1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
use crate::abi::call::{
    ArgAbi, ArgAttribute, ArgAttributes, ArgExtension, CastTarget, FnAbi, PassMode, Reg, Uniform,
};
use crate::abi::{self, HasDataLayout, Size, TyAbiInterface};

fn extend_integer_width_mips<Ty>(arg: &mut ArgAbi<'_, Ty>, bits: u64) {
    // Always sign extend u32 values on 64-bit mips
    if let abi::Abi::Scalar(scalar) = arg.layout.abi {
        if let abi::Int(i, signed) = scalar.value {
            if !signed && i.size().bits() == 32 {
                if let PassMode::Direct(ref mut attrs) = arg.mode {
                    attrs.ext(ArgExtension::Sext);
                    return;
                }
            }
        }
    }

    arg.extend_integer_width_to(bits);
}

fn float_reg<'a, Ty, C>(cx: &C, ret: &ArgAbi<'a, Ty>, i: usize) -> Option<Reg>
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    match ret.layout.field(cx, i).abi {
        abi::Abi::Scalar(scalar) => match scalar.value {
            abi::F32 => Some(Reg::f32()),
            abi::F64 => Some(Reg::f64()),
            _ => None,
        },
        _ => None,
    }
}

fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>)
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    if !ret.layout.is_aggregate() {
        extend_integer_width_mips(ret, 64);
        return;
    }

    let size = ret.layout.size;
    let bits = size.bits();
    if bits <= 128 {
        // Unlike other architectures which return aggregates in registers, MIPS n64 limits the
        // use of float registers to structures (not unions) containing exactly one or two
        // float fields.

        if let abi::FieldsShape::Arbitrary { .. } = ret.layout.fields {
            if ret.layout.fields.count() == 1 {
                if let Some(reg) = float_reg(cx, ret, 0) {
                    ret.cast_to(reg);
                    return;
                }
            } else if ret.layout.fields.count() == 2 {
                if let Some(reg0) = float_reg(cx, ret, 0) {
                    if let Some(reg1) = float_reg(cx, ret, 1) {
                        ret.cast_to(CastTarget::pair(reg0, reg1));
                        return;
                    }
                }
            }
        }

        // Cast to a uniform int structure
        ret.cast_to(Uniform { unit: Reg::i64(), total: size });
    } else {
        ret.make_indirect();
    }
}

fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>)
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    if !arg.layout.is_aggregate() {
        extend_integer_width_mips(arg, 64);
        return;
    }

    let dl = cx.data_layout();
    let size = arg.layout.size;
    let mut prefix = [None; 8];
    let mut prefix_index = 0;

    match arg.layout.fields {
        abi::FieldsShape::Primitive => unreachable!(),
        abi::FieldsShape::Array { .. } => {
            // Arrays are passed indirectly
            arg.make_indirect();
            return;
        }
        abi::FieldsShape::Union(_) => {
            // Unions and are always treated as a series of 64-bit integer chunks
        }
        abi::FieldsShape::Arbitrary { .. } => {
            // Structures are split up into a series of 64-bit integer chunks, but any aligned
            // doubles not part of another aggregate are passed as floats.
            let mut last_offset = Size::ZERO;

            for i in 0..arg.layout.fields.count() {
                let field = arg.layout.field(cx, i);
                let offset = arg.layout.fields.offset(i);

                // We only care about aligned doubles
                if let abi::Abi::Scalar(scalar) = field.abi {
                    if let abi::F64 = scalar.value {
                        if offset.is_aligned(dl.f64_align.abi) {
                            // Insert enough integers to cover [last_offset, offset)
                            assert!(last_offset.is_aligned(dl.f64_align.abi));
                            for _ in 0..((offset - last_offset).bits() / 64)
                                .min((prefix.len() - prefix_index) as u64)
                            {
                                prefix[prefix_index] = Some(Reg::i64());
                                prefix_index += 1;
                            }

                            if prefix_index == prefix.len() {
                                break;
                            }

                            prefix[prefix_index] = Some(Reg::f64());
                            prefix_index += 1;
                            last_offset = offset + Reg::f64().size;
                        }
                    }
                }
            }
        }
    };

    // Extract first 8 chunks as the prefix
    let rest_size = size - Size::from_bytes(8) * prefix_index as u64;
    arg.cast_to(CastTarget {
        prefix,
        rest: Uniform { unit: Reg::i64(), total: rest_size },
        attrs: ArgAttributes {
            regular: ArgAttribute::default(),
            arg_ext: ArgExtension::None,
            pointee_size: Size::ZERO,
            pointee_align: None,
        },
    });
}

pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>)
where
    Ty: TyAbiInterface<'a, C> + Copy,
    C: HasDataLayout,
{
    if !fn_abi.ret.is_ignore() {
        classify_ret(cx, &mut fn_abi.ret);
    }

    for arg in &mut fn_abi.args {
        if arg.is_ignore() {
            continue;
        }
        classify_arg(cx, arg);
    }
}