::io::Result<()> {
    /// # use std::process::Command;
    /// # use std::io::Read;
    /// let (mut reader, writer) = std::pipe::pipe()?;
    ///
    /// // Spawn a process that writes to stdout and stderr.
    /// let mut peer = Command::new("bash")
    ///     .args([
    ///         "-c",
    ///         "echo -n foo\n\
    ///          echo -n bar >&2"
    ///     ])
    ///     .stdout(writer.try_clone()?)
    ///     .stderr(writer)
    ///     .spawn()?;
    ///
    /// // Read and check the result.
    /// let mut msg = String::new();
    /// reader.read_to_string(&mut msg)?;
    /// assert_eq!(&msg, "foobar");
    ///
    /// peer.wait()?;
    /// # Ok(())
    /// # }
    /// ```
    #[unstable(feature = "anonymous_pipe", issue = "127154")]
    pub fn try_clone(&self) -> io::Result<Self> {
        self.0.try_clone().map(Self)
    }
}

#[unstable(feature = "anonymous_pipe", issue = "127154")]
impl io::Read for &PipeReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
        self.0.read_vectored(bufs)
    }
    #[inline]
    fn is_read_vectored(&self) -> bool {
        self.0.is_read_vectored()
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        self.0.read_to_end(buf)
    }
    fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> {
        self.0.read_buf(buf)
    }
}

#[unstable(feature = "anonymous_pipe", issue = "127154")]
impl io::Read for PipeReader {
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        self.0.read(buf)
    }
    fn read_vectored(&mut self, bufs: &mut [io::IoSliceMut<'_>]) -> io::Result<usize> {
        self.0.read_vectored(bufs)
    }
    #[inline]
    fn is_read_vectored(&self) -> bool {
        self.0.is_read_vectored()
    }
    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        self.0.read_to_end(buf)
    }
    fn read_buf(&mut self, buf: io::BorrowedCursor<'_>) -> io::Result<()> {
        self.0.read_buf(buf)
    }
}

#[unstable(feature = "anonymous_pipe", issue = "127154")]
impl io::Write for &PipeWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.0.write(buf)
    }
    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }

    fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
        self.0.write_vectored(bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        self.0.is_write_vectored()
    }
}

#[unstable(feature = "anonymous_pipe", issue = "127154")]
impl io::Write for PipeWriter {
    fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
        self.0.write(buf)
    }
    #[inline]
    fn flush(&mut self) -> io::Result<()> {
        Ok(())
    }

    fn write_vectored(&mut self, bufs: &[io::IoSlice<'_>]) -> io::Result<usize> {
        self.0.write_vectored(bufs)
    }

    #[inline]
    fn is_write_vectored(&self) -> bool {
        self.0.is_write_vectored()
    }
}