1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
// ignore-tidy-filelength :(

pub mod ambiguity;
mod infer_ctxt_ext;
pub mod on_unimplemented;
pub mod suggestions;
mod type_err_ctxt_ext;

use super::{Obligation, ObligationCause, ObligationCauseCode, PredicateObligation};
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_middle::ty::{self, Ty, TyCtxt};
use rustc_span::Span;
use std::ops::ControlFlow;

pub use self::infer_ctxt_ext::*;
pub use self::type_err_ctxt_ext::*;

// When outputting impl candidates, prefer showing those that are more similar.
//
// We also compare candidates after skipping lifetimes, which has a lower
// priority than exact matches.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub enum CandidateSimilarity {
    Exact { ignoring_lifetimes: bool },
    Fuzzy { ignoring_lifetimes: bool },
}

#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct ImplCandidate<'tcx> {
    pub trait_ref: ty::TraitRef<'tcx>,
    pub similarity: CandidateSimilarity,
    impl_def_id: DefId,
}

enum GetSafeTransmuteErrorAndReason {
    Silent,
    Error { err_msg: String, safe_transmute_explanation: Option<String> },
}

struct UnsatisfiedConst(pub bool);

/// Crude way of getting back an `Expr` from a `Span`.
pub struct FindExprBySpan<'hir> {
    pub span: Span,
    pub result: Option<&'hir hir::Expr<'hir>>,
    pub ty_result: Option<&'hir hir::Ty<'hir>>,
    pub include_closures: bool,
    pub tcx: TyCtxt<'hir>,
}

impl<'hir> FindExprBySpan<'hir> {
    pub fn new(span: Span, tcx: TyCtxt<'hir>) -> Self {
        Self { span, result: None, ty_result: None, tcx, include_closures: false }
    }
}

impl<'v> Visitor<'v> for FindExprBySpan<'v> {
    type NestedFilter = rustc_middle::hir::nested_filter::OnlyBodies;

    fn nested_visit_map(&mut self) -> Self::Map {
        self.tcx.hir()
    }

    fn visit_expr(&mut self, ex: &'v hir::Expr<'v>) {
        if self.span == ex.span {
            self.result = Some(ex);
        } else {
            if let hir::ExprKind::Closure(..) = ex.kind
                && self.include_closures
                && let closure_header_sp = self.span.with_hi(ex.span.hi())
                && closure_header_sp == ex.span
            {
                self.result = Some(ex);
            }
            hir::intravisit::walk_expr(self, ex);
        }
    }

    fn visit_ty(&mut self, ty: &'v hir::Ty<'v>) {
        if self.span == ty.span {
            self.ty_result = Some(ty);
        } else {
            hir::intravisit::walk_ty(self, ty);
        }
    }
}

/// Look for type `param` in an ADT being used only through a reference to confirm that suggesting
/// `param: ?Sized` would be a valid constraint.
struct FindTypeParam {
    param: rustc_span::Symbol,
    invalid_spans: Vec<Span>,
    nested: bool,
}

impl<'v> Visitor<'v> for FindTypeParam {
    fn visit_where_predicate(&mut self, _: &'v hir::WherePredicate<'v>) {
        // Skip where-clauses, to avoid suggesting indirection for type parameters found there.
    }

    fn visit_ty(&mut self, ty: &hir::Ty<'_>) {
        // We collect the spans of all uses of the "bare" type param, like in `field: T` or
        // `field: (T, T)` where we could make `T: ?Sized` while skipping cases that are known to be
        // valid like `field: &'a T` or `field: *mut T` and cases that *might* have further `Sized`
        // obligations like `Box<T>` and `Vec<T>`, but we perform no extra analysis for those cases
        // and suggest `T: ?Sized` regardless of their obligations. This is fine because the errors
        // in that case should make what happened clear enough.
        match ty.kind {
            hir::TyKind::Ptr(_) | hir::TyKind::Ref(..) | hir::TyKind::TraitObject(..) => {}
            hir::TyKind::Path(hir::QPath::Resolved(None, path))
                if path.segments.len() == 1 && path.segments[0].ident.name == self.param =>
            {
                if !self.nested {
                    debug!(?ty, "FindTypeParam::visit_ty");
                    self.invalid_spans.push(ty.span);
                }
            }
            hir::TyKind::Path(_) => {
                let prev = self.nested;
                self.nested = true;
                hir::intravisit::walk_ty(self, ty);
                self.nested = prev;
            }
            _ => {
                hir::intravisit::walk_ty(self, ty);
            }
        }
    }
}

/// Summarizes information
#[derive(Clone)]
pub enum ArgKind {
    /// An argument of non-tuple type. Parameters are (name, ty)
    Arg(String, String),

    /// An argument of tuple type. For a "found" argument, the span is
    /// the location in the source of the pattern. For an "expected"
    /// argument, it will be None. The vector is a list of (name, ty)
    /// strings for the components of the tuple.
    Tuple(Option<Span>, Vec<(String, String)>),
}

impl ArgKind {
    fn empty() -> ArgKind {
        ArgKind::Arg("_".to_owned(), "_".to_owned())
    }

    /// Creates an `ArgKind` from the expected type of an
    /// argument. It has no name (`_`) and an optional source span.
    pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
        match t.kind() {
            ty::Tuple(tys) => ArgKind::Tuple(
                span,
                tys.iter().map(|ty| ("_".to_owned(), ty.to_string())).collect::<Vec<_>>(),
            ),
            _ => ArgKind::Arg("_".to_owned(), t.to_string()),
        }
    }
}

struct HasNumericInferVisitor;

impl<'tcx> ty::TypeVisitor<TyCtxt<'tcx>> for HasNumericInferVisitor {
    type Result = ControlFlow<()>;

    fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
        if matches!(ty.kind(), ty::Infer(ty::FloatVar(_) | ty::IntVar(_))) {
            ControlFlow::Break(())
        } else {
            ControlFlow::Continue(())
        }
    }
}

#[derive(Copy, Clone)]
pub enum DefIdOrName {
    DefId(DefId),
    Name(&'static str),
}