1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
// Testing candidates
//
// After candidates have been simplified, the only match pairs that
// remain are those that require some sort of test. The functions here
// identify what tests are needed, perform the tests, and then filter
// the candidates based on the result.

use crate::build::matches::{Candidate, MatchPair, Test, TestBranch, TestCase, TestKind};
use crate::build::Builder;
use rustc_data_structures::fx::FxIndexMap;
use rustc_hir::{LangItem, RangeEnd};
use rustc_middle::mir::*;
use rustc_middle::ty::util::IntTypeExt;
use rustc_middle::ty::GenericArg;
use rustc_middle::ty::{self, adjustment::PointerCoercion, Ty, TyCtxt};
use rustc_span::def_id::DefId;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{sym, Symbol};
use rustc_span::{Span, DUMMY_SP};

use std::cmp::Ordering;

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// Identifies what test is needed to decide if `match_pair` is applicable.
    ///
    /// It is a bug to call this with a not-fully-simplified pattern.
    pub(super) fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
        let kind = match match_pair.test_case {
            TestCase::Variant { adt_def, variant_index: _ } => TestKind::Switch { adt_def },

            TestCase::Constant { .. } if match_pair.pattern.ty.is_bool() => TestKind::If,
            TestCase::Constant { .. } if is_switch_ty(match_pair.pattern.ty) => TestKind::SwitchInt,
            TestCase::Constant { value } => TestKind::Eq { value, ty: match_pair.pattern.ty },

            TestCase::Range(range) => {
                assert_eq!(range.ty, match_pair.pattern.ty);
                TestKind::Range(Box::new(range.clone()))
            }

            TestCase::Slice { len, variable_length } => {
                let op = if variable_length { BinOp::Ge } else { BinOp::Eq };
                TestKind::Len { len: len as u64, op }
            }

            TestCase::Or { .. } => bug!("or-patterns should have already been handled"),

            TestCase::Irrefutable { .. } => span_bug!(
                match_pair.pattern.span,
                "simplifiable pattern found: {:?}",
                match_pair.pattern
            ),
        };

        Test { span: match_pair.pattern.span, kind }
    }

    #[instrument(skip(self, target_blocks, place), level = "debug")]
    pub(super) fn perform_test(
        &mut self,
        match_start_span: Span,
        scrutinee_span: Span,
        block: BasicBlock,
        otherwise_block: BasicBlock,
        place: Place<'tcx>,
        test: &Test<'tcx>,
        target_blocks: FxIndexMap<TestBranch<'tcx>, BasicBlock>,
    ) {
        let place_ty = place.ty(&self.local_decls, self.tcx);
        debug!(?place, ?place_ty);
        let target_block = |branch| target_blocks.get(&branch).copied().unwrap_or(otherwise_block);

        let source_info = self.source_info(test.span);
        match test.kind {
            TestKind::Switch { adt_def } => {
                let otherwise_block = target_block(TestBranch::Failure);
                let switch_targets = SwitchTargets::new(
                    adt_def.discriminants(self.tcx).filter_map(|(idx, discr)| {
                        if let Some(&block) = target_blocks.get(&TestBranch::Variant(idx)) {
                            Some((discr.val, block))
                        } else {
                            None
                        }
                    }),
                    otherwise_block,
                );
                debug!("num_enum_variants: {}", adt_def.variants().len());
                let discr_ty = adt_def.repr().discr_type().to_ty(self.tcx);
                let discr = self.temp(discr_ty, test.span);
                self.cfg.push_assign(
                    block,
                    self.source_info(scrutinee_span),
                    discr,
                    Rvalue::Discriminant(place),
                );
                self.cfg.terminate(
                    block,
                    self.source_info(match_start_span),
                    TerminatorKind::SwitchInt {
                        discr: Operand::Move(discr),
                        targets: switch_targets,
                    },
                );
            }

            TestKind::SwitchInt => {
                // The switch may be inexhaustive so we have a catch-all block
                let otherwise_block = target_block(TestBranch::Failure);
                let switch_targets = SwitchTargets::new(
                    target_blocks.iter().filter_map(|(&branch, &block)| {
                        if let TestBranch::Constant(_, bits) = branch {
                            Some((bits, block))
                        } else {
                            None
                        }
                    }),
                    otherwise_block,
                );
                let terminator = TerminatorKind::SwitchInt {
                    discr: Operand::Copy(place),
                    targets: switch_targets,
                };
                self.cfg.terminate(block, self.source_info(match_start_span), terminator);
            }

            TestKind::If => {
                let success_block = target_block(TestBranch::Success);
                let fail_block = target_block(TestBranch::Failure);
                let terminator =
                    TerminatorKind::if_(Operand::Copy(place), success_block, fail_block);
                self.cfg.terminate(block, self.source_info(match_start_span), terminator);
            }

            TestKind::Eq { value, ty } => {
                let tcx = self.tcx;
                let success_block = target_block(TestBranch::Success);
                let fail_block = target_block(TestBranch::Failure);
                if let ty::Adt(def, _) = ty.kind()
                    && Some(def.did()) == tcx.lang_items().string()
                {
                    if !tcx.features().string_deref_patterns {
                        bug!(
                            "matching on `String` went through without enabling string_deref_patterns"
                        );
                    }
                    let re_erased = tcx.lifetimes.re_erased;
                    let ref_string = self.temp(Ty::new_imm_ref(tcx, re_erased, ty), test.span);
                    let ref_str_ty = Ty::new_imm_ref(tcx, re_erased, tcx.types.str_);
                    let ref_str = self.temp(ref_str_ty, test.span);
                    let deref = tcx.require_lang_item(LangItem::Deref, None);
                    let method = trait_method(tcx, deref, sym::deref, [ty]);
                    let eq_block = self.cfg.start_new_block();
                    self.cfg.push_assign(
                        block,
                        source_info,
                        ref_string,
                        Rvalue::Ref(re_erased, BorrowKind::Shared, place),
                    );
                    self.cfg.terminate(
                        block,
                        source_info,
                        TerminatorKind::Call {
                            func: Operand::Constant(Box::new(ConstOperand {
                                span: test.span,
                                user_ty: None,
                                const_: method,
                            })),
                            args: vec![Spanned { node: Operand::Move(ref_string), span: DUMMY_SP }],
                            destination: ref_str,
                            target: Some(eq_block),
                            unwind: UnwindAction::Continue,
                            call_source: CallSource::Misc,
                            fn_span: source_info.span,
                        },
                    );
                    self.non_scalar_compare(
                        eq_block,
                        success_block,
                        fail_block,
                        source_info,
                        value,
                        ref_str,
                        ref_str_ty,
                    );
                } else if !ty.is_scalar() {
                    // Use `PartialEq::eq` instead of `BinOp::Eq`
                    // (the binop can only handle primitives)
                    self.non_scalar_compare(
                        block,
                        success_block,
                        fail_block,
                        source_info,
                        value,
                        place,
                        ty,
                    );
                } else {
                    assert_eq!(value.ty(), ty);
                    let expect = self.literal_operand(test.span, value);
                    let val = Operand::Copy(place);
                    self.compare(
                        block,
                        success_block,
                        fail_block,
                        source_info,
                        BinOp::Eq,
                        expect,
                        val,
                    );
                }
            }

            TestKind::Range(ref range) => {
                let success = target_block(TestBranch::Success);
                let fail = target_block(TestBranch::Failure);
                // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
                let val = Operand::Copy(place);

                let intermediate_block = if !range.lo.is_finite() {
                    block
                } else if !range.hi.is_finite() {
                    success
                } else {
                    self.cfg.start_new_block()
                };

                if let Some(lo) = range.lo.as_finite() {
                    let lo = self.literal_operand(test.span, lo);
                    self.compare(
                        block,
                        intermediate_block,
                        fail,
                        source_info,
                        BinOp::Le,
                        lo,
                        val.clone(),
                    );
                };

                if let Some(hi) = range.hi.as_finite() {
                    let hi = self.literal_operand(test.span, hi);
                    let op = match range.end {
                        RangeEnd::Included => BinOp::Le,
                        RangeEnd::Excluded => BinOp::Lt,
                    };
                    self.compare(intermediate_block, success, fail, source_info, op, val, hi);
                }
            }

            TestKind::Len { len, op } => {
                let usize_ty = self.tcx.types.usize;
                let actual = self.temp(usize_ty, test.span);

                // actual = len(place)
                self.cfg.push_assign(block, source_info, actual, Rvalue::Len(place));

                // expected = <N>
                let expected = self.push_usize(block, source_info, len);

                let success_block = target_block(TestBranch::Success);
                let fail_block = target_block(TestBranch::Failure);
                // result = actual == expected OR result = actual < expected
                // branch based on result
                self.compare(
                    block,
                    success_block,
                    fail_block,
                    source_info,
                    op,
                    Operand::Move(actual),
                    Operand::Move(expected),
                );
            }
        }
    }

    /// Compare using the provided built-in comparison operator
    fn compare(
        &mut self,
        block: BasicBlock,
        success_block: BasicBlock,
        fail_block: BasicBlock,
        source_info: SourceInfo,
        op: BinOp,
        left: Operand<'tcx>,
        right: Operand<'tcx>,
    ) {
        let bool_ty = self.tcx.types.bool;
        let result = self.temp(bool_ty, source_info.span);

        // result = op(left, right)
        self.cfg.push_assign(
            block,
            source_info,
            result,
            Rvalue::BinaryOp(op, Box::new((left, right))),
        );

        // branch based on result
        self.cfg.terminate(
            block,
            source_info,
            TerminatorKind::if_(Operand::Move(result), success_block, fail_block),
        );
    }

    /// Compare two values using `<T as std::compare::PartialEq>::eq`.
    /// If the values are already references, just call it directly, otherwise
    /// take a reference to the values first and then call it.
    fn non_scalar_compare(
        &mut self,
        block: BasicBlock,
        success_block: BasicBlock,
        fail_block: BasicBlock,
        source_info: SourceInfo,
        value: Const<'tcx>,
        mut val: Place<'tcx>,
        mut ty: Ty<'tcx>,
    ) {
        let mut expect = self.literal_operand(source_info.span, value);

        // If we're using `b"..."` as a pattern, we need to insert an
        // unsizing coercion, as the byte string has the type `&[u8; N]`.
        //
        // We want to do this even when the scrutinee is a reference to an
        // array, so we can call `<[u8]>::eq` rather than having to find an
        // `<[u8; N]>::eq`.
        let unsize = |ty: Ty<'tcx>| match ty.kind() {
            ty::Ref(region, rty, _) => match rty.kind() {
                ty::Array(inner_ty, n) => Some((region, inner_ty, n)),
                _ => None,
            },
            _ => None,
        };
        let opt_ref_ty = unsize(ty);
        let opt_ref_test_ty = unsize(value.ty());
        match (opt_ref_ty, opt_ref_test_ty) {
            // nothing to do, neither is an array
            (None, None) => {}
            (Some((region, elem_ty, _)), _) | (None, Some((region, elem_ty, _))) => {
                let tcx = self.tcx;
                // make both a slice
                ty = Ty::new_imm_ref(tcx, *region, Ty::new_slice(tcx, *elem_ty));
                if opt_ref_ty.is_some() {
                    let temp = self.temp(ty, source_info.span);
                    self.cfg.push_assign(
                        block,
                        source_info,
                        temp,
                        Rvalue::Cast(
                            CastKind::PointerCoercion(PointerCoercion::Unsize),
                            Operand::Copy(val),
                            ty,
                        ),
                    );
                    val = temp;
                }
                if opt_ref_test_ty.is_some() {
                    let slice = self.temp(ty, source_info.span);
                    self.cfg.push_assign(
                        block,
                        source_info,
                        slice,
                        Rvalue::Cast(
                            CastKind::PointerCoercion(PointerCoercion::Unsize),
                            expect,
                            ty,
                        ),
                    );
                    expect = Operand::Move(slice);
                }
            }
        }

        match *ty.kind() {
            ty::Ref(_, deref_ty, _) => ty = deref_ty,
            _ => {
                // non_scalar_compare called on non-reference type
                let temp = self.temp(ty, source_info.span);
                self.cfg.push_assign(block, source_info, temp, Rvalue::Use(expect));
                let ref_ty = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, ty);
                let ref_temp = self.temp(ref_ty, source_info.span);

                self.cfg.push_assign(
                    block,
                    source_info,
                    ref_temp,
                    Rvalue::Ref(self.tcx.lifetimes.re_erased, BorrowKind::Shared, temp),
                );
                expect = Operand::Move(ref_temp);

                let ref_temp = self.temp(ref_ty, source_info.span);
                self.cfg.push_assign(
                    block,
                    source_info,
                    ref_temp,
                    Rvalue::Ref(self.tcx.lifetimes.re_erased, BorrowKind::Shared, val),
                );
                val = ref_temp;
            }
        }

        let eq_def_id = self.tcx.require_lang_item(LangItem::PartialEq, Some(source_info.span));
        let method = trait_method(
            self.tcx,
            eq_def_id,
            sym::eq,
            self.tcx.with_opt_host_effect_param(self.def_id, eq_def_id, [ty, ty]),
        );

        let bool_ty = self.tcx.types.bool;
        let eq_result = self.temp(bool_ty, source_info.span);
        let eq_block = self.cfg.start_new_block();
        self.cfg.terminate(
            block,
            source_info,
            TerminatorKind::Call {
                func: Operand::Constant(Box::new(ConstOperand {
                    span: source_info.span,

                    // FIXME(#54571): This constant comes from user input (a
                    // constant in a pattern). Are there forms where users can add
                    // type annotations here?  For example, an associated constant?
                    // Need to experiment.
                    user_ty: None,

                    const_: method,
                })),
                args: vec![
                    Spanned { node: Operand::Copy(val), span: DUMMY_SP },
                    Spanned { node: expect, span: DUMMY_SP },
                ],
                destination: eq_result,
                target: Some(eq_block),
                unwind: UnwindAction::Continue,
                call_source: CallSource::MatchCmp,
                fn_span: source_info.span,
            },
        );
        self.diverge_from(block);

        // check the result
        self.cfg.terminate(
            eq_block,
            source_info,
            TerminatorKind::if_(Operand::Move(eq_result), success_block, fail_block),
        );
    }

    /// Given that we are performing `test` against `test_place`, this job
    /// sorts out what the status of `candidate` will be after the test. See
    /// `test_candidates` for the usage of this function. The candidate may
    /// be modified to update its `match_pairs`.
    ///
    /// So, for example, if this candidate is `x @ Some(P0)` and the `Test` is
    /// a variant test, then we would modify the candidate to be `(x as
    /// Option).0 @ P0` and return the index corresponding to the variant
    /// `Some`.
    ///
    /// However, in some cases, the test may just not be relevant to candidate.
    /// For example, suppose we are testing whether `foo.x == 22`, but in one
    /// match arm we have `Foo { x: _, ... }`... in that case, the test for
    /// the value of `x` has no particular relevance to this candidate. In
    /// such cases, this function just returns None without doing anything.
    /// This is used by the overall `match_candidates` algorithm to structure
    /// the match as a whole. See `match_candidates` for more details.
    ///
    /// FIXME(#29623). In some cases, we have some tricky choices to make. for
    /// example, if we are testing that `x == 22`, but the candidate is `x @
    /// 13..55`, what should we do? In the event that the test is true, we know
    /// that the candidate applies, but in the event of false, we don't know
    /// that it *doesn't* apply. For now, we return false, indicate that the
    /// test does not apply to this candidate, but it might be we can get
    /// tighter match code if we do something a bit different.
    pub(super) fn sort_candidate(
        &mut self,
        test_place: Place<'tcx>,
        test: &Test<'tcx>,
        candidate: &mut Candidate<'_, 'tcx>,
        sorted_candidates: &FxIndexMap<TestBranch<'tcx>, Vec<&mut Candidate<'_, 'tcx>>>,
    ) -> Option<TestBranch<'tcx>> {
        // Find the match_pair for this place (if any). At present,
        // afaik, there can be at most one. (In the future, if we
        // adopted a more general `@` operator, there might be more
        // than one, but it'd be very unusual to have two sides that
        // both require tests; you'd expect one side to be simplified
        // away.)
        let (match_pair_index, match_pair) = candidate
            .match_pairs
            .iter()
            .enumerate()
            .find(|&(_, mp)| mp.place == Some(test_place))?;

        let fully_matched;
        let ret = match (&test.kind, &match_pair.test_case) {
            // If we are performing a variant switch, then this
            // informs variant patterns, but nothing else.
            (
                &TestKind::Switch { adt_def: tested_adt_def },
                &TestCase::Variant { adt_def, variant_index },
            ) => {
                assert_eq!(adt_def, tested_adt_def);
                fully_matched = true;
                Some(TestBranch::Variant(variant_index))
            }

            // If we are performing a switch over integers, then this informs integer
            // equality, but nothing else.
            //
            // FIXME(#29623) we could use PatKind::Range to rule
            // things out here, in some cases.
            (TestKind::SwitchInt, &TestCase::Constant { value })
                if is_switch_ty(match_pair.pattern.ty) =>
            {
                // Beware: there might be some ranges sorted into the failure case; we must not add
                // a success case that could be matched by one of these ranges.
                let is_covering_range = |test_case: &TestCase<'_, 'tcx>| {
                    test_case.as_range().is_some_and(|range| {
                        matches!(range.contains(value, self.tcx, self.param_env), None | Some(true))
                    })
                };
                let is_conflicting_candidate = |candidate: &&mut Candidate<'_, 'tcx>| {
                    candidate
                        .match_pairs
                        .iter()
                        .any(|mp| mp.place == Some(test_place) && is_covering_range(&mp.test_case))
                };
                if sorted_candidates
                    .get(&TestBranch::Failure)
                    .is_some_and(|candidates| candidates.iter().any(is_conflicting_candidate))
                {
                    fully_matched = false;
                    None
                } else {
                    fully_matched = true;
                    let bits = value.eval_bits(self.tcx, self.param_env);
                    Some(TestBranch::Constant(value, bits))
                }
            }
            (TestKind::SwitchInt, TestCase::Range(range)) => {
                fully_matched = false;
                let not_contained =
                    sorted_candidates.keys().filter_map(|br| br.as_constant()).copied().all(
                        |val| matches!(range.contains(val, self.tcx, self.param_env), Some(false)),
                    );

                not_contained.then(|| {
                    // No switch values are contained in the pattern range,
                    // so the pattern can be matched only if this test fails.
                    TestBranch::Failure
                })
            }

            (TestKind::If, TestCase::Constant { value }) => {
                fully_matched = true;
                let value = value.try_eval_bool(self.tcx, self.param_env).unwrap_or_else(|| {
                    span_bug!(test.span, "expected boolean value but got {value:?}")
                });
                Some(if value { TestBranch::Success } else { TestBranch::Failure })
            }

            (
                &TestKind::Len { len: test_len, op: BinOp::Eq },
                &TestCase::Slice { len, variable_length },
            ) => {
                match (test_len.cmp(&(len as u64)), variable_length) {
                    (Ordering::Equal, false) => {
                        // on true, min_len = len = $actual_length,
                        // on false, len != $actual_length
                        fully_matched = true;
                        Some(TestBranch::Success)
                    }
                    (Ordering::Less, _) => {
                        // test_len < pat_len. If $actual_len = test_len,
                        // then $actual_len < pat_len and we don't have
                        // enough elements.
                        fully_matched = false;
                        Some(TestBranch::Failure)
                    }
                    (Ordering::Equal | Ordering::Greater, true) => {
                        // This can match both if $actual_len = test_len >= pat_len,
                        // and if $actual_len > test_len. We can't advance.
                        fully_matched = false;
                        None
                    }
                    (Ordering::Greater, false) => {
                        // test_len != pat_len, so if $actual_len = test_len, then
                        // $actual_len != pat_len.
                        fully_matched = false;
                        Some(TestBranch::Failure)
                    }
                }
            }
            (
                &TestKind::Len { len: test_len, op: BinOp::Ge },
                &TestCase::Slice { len, variable_length },
            ) => {
                // the test is `$actual_len >= test_len`
                match (test_len.cmp(&(len as u64)), variable_length) {
                    (Ordering::Equal, true) => {
                        // $actual_len >= test_len = pat_len,
                        // so we can match.
                        fully_matched = true;
                        Some(TestBranch::Success)
                    }
                    (Ordering::Less, _) | (Ordering::Equal, false) => {
                        // test_len <= pat_len. If $actual_len < test_len,
                        // then it is also < pat_len, so the test passing is
                        // necessary (but insufficient).
                        fully_matched = false;
                        Some(TestBranch::Success)
                    }
                    (Ordering::Greater, false) => {
                        // test_len > pat_len. If $actual_len >= test_len > pat_len,
                        // then we know we won't have a match.
                        fully_matched = false;
                        Some(TestBranch::Failure)
                    }
                    (Ordering::Greater, true) => {
                        // test_len < pat_len, and is therefore less
                        // strict. This can still go both ways.
                        fully_matched = false;
                        None
                    }
                }
            }

            (TestKind::Range(test), &TestCase::Range(pat)) => {
                if test.as_ref() == pat {
                    fully_matched = true;
                    Some(TestBranch::Success)
                } else {
                    fully_matched = false;
                    // If the testing range does not overlap with pattern range,
                    // the pattern can be matched only if this test fails.
                    if !test.overlaps(pat, self.tcx, self.param_env)? {
                        Some(TestBranch::Failure)
                    } else {
                        None
                    }
                }
            }
            (TestKind::Range(range), &TestCase::Constant { value }) => {
                fully_matched = false;
                if !range.contains(value, self.tcx, self.param_env)? {
                    // `value` is not contained in the testing range,
                    // so `value` can be matched only if this test fails.
                    Some(TestBranch::Failure)
                } else {
                    None
                }
            }

            (TestKind::Eq { value: test_val, .. }, TestCase::Constant { value: case_val }) => {
                if test_val == case_val {
                    fully_matched = true;
                    Some(TestBranch::Success)
                } else {
                    fully_matched = false;
                    Some(TestBranch::Failure)
                }
            }

            (
                TestKind::Switch { .. }
                | TestKind::SwitchInt { .. }
                | TestKind::If
                | TestKind::Len { .. }
                | TestKind::Range { .. }
                | TestKind::Eq { .. },
                _,
            ) => {
                fully_matched = false;
                None
            }
        };

        if fully_matched {
            // Replace the match pair by its sub-pairs.
            let match_pair = candidate.match_pairs.remove(match_pair_index);
            candidate.match_pairs.extend(match_pair.subpairs);
            // Move or-patterns to the end.
            candidate.match_pairs.sort_by_key(|pair| matches!(pair.test_case, TestCase::Or { .. }));
        }

        ret
    }
}

fn is_switch_ty(ty: Ty<'_>) -> bool {
    ty.is_integral() || ty.is_char()
}

fn trait_method<'tcx>(
    tcx: TyCtxt<'tcx>,
    trait_def_id: DefId,
    method_name: Symbol,
    args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> Const<'tcx> {
    // The unhygienic comparison here is acceptable because this is only
    // used on known traits.
    let item = tcx
        .associated_items(trait_def_id)
        .filter_by_name_unhygienic(method_name)
        .find(|item| item.kind == ty::AssocKind::Fn)
        .expect("trait method not found");

    let method_ty = Ty::new_fn_def(tcx, item.def_id, args);

    Const::zero_sized(method_ty)
}