1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
//! Code related to match expressions. These are sufficiently complex to
//! warrant their own module and submodules. :) This main module includes the
//! high-level algorithm, the submodules contain the details.
//!
//! This also includes code for pattern bindings in `let` statements and
//! function parameters.

use crate::build::expr::as_place::PlaceBuilder;
use crate::build::scope::DropKind;
use crate::build::ForGuard::{self, OutsideGuard, RefWithinGuard};
use crate::build::{BlockAnd, BlockAndExtension, Builder};
use crate::build::{GuardFrame, GuardFrameLocal, LocalsForNode};
use rustc_data_structures::{fx::FxIndexMap, stack::ensure_sufficient_stack};
use rustc_hir::{BindingMode, ByRef};
use rustc_middle::bug;
use rustc_middle::middle::region;
use rustc_middle::mir::{self, *};
use rustc_middle::thir::{self, *};
use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty};
use rustc_span::symbol::Symbol;
use rustc_span::{BytePos, Pos, Span};
use rustc_target::abi::VariantIdx;
use tracing::{debug, instrument};
use util::visit_bindings;

// helper functions, broken out by category:
mod match_pair;
mod simplify;
mod test;
mod util;

use std::assert_matches::assert_matches;
use std::borrow::Borrow;
use std::mem;

/// Arguments to [`Builder::then_else_break_inner`] that are usually forwarded
/// to recursive invocations.
#[derive(Clone, Copy)]
struct ThenElseArgs {
    /// Used as the temp scope for lowering `expr`. If absent (for match guards),
    /// `self.local_scope()` is used.
    temp_scope_override: Option<region::Scope>,
    variable_source_info: SourceInfo,
    /// Determines how bindings should be handled when lowering `let` expressions.
    ///
    /// Forwarded to [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
    declare_let_bindings: DeclareLetBindings,
}

/// Should lowering a `let` expression also declare its bindings?
///
/// Used by [`Builder::lower_let_expr`] when lowering [`ExprKind::Let`].
#[derive(Clone, Copy)]
pub(crate) enum DeclareLetBindings {
    /// Yes, declare `let` bindings as normal for `if` conditions.
    Yes,
    /// No, don't declare `let` bindings, because the caller declares them
    /// separately due to special requirements.
    ///
    /// Used for match guards and let-else.
    No,
    /// Let expressions are not permitted in this context, so it is a bug to
    /// try to lower one (e.g inside lazy-boolean-or or boolean-not).
    LetNotPermitted,
}

/// Used by [`Builder::bind_matched_candidate_for_arm_body`] to determine
/// whether or not to call [`Builder::storage_live_binding`] to emit
/// [`StatementKind::StorageLive`].
#[derive(Clone, Copy)]
pub(crate) enum EmitStorageLive {
    /// Yes, emit `StorageLive` as normal.
    Yes,
    /// No, don't emit `StorageLive`. The caller has taken responsibility for
    /// emitting `StorageLive` as appropriate.
    No,
}

/// Used by [`Builder::storage_live_binding`] and [`Builder::bind_matched_candidate_for_arm_body`]
/// to decide whether to schedule drops.
#[derive(Clone, Copy, Debug)]
pub(crate) enum ScheduleDrops {
    /// Yes, the relevant functions should also schedule drops as appropriate.
    Yes,
    /// No, don't schedule drops. The caller has taken responsibility for any
    /// appropriate drops.
    No,
}

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// Lowers a condition in a way that ensures that variables bound in any let
    /// expressions are definitely initialized in the if body.
    ///
    /// If `declare_let_bindings` is false then variables created in `let`
    /// expressions will not be declared. This is for if let guards on arms with
    /// an or pattern, where the guard is lowered multiple times.
    pub(crate) fn then_else_break(
        &mut self,
        block: BasicBlock,
        expr_id: ExprId,
        temp_scope_override: Option<region::Scope>,
        variable_source_info: SourceInfo,
        declare_let_bindings: DeclareLetBindings,
    ) -> BlockAnd<()> {
        self.then_else_break_inner(
            block,
            expr_id,
            ThenElseArgs { temp_scope_override, variable_source_info, declare_let_bindings },
        )
    }

    fn then_else_break_inner(
        &mut self,
        block: BasicBlock, // Block that the condition and branch will be lowered into
        expr_id: ExprId,   // Condition expression to lower
        args: ThenElseArgs,
    ) -> BlockAnd<()> {
        let this = self;
        let expr = &this.thir[expr_id];
        let expr_span = expr.span;

        match expr.kind {
            ExprKind::LogicalOp { op: op @ LogicalOp::And, lhs, rhs } => {
                this.visit_coverage_branch_operation(op, expr_span);
                let lhs_then_block = this.then_else_break_inner(block, lhs, args).into_block();
                let rhs_then_block =
                    this.then_else_break_inner(lhs_then_block, rhs, args).into_block();
                rhs_then_block.unit()
            }
            ExprKind::LogicalOp { op: op @ LogicalOp::Or, lhs, rhs } => {
                this.visit_coverage_branch_operation(op, expr_span);
                let local_scope = this.local_scope();
                let (lhs_success_block, failure_block) =
                    this.in_if_then_scope(local_scope, expr_span, |this| {
                        this.then_else_break_inner(
                            block,
                            lhs,
                            ThenElseArgs {
                                declare_let_bindings: DeclareLetBindings::LetNotPermitted,
                                ..args
                            },
                        )
                    });
                let rhs_success_block = this
                    .then_else_break_inner(
                        failure_block,
                        rhs,
                        ThenElseArgs {
                            declare_let_bindings: DeclareLetBindings::LetNotPermitted,
                            ..args
                        },
                    )
                    .into_block();

                // Make the LHS and RHS success arms converge to a common block.
                // (We can't just make LHS goto RHS, because `rhs_success_block`
                // might contain statements that we don't want on the LHS path.)
                let success_block = this.cfg.start_new_block();
                this.cfg.goto(lhs_success_block, args.variable_source_info, success_block);
                this.cfg.goto(rhs_success_block, args.variable_source_info, success_block);
                success_block.unit()
            }
            ExprKind::Unary { op: UnOp::Not, arg } => {
                // Improve branch coverage instrumentation by noting conditions
                // nested within one or more `!` expressions.
                // (Skipped if branch coverage is not enabled.)
                if let Some(coverage_info) = this.coverage_info.as_mut() {
                    coverage_info.visit_unary_not(this.thir, expr_id);
                }

                let local_scope = this.local_scope();
                let (success_block, failure_block) =
                    this.in_if_then_scope(local_scope, expr_span, |this| {
                        // Help out coverage instrumentation by injecting a dummy statement with
                        // the original condition's span (including `!`). This fixes #115468.
                        if this.tcx.sess.instrument_coverage() {
                            this.cfg.push_coverage_span_marker(block, this.source_info(expr_span));
                        }
                        this.then_else_break_inner(
                            block,
                            arg,
                            ThenElseArgs {
                                declare_let_bindings: DeclareLetBindings::LetNotPermitted,
                                ..args
                            },
                        )
                    });
                this.break_for_else(success_block, args.variable_source_info);
                failure_block.unit()
            }
            ExprKind::Scope { region_scope, lint_level, value } => {
                let region_scope = (region_scope, this.source_info(expr_span));
                this.in_scope(region_scope, lint_level, |this| {
                    this.then_else_break_inner(block, value, args)
                })
            }
            ExprKind::Use { source } => this.then_else_break_inner(block, source, args),
            ExprKind::Let { expr, ref pat } => this.lower_let_expr(
                block,
                expr,
                pat,
                Some(args.variable_source_info.scope),
                args.variable_source_info.span,
                args.declare_let_bindings,
                EmitStorageLive::Yes,
            ),
            _ => {
                let mut block = block;
                let temp_scope = args.temp_scope_override.unwrap_or_else(|| this.local_scope());
                let mutability = Mutability::Mut;

                // Increment the decision depth, in case we encounter boolean expressions
                // further down.
                this.mcdc_increment_depth_if_enabled();
                let place =
                    unpack!(block = this.as_temp(block, Some(temp_scope), expr_id, mutability));
                this.mcdc_decrement_depth_if_enabled();

                let operand = Operand::Move(Place::from(place));

                let then_block = this.cfg.start_new_block();
                let else_block = this.cfg.start_new_block();
                let term = TerminatorKind::if_(operand, then_block, else_block);

                // Record branch coverage info for this condition.
                // (Does nothing if branch coverage is not enabled.)
                this.visit_coverage_branch_condition(expr_id, then_block, else_block);

                let source_info = this.source_info(expr_span);
                this.cfg.terminate(block, source_info, term);
                this.break_for_else(else_block, source_info);

                then_block.unit()
            }
        }
    }

    /// Generates MIR for a `match` expression.
    ///
    /// The MIR that we generate for a match looks like this.
    ///
    /// ```text
    /// [ 0. Pre-match ]
    ///        |
    /// [ 1. Evaluate Scrutinee (expression being matched on) ]
    /// [ (PlaceMention of scrutinee) ]
    ///        |
    /// [ 2. Decision tree -- check discriminants ] <--------+
    ///        |                                             |
    ///        | (once a specific arm is chosen)             |
    ///        |                                             |
    /// [pre_binding_block]                           [otherwise_block]
    ///        |                                             |
    /// [ 3. Create "guard bindings" for arm ]               |
    /// [ (create fake borrows) ]                            |
    ///        |                                             |
    /// [ 4. Execute guard code ]                            |
    /// [ (read fake borrows) ] --(guard is false)-----------+
    ///        |
    ///        | (guard results in true)
    ///        |
    /// [ 5. Create real bindings and execute arm ]
    ///        |
    /// [ Exit match ]
    /// ```
    ///
    /// All of the different arms have been stacked on top of each other to
    /// simplify the diagram. For an arm with no guard the blocks marked 3 and
    /// 4 and the fake borrows are omitted.
    ///
    /// We generate MIR in the following steps:
    ///
    /// 1. Evaluate the scrutinee and add the PlaceMention of it ([Builder::lower_scrutinee]).
    /// 2. Create the decision tree ([Builder::lower_match_tree]).
    /// 3. Determine the fake borrows that are needed from the places that were
    ///    matched against and create the required temporaries for them
    ///    ([util::collect_fake_borrows]).
    /// 4. Create everything else: the guards and the arms ([Builder::lower_match_arms]).
    ///
    /// ## False edges
    ///
    /// We don't want to have the exact structure of the decision tree be visible through borrow
    /// checking. Specifically we want borrowck to think that:
    /// - at any point, any or none of the patterns and guards seen so far may have been tested;
    /// - after the match, any of the patterns may have matched.
    ///
    /// For example, all of these would fail to error if borrowck could see the real CFG (examples
    /// taken from `tests/ui/nll/match-cfg-fake-edges.rs`):
    /// ```ignore (too many errors, this is already in the test suite)
    /// let x = String::new();
    /// let _ = match true {
    ///     _ => {},
    ///     _ => drop(x),
    /// };
    /// // Borrowck must not know the second arm is never run.
    /// drop(x); //~ ERROR use of moved value
    ///
    /// let x;
    /// # let y = true;
    /// match y {
    ///     _ if { x = 2; true } => {},
    ///     // Borrowck must not know the guard is always run.
    ///     _ => drop(x), //~ ERROR used binding `x` is possibly-uninitialized
    /// };
    ///
    /// let x = String::new();
    /// # let y = true;
    /// match y {
    ///     false if { drop(x); true } => {},
    ///     // Borrowck must not know the guard is not run in the `true` case.
    ///     true => drop(x), //~ ERROR use of moved value: `x`
    ///     false => {},
    /// };
    ///
    /// # let mut y = (true, true);
    /// let r = &mut y.1;
    /// match y {
    ///     //~^ ERROR cannot use `y.1` because it was mutably borrowed
    ///     (false, true) => {}
    ///     // Borrowck must not know we don't test `y.1` when `y.0` is `true`.
    ///     (true, _) => drop(r),
    ///     (false, _) => {}
    /// };
    /// ```
    ///
    /// We add false edges to act as if we were naively matching each arm in order. What we need is
    /// a (fake) path from each candidate to the next, specifically from candidate C's pre-binding
    /// block to next candidate D's pre-binding block. For maximum precision (needed for deref
    /// patterns), we choose the earliest node on D's success path that doesn't also lead to C (to
    /// avoid loops).
    ///
    /// This turns out to be easy to compute: that block is the `start_block` of the first call to
    /// `match_candidates` where D is the first candidate in the list.
    ///
    /// For example:
    /// ```rust
    /// # let (x, y) = (true, true);
    /// match (x, y) {
    ///   (true, true) => 1,
    ///   (false, true) => 2,
    ///   (true, false) => 3,
    ///   _ => 4,
    /// }
    /// # ;
    /// ```
    /// In this example, the pre-binding block of arm 1 has a false edge to the block for result
    /// `false` of the first test on `x`. The other arms have false edges to the pre-binding blocks
    /// of the next arm.
    ///
    /// On top of this, we also add a false edge from the otherwise_block of each guard to the
    /// aforementioned start block of the next candidate, to ensure borrock doesn't rely on which
    /// guards may have run.
    #[instrument(level = "debug", skip(self, arms))]
    pub(crate) fn match_expr(
        &mut self,
        destination: Place<'tcx>,
        mut block: BasicBlock,
        scrutinee_id: ExprId,
        arms: &[ArmId],
        span: Span,
        scrutinee_span: Span,
    ) -> BlockAnd<()> {
        let scrutinee_place =
            unpack!(block = self.lower_scrutinee(block, scrutinee_id, scrutinee_span));

        let mut arm_candidates = self.create_match_candidates(&scrutinee_place, arms);

        let match_has_guard = arm_candidates.iter().any(|(_, candidate)| candidate.has_guard);
        let mut candidates =
            arm_candidates.iter_mut().map(|(_, candidate)| candidate).collect::<Vec<_>>();

        let match_start_span = span.shrink_to_lo().to(scrutinee_span);

        // The set of places that we are creating fake borrows of. If there are no match guards then
        // we don't need any fake borrows, so don't track them.
        let fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)> = if match_has_guard {
            util::collect_fake_borrows(self, &candidates, scrutinee_span, scrutinee_place.base())
        } else {
            Vec::new()
        };

        self.lower_match_tree(
            block,
            scrutinee_span,
            &scrutinee_place,
            match_start_span,
            &mut candidates,
            false,
        );

        self.lower_match_arms(
            destination,
            scrutinee_place,
            scrutinee_span,
            arm_candidates,
            self.source_info(span),
            fake_borrow_temps,
        )
    }

    /// Evaluate the scrutinee and add the PlaceMention for it.
    fn lower_scrutinee(
        &mut self,
        mut block: BasicBlock,
        scrutinee_id: ExprId,
        scrutinee_span: Span,
    ) -> BlockAnd<PlaceBuilder<'tcx>> {
        let scrutinee_place_builder = unpack!(block = self.as_place_builder(block, scrutinee_id));
        if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
            let source_info = self.source_info(scrutinee_span);
            self.cfg.push_place_mention(block, source_info, scrutinee_place);
        }

        block.and(scrutinee_place_builder)
    }

    /// Create the initial `Candidate`s for a `match` expression.
    fn create_match_candidates<'pat>(
        &mut self,
        scrutinee: &PlaceBuilder<'tcx>,
        arms: &'pat [ArmId],
    ) -> Vec<(&'pat Arm<'tcx>, Candidate<'pat, 'tcx>)>
    where
        'a: 'pat,
    {
        // Assemble the initial list of candidates. These top-level candidates
        // are 1:1 with the original match arms, but other parts of match
        // lowering also introduce subcandidates (for subpatterns), and will
        // also flatten candidates in some cases. So in general a list of
        // candidates does _not_ necessarily correspond to a list of arms.
        arms.iter()
            .copied()
            .map(|arm| {
                let arm = &self.thir[arm];
                let arm_has_guard = arm.guard.is_some();
                let arm_candidate =
                    Candidate::new(scrutinee.clone(), &arm.pattern, arm_has_guard, self);
                (arm, arm_candidate)
            })
            .collect()
    }

    /// Lower the bindings, guards and arm bodies of a `match` expression.
    ///
    /// The decision tree should have already been created
    /// (by [Builder::lower_match_tree]).
    ///
    /// `outer_source_info` is the SourceInfo for the whole match.
    fn lower_match_arms(
        &mut self,
        destination: Place<'tcx>,
        scrutinee_place_builder: PlaceBuilder<'tcx>,
        scrutinee_span: Span,
        arm_candidates: Vec<(&'_ Arm<'tcx>, Candidate<'_, 'tcx>)>,
        outer_source_info: SourceInfo,
        fake_borrow_temps: Vec<(Place<'tcx>, Local, FakeBorrowKind)>,
    ) -> BlockAnd<()> {
        let arm_end_blocks: Vec<BasicBlock> = arm_candidates
            .into_iter()
            .map(|(arm, candidate)| {
                debug!("lowering arm {:?}\ncandidate = {:?}", arm, candidate);

                let arm_source_info = self.source_info(arm.span);
                let arm_scope = (arm.scope, arm_source_info);
                let match_scope = self.local_scope();
                self.in_scope(arm_scope, arm.lint_level, |this| {
                    let old_dedup_scope =
                        mem::replace(&mut this.fixed_temps_scope, Some(arm.scope));

                    // `try_to_place` may fail if it is unable to resolve the given
                    // `PlaceBuilder` inside a closure. In this case, we don't want to include
                    // a scrutinee place. `scrutinee_place_builder` will fail to be resolved
                    // if the only match arm is a wildcard (`_`).
                    // Example:
                    // ```
                    // let foo = (0, 1);
                    // let c = || {
                    //    match foo { _ => () };
                    // };
                    // ```
                    let scrutinee_place = scrutinee_place_builder.try_to_place(this);
                    let opt_scrutinee_place =
                        scrutinee_place.as_ref().map(|place| (Some(place), scrutinee_span));
                    let scope = this.declare_bindings(
                        None,
                        arm.span,
                        &arm.pattern,
                        arm.guard,
                        opt_scrutinee_place,
                    );

                    let arm_block = this.bind_pattern(
                        outer_source_info,
                        candidate,
                        &fake_borrow_temps,
                        scrutinee_span,
                        Some((arm, match_scope)),
                        EmitStorageLive::Yes,
                    );

                    this.fixed_temps_scope = old_dedup_scope;

                    if let Some(source_scope) = scope {
                        this.source_scope = source_scope;
                    }

                    this.expr_into_dest(destination, arm_block, arm.body)
                })
                .into_block()
            })
            .collect();

        // all the arm blocks will rejoin here
        let end_block = self.cfg.start_new_block();

        let end_brace = self.source_info(
            outer_source_info.span.with_lo(outer_source_info.span.hi() - BytePos::from_usize(1)),
        );
        for arm_block in arm_end_blocks {
            let block = &self.cfg.basic_blocks[arm_block];
            let last_location = block.statements.last().map(|s| s.source_info);

            self.cfg.goto(arm_block, last_location.unwrap_or(end_brace), end_block);
        }

        self.source_scope = outer_source_info.scope;

        end_block.unit()
    }

    /// Binds the variables and ascribes types for a given `match` arm or
    /// `let` binding.
    ///
    /// Also check if the guard matches, if it's provided.
    /// `arm_scope` should be `Some` if and only if this is called for a
    /// `match` arm.
    fn bind_pattern(
        &mut self,
        outer_source_info: SourceInfo,
        candidate: Candidate<'_, 'tcx>,
        fake_borrow_temps: &[(Place<'tcx>, Local, FakeBorrowKind)],
        scrutinee_span: Span,
        arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
        emit_storage_live: EmitStorageLive,
    ) -> BasicBlock {
        if candidate.subcandidates.is_empty() {
            // Avoid generating another `BasicBlock` when we only have one
            // candidate.
            self.bind_and_guard_matched_candidate(
                candidate,
                &[],
                fake_borrow_temps,
                scrutinee_span,
                arm_match_scope,
                ScheduleDrops::Yes,
                emit_storage_live,
            )
        } else {
            // It's helpful to avoid scheduling drops multiple times to save
            // drop elaboration from having to clean up the extra drops.
            //
            // If we are in a `let` then we only schedule drops for the first
            // candidate.
            //
            // If we're in a `match` arm then we could have a case like so:
            //
            // Ok(x) | Err(x) if return => { /* ... */ }
            //
            // In this case we don't want a drop of `x` scheduled when we
            // return: it isn't bound by move until right before enter the arm.
            // To handle this we instead unschedule it's drop after each time
            // we lower the guard.
            let target_block = self.cfg.start_new_block();
            let mut schedule_drops = ScheduleDrops::Yes;
            let arm = arm_match_scope.unzip().0;
            // We keep a stack of all of the bindings and type ascriptions
            // from the parent candidates that we visit, that also need to
            // be bound for each candidate.
            traverse_candidate(
                candidate,
                &mut Vec::new(),
                &mut |leaf_candidate, parent_data| {
                    if let Some(arm) = arm {
                        self.clear_top_scope(arm.scope);
                    }
                    let binding_end = self.bind_and_guard_matched_candidate(
                        leaf_candidate,
                        parent_data,
                        fake_borrow_temps,
                        scrutinee_span,
                        arm_match_scope,
                        schedule_drops,
                        emit_storage_live,
                    );
                    if arm.is_none() {
                        schedule_drops = ScheduleDrops::No;
                    }
                    self.cfg.goto(binding_end, outer_source_info, target_block);
                },
                |inner_candidate, parent_data| {
                    parent_data.push(inner_candidate.extra_data);
                    inner_candidate.subcandidates.into_iter()
                },
                |parent_data| {
                    parent_data.pop();
                },
            );

            target_block
        }
    }

    pub(super) fn expr_into_pattern(
        &mut self,
        mut block: BasicBlock,
        irrefutable_pat: &Pat<'tcx>,
        initializer_id: ExprId,
    ) -> BlockAnd<()> {
        match irrefutable_pat.kind {
            // Optimize the case of `let x = ...` to write directly into `x`
            PatKind::Binding { mode: BindingMode(ByRef::No, _), var, subpattern: None, .. } => {
                let place = self.storage_live_binding(
                    block,
                    var,
                    irrefutable_pat.span,
                    OutsideGuard,
                    ScheduleDrops::Yes,
                );
                block = self.expr_into_dest(place, block, initializer_id).into_block();

                // Inject a fake read, see comments on `FakeReadCause::ForLet`.
                let source_info = self.source_info(irrefutable_pat.span);
                self.cfg.push_fake_read(block, source_info, FakeReadCause::ForLet(None), place);

                self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
                block.unit()
            }

            // Optimize the case of `let x: T = ...` to write directly
            // into `x` and then require that `T == typeof(x)`.
            //
            // Weirdly, this is needed to prevent the
            // `intrinsic-move-val.rs` test case from crashing. That
            // test works with uninitialized values in a rather
            // dubious way, so it may be that the test is kind of
            // broken.
            PatKind::AscribeUserType {
                subpattern:
                    box Pat {
                        kind:
                            PatKind::Binding {
                                mode: BindingMode(ByRef::No, _),
                                var,
                                subpattern: None,
                                ..
                            },
                        ..
                    },
                ascription: thir::Ascription { ref annotation, variance: _ },
            } => {
                let place = self.storage_live_binding(
                    block,
                    var,
                    irrefutable_pat.span,
                    OutsideGuard,
                    ScheduleDrops::Yes,
                );
                block = self.expr_into_dest(place, block, initializer_id).into_block();

                // Inject a fake read, see comments on `FakeReadCause::ForLet`.
                let pattern_source_info = self.source_info(irrefutable_pat.span);
                let cause_let = FakeReadCause::ForLet(None);
                self.cfg.push_fake_read(block, pattern_source_info, cause_let, place);

                let ty_source_info = self.source_info(annotation.span);

                let base = self.canonical_user_type_annotations.push(annotation.clone());
                self.cfg.push(
                    block,
                    Statement {
                        source_info: ty_source_info,
                        kind: StatementKind::AscribeUserType(
                            Box::new((place, UserTypeProjection { base, projs: Vec::new() })),
                            // We always use invariant as the variance here. This is because the
                            // variance field from the ascription refers to the variance to use
                            // when applying the type to the value being matched, but this
                            // ascription applies rather to the type of the binding. e.g., in this
                            // example:
                            //
                            // ```
                            // let x: T = <expr>
                            // ```
                            //
                            // We are creating an ascription that defines the type of `x` to be
                            // exactly `T` (i.e., with invariance). The variance field, in
                            // contrast, is intended to be used to relate `T` to the type of
                            // `<expr>`.
                            ty::Invariant,
                        ),
                    },
                );

                self.schedule_drop_for_binding(var, irrefutable_pat.span, OutsideGuard);
                block.unit()
            }

            _ => {
                let initializer = &self.thir[initializer_id];
                let place_builder =
                    unpack!(block = self.lower_scrutinee(block, initializer_id, initializer.span));
                self.place_into_pattern(block, irrefutable_pat, place_builder, true)
            }
        }
    }

    pub(crate) fn place_into_pattern(
        &mut self,
        block: BasicBlock,
        irrefutable_pat: &Pat<'tcx>,
        initializer: PlaceBuilder<'tcx>,
        set_match_place: bool,
    ) -> BlockAnd<()> {
        let mut candidate = Candidate::new(initializer.clone(), irrefutable_pat, false, self);

        // For matches and function arguments, the place that is being matched
        // can be set when creating the variables. But the place for
        // let PATTERN = ... might not even exist until we do the assignment.
        // so we set it here instead.
        if set_match_place {
            // `try_to_place` may fail if it is unable to resolve the given `PlaceBuilder` inside a
            // closure. In this case, we don't want to include a scrutinee place.
            // `scrutinee_place_builder` will fail for destructured assignments. This is because a
            // closure only captures the precise places that it will read and as a result a closure
            // may not capture the entire tuple/struct and rather have individual places that will
            // be read in the final MIR.
            // Example:
            // ```
            // let foo = (0, 1);
            // let c = || {
            //    let (v1, v2) = foo;
            // };
            // ```
            if let Some(place) = initializer.try_to_place(self) {
                visit_bindings(&[&mut candidate], |binding: &Binding<'_>| {
                    let local = self.var_local_id(binding.var_id, OutsideGuard);
                    if let LocalInfo::User(BindingForm::Var(VarBindingForm {
                        opt_match_place: Some((ref mut match_place, _)),
                        ..
                    })) = **self.local_decls[local].local_info.as_mut().assert_crate_local()
                    {
                        *match_place = Some(place);
                    } else {
                        bug!("Let binding to non-user variable.")
                    };
                });
            }
        }

        self.lower_match_tree(
            block,
            irrefutable_pat.span,
            &initializer,
            irrefutable_pat.span,
            &mut [&mut candidate],
            false,
        );
        self.bind_pattern(
            self.source_info(irrefutable_pat.span),
            candidate,
            &[],
            irrefutable_pat.span,
            None,
            EmitStorageLive::Yes,
        )
        .unit()
    }

    /// Declares the bindings of the given patterns and returns the visibility
    /// scope for the bindings in these patterns, if such a scope had to be
    /// created. NOTE: Declaring the bindings should always be done in their
    /// drop scope.
    #[instrument(skip(self), level = "debug")]
    pub(crate) fn declare_bindings(
        &mut self,
        mut visibility_scope: Option<SourceScope>,
        scope_span: Span,
        pattern: &Pat<'tcx>,
        guard: Option<ExprId>,
        opt_match_place: Option<(Option<&Place<'tcx>>, Span)>,
    ) -> Option<SourceScope> {
        self.visit_primary_bindings(
            pattern,
            UserTypeProjections::none(),
            &mut |this, name, mode, var, span, ty, user_ty| {
                if visibility_scope.is_none() {
                    visibility_scope =
                        Some(this.new_source_scope(scope_span, LintLevel::Inherited));
                }
                let source_info = SourceInfo { span, scope: this.source_scope };
                let visibility_scope = visibility_scope.unwrap();
                this.declare_binding(
                    source_info,
                    visibility_scope,
                    name,
                    mode,
                    var,
                    ty,
                    user_ty,
                    ArmHasGuard(guard.is_some()),
                    opt_match_place.map(|(x, y)| (x.cloned(), y)),
                    pattern.span,
                );
            },
        );
        if let Some(guard_expr) = guard {
            self.declare_guard_bindings(guard_expr, scope_span, visibility_scope);
        }
        visibility_scope
    }

    /// Declare bindings in a guard. This has to be done when declaring bindings
    /// for an arm to ensure that or patterns only have one version of each
    /// variable.
    pub(crate) fn declare_guard_bindings(
        &mut self,
        guard_expr: ExprId,
        scope_span: Span,
        visibility_scope: Option<SourceScope>,
    ) {
        match self.thir.exprs[guard_expr].kind {
            ExprKind::Let { expr: _, pat: ref guard_pat } => {
                // FIXME: pass a proper `opt_match_place`
                self.declare_bindings(visibility_scope, scope_span, guard_pat, None, None);
            }
            ExprKind::Scope { value, .. } => {
                self.declare_guard_bindings(value, scope_span, visibility_scope);
            }
            ExprKind::Use { source } => {
                self.declare_guard_bindings(source, scope_span, visibility_scope);
            }
            ExprKind::LogicalOp { op: LogicalOp::And, lhs, rhs } => {
                self.declare_guard_bindings(lhs, scope_span, visibility_scope);
                self.declare_guard_bindings(rhs, scope_span, visibility_scope);
            }
            _ => {}
        }
    }

    /// Emits a [`StatementKind::StorageLive`] for the given var, and also
    /// schedules a drop if requested (and possible).
    pub(crate) fn storage_live_binding(
        &mut self,
        block: BasicBlock,
        var: LocalVarId,
        span: Span,
        for_guard: ForGuard,
        schedule_drop: ScheduleDrops,
    ) -> Place<'tcx> {
        let local_id = self.var_local_id(var, for_guard);
        let source_info = self.source_info(span);
        self.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(local_id) });
        // Although there is almost always scope for given variable in corner cases
        // like #92893 we might get variable with no scope.
        if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id)
            && matches!(schedule_drop, ScheduleDrops::Yes)
        {
            self.schedule_drop(span, region_scope, local_id, DropKind::Storage);
        }
        Place::from(local_id)
    }

    pub(crate) fn schedule_drop_for_binding(
        &mut self,
        var: LocalVarId,
        span: Span,
        for_guard: ForGuard,
    ) {
        let local_id = self.var_local_id(var, for_guard);
        if let Some(region_scope) = self.region_scope_tree.var_scope(var.0.local_id) {
            self.schedule_drop(span, region_scope, local_id, DropKind::Value);
        }
    }

    /// Visit all of the primary bindings in a patterns, that is, visit the
    /// leftmost occurrence of each variable bound in a pattern. A variable
    /// will occur more than once in an or-pattern.
    pub(super) fn visit_primary_bindings(
        &mut self,
        pattern: &Pat<'tcx>,
        pattern_user_ty: UserTypeProjections,
        f: &mut impl FnMut(
            &mut Self,
            Symbol,
            BindingMode,
            LocalVarId,
            Span,
            Ty<'tcx>,
            UserTypeProjections,
        ),
    ) {
        debug!(
            "visit_primary_bindings: pattern={:?} pattern_user_ty={:?}",
            pattern, pattern_user_ty
        );
        match pattern.kind {
            PatKind::Binding { name, mode, var, ty, ref subpattern, is_primary, .. } => {
                if is_primary {
                    f(self, name, mode, var, pattern.span, ty, pattern_user_ty.clone());
                }
                if let Some(subpattern) = subpattern.as_ref() {
                    self.visit_primary_bindings(subpattern, pattern_user_ty, f);
                }
            }

            PatKind::Array { ref prefix, ref slice, ref suffix }
            | PatKind::Slice { ref prefix, ref slice, ref suffix } => {
                let from = u64::try_from(prefix.len()).unwrap();
                let to = u64::try_from(suffix.len()).unwrap();
                for subpattern in prefix.iter() {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
                }
                if let Some(subpattern) = slice {
                    self.visit_primary_bindings(
                        subpattern,
                        pattern_user_ty.clone().subslice(from, to),
                        f,
                    );
                }
                for subpattern in suffix.iter() {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone().index(), f);
                }
            }

            PatKind::Constant { .. }
            | PatKind::Range { .. }
            | PatKind::Wild
            | PatKind::Never
            | PatKind::Error(_) => {}

            PatKind::Deref { ref subpattern } => {
                self.visit_primary_bindings(subpattern, pattern_user_ty.deref(), f);
            }

            PatKind::DerefPattern { ref subpattern, .. } => {
                self.visit_primary_bindings(subpattern, UserTypeProjections::none(), f);
            }

            PatKind::AscribeUserType {
                ref subpattern,
                ascription: thir::Ascription { ref annotation, variance: _ },
            } => {
                // This corresponds to something like
                //
                // ```
                // let A::<'a>(_): A<'static> = ...;
                // ```
                //
                // Note that the variance doesn't apply here, as we are tracking the effect
                // of `user_ty` on any bindings contained with subpattern.

                let projection = UserTypeProjection {
                    base: self.canonical_user_type_annotations.push(annotation.clone()),
                    projs: Vec::new(),
                };
                let subpattern_user_ty =
                    pattern_user_ty.push_projection(&projection, annotation.span);
                self.visit_primary_bindings(subpattern, subpattern_user_ty, f)
            }

            PatKind::InlineConstant { ref subpattern, .. } => {
                self.visit_primary_bindings(subpattern, pattern_user_ty, f)
            }

            PatKind::Leaf { ref subpatterns } => {
                for subpattern in subpatterns {
                    let subpattern_user_ty = pattern_user_ty.clone().leaf(subpattern.field);
                    debug!("visit_primary_bindings: subpattern_user_ty={:?}", subpattern_user_ty);
                    self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
                }
            }

            PatKind::Variant { adt_def, args: _, variant_index, ref subpatterns } => {
                for subpattern in subpatterns {
                    let subpattern_user_ty =
                        pattern_user_ty.clone().variant(adt_def, variant_index, subpattern.field);
                    self.visit_primary_bindings(&subpattern.pattern, subpattern_user_ty, f);
                }
            }
            PatKind::Or { ref pats } => {
                // In cases where we recover from errors the primary bindings
                // may not all be in the leftmost subpattern. For example in
                // `let (x | y) = ...`, the primary binding of `y` occurs in
                // the right subpattern
                for subpattern in pats.iter() {
                    self.visit_primary_bindings(subpattern, pattern_user_ty.clone(), f);
                }
            }
        }
    }
}

/// Data extracted from a pattern that doesn't affect which branch is taken. Collected during
/// pattern simplification and not mutated later.
#[derive(Debug, Clone)]
struct PatternExtraData<'tcx> {
    /// [`Span`] of the original pattern.
    span: Span,

    /// Bindings that must be established.
    bindings: Vec<Binding<'tcx>>,

    /// Types that must be asserted.
    ascriptions: Vec<Ascription<'tcx>>,

    /// Whether this corresponds to a never pattern.
    is_never: bool,
}

impl<'tcx> PatternExtraData<'tcx> {
    fn is_empty(&self) -> bool {
        self.bindings.is_empty() && self.ascriptions.is_empty()
    }
}

/// A pattern in a form suitable for generating code.
///
/// Here, "flat" indicates that the pattern's match pairs have been recursively
/// simplified by [`Builder::simplify_match_pairs`]. They are not necessarily
/// flat in an absolute sense.
///
/// Will typically be incorporated into a [`Candidate`].
#[derive(Debug, Clone)]
struct FlatPat<'pat, 'tcx> {
    /// To match the pattern, all of these must be satisfied...
    // Invariant: all the match pairs are recursively simplified.
    // Invariant: or-patterns must be sorted to the end.
    match_pairs: Vec<MatchPairTree<'pat, 'tcx>>,

    extra_data: PatternExtraData<'tcx>,
}

impl<'tcx, 'pat> FlatPat<'pat, 'tcx> {
    /// Creates a `FlatPat` containing a simplified [`MatchPairTree`] list/forest
    /// for the given pattern.
    fn new(
        place: PlaceBuilder<'tcx>,
        pattern: &'pat Pat<'tcx>,
        cx: &mut Builder<'_, 'tcx>,
    ) -> Self {
        // First, recursively build a tree of match pairs for the given pattern.
        let mut match_pairs = vec![MatchPairTree::for_pattern(place, pattern, cx)];
        let mut extra_data = PatternExtraData {
            span: pattern.span,
            bindings: Vec::new(),
            ascriptions: Vec::new(),
            is_never: pattern.is_never_pattern(),
        };
        // Partly-flatten and sort the match pairs, while recording extra data.
        cx.simplify_match_pairs(&mut match_pairs, &mut extra_data);

        Self { match_pairs, extra_data }
    }
}

#[derive(Debug)]
struct Candidate<'pat, 'tcx> {
    /// For the candidate to match, all of these must be satisfied...
    // Invariant: all the match pairs are recursively simplified.
    // Invariant: or-patterns must be sorted at the end.
    match_pairs: Vec<MatchPairTree<'pat, 'tcx>>,

    /// ...and if this is non-empty, one of these subcandidates also has to match...
    // Invariant: at the end of the algorithm, this must never contain a `is_never` candidate
    // because that would break binding consistency.
    subcandidates: Vec<Candidate<'pat, 'tcx>>,

    /// ...and if there is a guard it must be evaluated; if it's `false` then branch to `otherwise_block`.
    has_guard: bool,

    /// If the candidate matches, bindings and ascriptions must be established.
    extra_data: PatternExtraData<'tcx>,

    /// If we filled `self.subcandidate`, we store here the span of the or-pattern they came from.
    // Invariant: it is `None` iff `subcandidates.is_empty()`.
    or_span: Option<Span>,

    /// The block before the `bindings` have been established.
    pre_binding_block: Option<BasicBlock>,

    /// The block to branch to if the guard or a nested candidate fails to match.
    otherwise_block: Option<BasicBlock>,

    /// The earliest block that has only candidates >= this one as descendents. Used for false
    /// edges, see the doc for [`Builder::match_expr`].
    false_edge_start_block: Option<BasicBlock>,
    /// The `false_edge_start_block` of the next candidate.
    next_candidate_start_block: Option<BasicBlock>,
}

impl<'tcx, 'pat> Candidate<'pat, 'tcx> {
    fn new(
        place: PlaceBuilder<'tcx>,
        pattern: &'pat Pat<'tcx>,
        has_guard: bool,
        cx: &mut Builder<'_, 'tcx>,
    ) -> Self {
        // Use `FlatPat` to build simplified match pairs, then immediately
        // incorporate them into a new candidate.
        Self::from_flat_pat(FlatPat::new(place, pattern, cx), has_guard)
    }

    /// Incorporates an already-simplified [`FlatPat`] into a new candidate.
    fn from_flat_pat(flat_pat: FlatPat<'pat, 'tcx>, has_guard: bool) -> Self {
        Candidate {
            match_pairs: flat_pat.match_pairs,
            extra_data: flat_pat.extra_data,
            has_guard,
            subcandidates: Vec::new(),
            or_span: None,
            otherwise_block: None,
            pre_binding_block: None,
            false_edge_start_block: None,
            next_candidate_start_block: None,
        }
    }

    /// Returns whether the first match pair of this candidate is an or-pattern.
    fn starts_with_or_pattern(&self) -> bool {
        matches!(&*self.match_pairs, [MatchPairTree { test_case: TestCase::Or { .. }, .. }, ..])
    }

    /// Visit the leaf candidates (those with no subcandidates) contained in
    /// this candidate.
    fn visit_leaves<'a>(&'a mut self, mut visit_leaf: impl FnMut(&'a mut Self)) {
        traverse_candidate(
            self,
            &mut (),
            &mut move |c, _| visit_leaf(c),
            move |c, _| c.subcandidates.iter_mut(),
            |_| {},
        );
    }
}

/// A depth-first traversal of the `Candidate` and all of its recursive
/// subcandidates.
fn traverse_candidate<'pat, 'tcx: 'pat, C, T, I>(
    candidate: C,
    context: &mut T,
    visit_leaf: &mut impl FnMut(C, &mut T),
    get_children: impl Copy + Fn(C, &mut T) -> I,
    complete_children: impl Copy + Fn(&mut T),
) where
    C: Borrow<Candidate<'pat, 'tcx>>,
    I: Iterator<Item = C>,
{
    if candidate.borrow().subcandidates.is_empty() {
        visit_leaf(candidate, context)
    } else {
        for child in get_children(candidate, context) {
            traverse_candidate(child, context, visit_leaf, get_children, complete_children);
        }
        complete_children(context)
    }
}

#[derive(Clone, Debug)]
struct Binding<'tcx> {
    span: Span,
    source: Place<'tcx>,
    var_id: LocalVarId,
    binding_mode: BindingMode,
}

/// Indicates that the type of `source` must be a subtype of the
/// user-given type `user_ty`; this is basically a no-op but can
/// influence region inference.
#[derive(Clone, Debug)]
struct Ascription<'tcx> {
    source: Place<'tcx>,
    annotation: CanonicalUserTypeAnnotation<'tcx>,
    variance: ty::Variance,
}

#[derive(Debug, Clone)]
enum TestCase<'pat, 'tcx> {
    Irrefutable { binding: Option<Binding<'tcx>>, ascription: Option<Ascription<'tcx>> },
    Variant { adt_def: ty::AdtDef<'tcx>, variant_index: VariantIdx },
    Constant { value: mir::Const<'tcx> },
    Range(&'pat PatRange<'tcx>),
    Slice { len: usize, variable_length: bool },
    Deref { temp: Place<'tcx>, mutability: Mutability },
    Never,
    Or { pats: Box<[FlatPat<'pat, 'tcx>]> },
}

impl<'pat, 'tcx> TestCase<'pat, 'tcx> {
    fn as_range(&self) -> Option<&'pat PatRange<'tcx>> {
        if let Self::Range(v) = self { Some(*v) } else { None }
    }
}

/// Node in a tree of "match pairs", where each pair consists of a place to be
/// tested, and a test to perform on that place.
///
/// Each node also has a list of subpairs (possibly empty) that must also match,
/// and a reference to the THIR pattern it represents.
#[derive(Debug, Clone)]
pub(crate) struct MatchPairTree<'pat, 'tcx> {
    /// This place...
    ///
    /// ---
    /// This can be `None` if it referred to a non-captured place in a closure.
    ///
    /// Invariant: Can only be `None` when `test_case` is `Irrefutable`.
    /// Therefore this must be `Some(_)` after simplification.
    place: Option<Place<'tcx>>,

    /// ... must pass this test...
    ///
    /// ---
    /// Invariant: after creation and simplification in [`FlatPat::new`],
    /// this must not be [`TestCase::Irrefutable`].
    test_case: TestCase<'pat, 'tcx>,

    /// ... and these subpairs must match.
    subpairs: Vec<Self>,

    /// The pattern this was created from.
    pattern: &'pat Pat<'tcx>,
}

/// See [`Test`] for more.
#[derive(Clone, Debug, PartialEq)]
enum TestKind<'tcx> {
    /// Test what enum variant a value is.
    Switch {
        /// The enum type being tested.
        adt_def: ty::AdtDef<'tcx>,
    },

    /// Test what value an integer or `char` has.
    SwitchInt,

    /// Test what value a `bool` has.
    If,

    /// Test for equality with value, possibly after an unsizing coercion to
    /// `ty`,
    Eq {
        value: Const<'tcx>,
        // Integer types are handled by `SwitchInt`, and constants with ADT
        // types are converted back into patterns, so this can only be `&str`,
        // `&[T]`, `f32` or `f64`.
        ty: Ty<'tcx>,
    },

    /// Test whether the value falls within an inclusive or exclusive range.
    Range(Box<PatRange<'tcx>>),

    /// Test that the length of the slice is equal to `len`.
    Len { len: u64, op: BinOp },

    /// Call `Deref::deref[_mut]` on the value.
    Deref {
        /// Temporary to store the result of `deref()`/`deref_mut()`.
        temp: Place<'tcx>,
        mutability: Mutability,
    },

    /// Assert unreachability of never patterns.
    Never,
}

/// A test to perform to determine which [`Candidate`] matches a value.
///
/// [`Test`] is just the test to perform; it does not include the value
/// to be tested.
#[derive(Debug)]
pub(crate) struct Test<'tcx> {
    span: Span,
    kind: TestKind<'tcx>,
}

/// The branch to be taken after a test.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum TestBranch<'tcx> {
    /// Success branch, used for tests with two possible outcomes.
    Success,
    /// Branch corresponding to this constant.
    Constant(Const<'tcx>, u128),
    /// Branch corresponding to this variant.
    Variant(VariantIdx),
    /// Failure branch for tests with two possible outcomes, and "otherwise" branch for other tests.
    Failure,
}

impl<'tcx> TestBranch<'tcx> {
    fn as_constant(&self) -> Option<&Const<'tcx>> {
        if let Self::Constant(v, _) = self { Some(v) } else { None }
    }
}

/// `ArmHasGuard` is a wrapper around a boolean flag. It indicates whether
/// a match arm has a guard expression attached to it.
#[derive(Copy, Clone, Debug)]
pub(crate) struct ArmHasGuard(pub(crate) bool);

///////////////////////////////////////////////////////////////////////////
// Main matching algorithm

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// The entrypoint of the matching algorithm. Create the decision tree for the match expression,
    /// starting from `block`.
    ///
    /// Modifies `candidates` to store the bindings and type ascriptions for
    /// that candidate.
    ///
    /// `refutable` indicates whether the candidate list is refutable (for `if let` and `let else`)
    /// or not (for `let` and `match`). In the refutable case we return the block to which we branch
    /// on failure.
    fn lower_match_tree<'pat>(
        &mut self,
        block: BasicBlock,
        scrutinee_span: Span,
        scrutinee_place_builder: &PlaceBuilder<'tcx>,
        match_start_span: Span,
        candidates: &mut [&mut Candidate<'pat, 'tcx>],
        refutable: bool,
    ) -> BasicBlock {
        // This will generate code to test scrutinee_place and branch to the appropriate arm block.
        // See the doc comment on `match_candidates` for why we have an otherwise block.
        let otherwise_block =
            self.match_candidates(match_start_span, scrutinee_span, block, candidates);

        // Link each leaf candidate to the `false_edge_start_block` of the next one.
        let mut previous_candidate: Option<&mut Candidate<'_, '_>> = None;
        for candidate in candidates {
            candidate.visit_leaves(|leaf_candidate| {
                if let Some(ref mut prev) = previous_candidate {
                    assert!(leaf_candidate.false_edge_start_block.is_some());
                    prev.next_candidate_start_block = leaf_candidate.false_edge_start_block;
                }
                previous_candidate = Some(leaf_candidate);
            });
        }

        if refutable {
            // In refutable cases there's always at least one candidate, and we want a false edge to
            // the failure block.
            previous_candidate.as_mut().unwrap().next_candidate_start_block = Some(otherwise_block)
        } else {
            // Match checking ensures `otherwise_block` is actually unreachable in irrefutable
            // cases.
            let source_info = self.source_info(scrutinee_span);

            // Matching on a scrutinee place of an uninhabited type doesn't generate any memory
            // reads by itself, and so if the place is uninitialized we wouldn't know. In order to
            // disallow the following:
            // ```rust
            // let x: !;
            // match x {}
            // ```
            // we add a dummy read on the place.
            //
            // NOTE: If we require never patterns for empty matches, those will check that the place
            // is initialized, and so this read would no longer be needed.
            let cause_matched_place = FakeReadCause::ForMatchedPlace(None);

            if let Some(scrutinee_place) = scrutinee_place_builder.try_to_place(self) {
                self.cfg.push_fake_read(
                    otherwise_block,
                    source_info,
                    cause_matched_place,
                    scrutinee_place,
                );
            }

            self.cfg.terminate(otherwise_block, source_info, TerminatorKind::Unreachable);
        }

        otherwise_block
    }

    /// The main match algorithm. It begins with a set of candidates `candidates` and has the job of
    /// generating code that branches to an appropriate block if the scrutinee matches one of these
    /// candidates. The
    /// candidates are sorted such that the first item in the list
    /// has the highest priority. When a candidate is found to match
    /// the value, we will set and generate a branch to the appropriate
    /// pre-binding block.
    ///
    /// If none of the candidates apply, we continue to the returned `otherwise_block`.
    ///
    /// It might be surprising that the input can be non-exhaustive.
    /// Indeed, for matches, initially, it is not, because all matches are
    /// exhaustive in Rust. But during processing we sometimes divide
    /// up the list of candidates and recurse with a non-exhaustive
    /// list. This is how our lowering approach (called "backtracking
    /// automaton" in the literature) works.
    /// See [`Builder::test_candidates`] for more details.
    ///
    /// For an example of how we use `otherwise_block`, consider:
    /// ```
    /// # fn foo((x, y): (bool, bool)) -> u32 {
    /// match (x, y) {
    ///     (true, true) => 1,
    ///     (_, false) => 2,
    ///     (false, true) => 3,
    /// }
    /// # }
    /// ```
    /// For this match, we generate something like:
    /// ```
    /// # fn foo((x, y): (bool, bool)) -> u32 {
    /// if x {
    ///     if y {
    ///         return 1
    ///     } else {
    ///         // continue
    ///     }
    /// } else {
    ///     // continue
    /// }
    /// if y {
    ///     if x {
    ///         // This is actually unreachable because the `(true, true)` case was handled above,
    ///         // but we don't know that from within the lowering algorithm.
    ///         // continue
    ///     } else {
    ///         return 3
    ///     }
    /// } else {
    ///     return 2
    /// }
    /// // this is the final `otherwise_block`, which is unreachable because the match was exhaustive.
    /// unreachable!()
    /// # }
    /// ```
    ///
    /// Every `continue` is an instance of branching to some `otherwise_block` somewhere deep within
    /// the algorithm. For more details on why we lower like this, see [`Builder::test_candidates`].
    ///
    /// Note how we test `x` twice. This is the tradeoff of backtracking automata: we prefer smaller
    /// code size so we accept non-optimal code paths.
    #[instrument(skip(self), level = "debug")]
    fn match_candidates(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        start_block: BasicBlock,
        candidates: &mut [&mut Candidate<'_, 'tcx>],
    ) -> BasicBlock {
        ensure_sufficient_stack(|| {
            self.match_candidates_inner(span, scrutinee_span, start_block, candidates)
        })
    }

    /// Construct the decision tree for `candidates`. Don't call this, call `match_candidates`
    /// instead to reserve sufficient stack space.
    fn match_candidates_inner(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        mut start_block: BasicBlock,
        candidates: &mut [&mut Candidate<'_, 'tcx>],
    ) -> BasicBlock {
        if let [first, ..] = candidates {
            if first.false_edge_start_block.is_none() {
                first.false_edge_start_block = Some(start_block);
            }
        }

        // Process a prefix of the candidates.
        let rest = match candidates {
            [] => {
                // If there are no candidates that still need testing, we're done.
                return start_block;
            }
            [first, remaining @ ..] if first.match_pairs.is_empty() => {
                // The first candidate has satisfied all its match pairs; we link it up and continue
                // with the remaining candidates.
                let remainder_start = self.select_matched_candidate(first, start_block);
                remainder_start.and(remaining)
            }
            candidates if candidates.iter().any(|candidate| candidate.starts_with_or_pattern()) => {
                // If any candidate starts with an or-pattern, we have to expand the or-pattern before we
                // can proceed further.
                self.expand_and_match_or_candidates(span, scrutinee_span, start_block, candidates)
            }
            candidates => {
                // The first candidate has some unsatisfied match pairs; we proceed to do more tests.
                self.test_candidates(span, scrutinee_span, candidates, start_block)
            }
        };

        // Process any candidates that remain.
        let remaining_candidates = unpack!(start_block = rest);
        self.match_candidates(span, scrutinee_span, start_block, remaining_candidates)
    }

    /// Link up matched candidates.
    ///
    /// For example, if we have something like this:
    ///
    /// ```ignore (illustrative)
    /// ...
    /// Some(x) if cond1 => ...
    /// Some(x) => ...
    /// Some(x) if cond2 => ...
    /// ...
    /// ```
    ///
    /// We generate real edges from:
    ///
    /// * `start_block` to the [pre-binding block] of the first pattern,
    /// * the [otherwise block] of the first pattern to the second pattern,
    /// * the [otherwise block] of the third pattern to a block with an
    ///   [`Unreachable` terminator](TerminatorKind::Unreachable).
    ///
    /// In addition, we later add fake edges from the otherwise blocks to the
    /// pre-binding block of the next candidate in the original set of
    /// candidates.
    ///
    /// [pre-binding block]: Candidate::pre_binding_block
    /// [otherwise block]: Candidate::otherwise_block
    fn select_matched_candidate(
        &mut self,
        candidate: &mut Candidate<'_, 'tcx>,
        start_block: BasicBlock,
    ) -> BasicBlock {
        assert!(candidate.otherwise_block.is_none());
        assert!(candidate.pre_binding_block.is_none());
        assert!(candidate.subcandidates.is_empty());

        candidate.pre_binding_block = Some(start_block);
        let otherwise_block = self.cfg.start_new_block();
        // Create the otherwise block for this candidate, which is the
        // pre-binding block for the next candidate.
        candidate.otherwise_block = Some(otherwise_block);
        otherwise_block
    }

    /// Takes a list of candidates such that some of the candidates' first match pairs are
    /// or-patterns. This expands as many or-patterns as possible and processes the resulting
    /// candidates. Returns the unprocessed candidates if any.
    fn expand_and_match_or_candidates<'pat, 'b, 'c>(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        start_block: BasicBlock,
        candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
    ) -> BlockAnd<&'b mut [&'c mut Candidate<'pat, 'tcx>]> {
        // We can't expand or-patterns freely. The rule is:
        // - If a candidate doesn't start with an or-pattern, we include it in
        //   the expansion list as-is (i.e. it "expands" to itself).
        // - If a candidate has an or-pattern as its only remaining match pair,
        //   we can expand it.
        // - If it starts with an or-pattern but also has other match pairs,
        //   we can expand it, but we can't process more candidates after it.
        //
        // If we didn't stop, the `otherwise` cases could get mixed up. E.g. in the
        // following, or-pattern simplification (in `merge_trivial_subcandidates`) makes it
        // so the `1` and `2` cases branch to a same block (which then tests `false`). If we
        // took `(2, _)` in the same set of candidates, when we reach the block that tests
        // `false` we don't know whether we came from `1` or `2`, hence we can't know where
        // to branch on failure.
        //
        // ```ignore(illustrative)
        // match (1, true) {
        //     (1 | 2, false) => {},
        //     (2, _) => {},
        //     _ => {}
        // }
        // ```
        //
        // We therefore split the `candidates` slice in two, expand or-patterns in the first part,
        // and process the rest separately.
        let expand_until = candidates
            .iter()
            .position(|candidate| {
                // If a candidate starts with an or-pattern and has more match pairs,
                // we can expand it, but we must stop expanding _after_ it.
                candidate.match_pairs.len() > 1 && candidate.starts_with_or_pattern()
            })
            .map(|pos| pos + 1) // Stop _after_ the found candidate
            .unwrap_or(candidates.len()); // Otherwise, include all candidates
        let (candidates_to_expand, remaining_candidates) = candidates.split_at_mut(expand_until);

        // Expand one level of or-patterns for each candidate in `candidates_to_expand`.
        let mut expanded_candidates = Vec::new();
        for candidate in candidates_to_expand.iter_mut() {
            if candidate.starts_with_or_pattern() {
                let or_match_pair = candidate.match_pairs.remove(0);
                // Expand the or-pattern into subcandidates.
                self.create_or_subcandidates(candidate, or_match_pair);
                // Collect the newly created subcandidates.
                for subcandidate in candidate.subcandidates.iter_mut() {
                    expanded_candidates.push(subcandidate);
                }
                // Note that the subcandidates have been added to `expanded_candidates`,
                // but `candidate` itself has not. If the last candidate has more match pairs,
                // they are handled separately by `test_remaining_match_pairs_after_or`.
            } else {
                // A candidate that doesn't start with an or-pattern has nothing to
                // expand, so it is included in the post-expansion list as-is.
                expanded_candidates.push(candidate);
            }
        }

        // Process the expanded candidates.
        let remainder_start = self.match_candidates(
            span,
            scrutinee_span,
            start_block,
            expanded_candidates.as_mut_slice(),
        );

        // Postprocess subcandidates, and process any leftover match pairs.
        // (Only the last candidate can possibly have more match pairs.)
        debug_assert!({
            let mut all_except_last = candidates_to_expand.iter().rev().skip(1);
            all_except_last.all(|candidate| candidate.match_pairs.is_empty())
        });
        for candidate in candidates_to_expand.iter_mut() {
            if !candidate.subcandidates.is_empty() {
                self.merge_trivial_subcandidates(candidate);
                self.remove_never_subcandidates(candidate);
            }
        }
        if let Some(last_candidate) = candidates_to_expand.last_mut() {
            self.test_remaining_match_pairs_after_or(span, scrutinee_span, last_candidate);
        }

        remainder_start.and(remaining_candidates)
    }

    /// Given a match-pair that corresponds to an or-pattern, expand each subpattern into a new
    /// subcandidate. Any candidate that has been expanded this way should also be postprocessed
    /// at the end of [`Self::expand_and_match_or_candidates`].
    fn create_or_subcandidates<'pat>(
        &mut self,
        candidate: &mut Candidate<'pat, 'tcx>,
        match_pair: MatchPairTree<'pat, 'tcx>,
    ) {
        let TestCase::Or { pats } = match_pair.test_case else { bug!() };
        debug!("expanding or-pattern: candidate={:#?}\npats={:#?}", candidate, pats);
        candidate.or_span = Some(match_pair.pattern.span);
        candidate.subcandidates = pats
            .into_vec()
            .into_iter()
            .map(|flat_pat| Candidate::from_flat_pat(flat_pat, candidate.has_guard))
            .collect();
        candidate.subcandidates[0].false_edge_start_block = candidate.false_edge_start_block;
    }

    /// Try to merge all of the subcandidates of the given candidate into one. This avoids
    /// exponentially large CFGs in cases like `(1 | 2, 3 | 4, ...)`. The candidate should have been
    /// expanded with `create_or_subcandidates`.
    ///
    /// Given a pattern `(P | Q, R | S)` we (in principle) generate a CFG like
    /// so:
    ///
    /// ```text
    /// [ start ]
    ///      |
    /// [ match P, Q ]
    ///      |
    ///      +----------------------------------------+------------------------------------+
    ///      |                                        |                                    |
    ///      V                                        V                                    V
    /// [ P matches ]                           [ Q matches ]                        [ otherwise ]
    ///      |                                        |                                    |
    ///      V                                        V                                    |
    /// [ match R, S ]                          [ match R, S ]                             |
    ///      |                                        |                                    |
    ///      +--------------+------------+            +--------------+------------+        |
    ///      |              |            |            |              |            |        |
    ///      V              V            V            V              V            V        |
    /// [ R matches ] [ S matches ] [otherwise ] [ R matches ] [ S matches ] [otherwise ]  |
    ///      |              |            |            |              |            |        |
    ///      +--------------+------------|------------+--------------+            |        |
    ///      |                           |                                        |        |
    ///      |                           +----------------------------------------+--------+
    ///      |                           |
    ///      V                           V
    /// [ Success ]                 [ Failure ]
    /// ```
    ///
    /// In practice there are some complications:
    ///
    /// * If there's a guard, then the otherwise branch of the first match on
    ///   `R | S` goes to a test for whether `Q` matches, and the control flow
    ///   doesn't merge into a single success block until after the guard is
    ///   tested.
    /// * If neither `P` or `Q` has any bindings or type ascriptions and there
    ///   isn't a match guard, then we create a smaller CFG like:
    ///
    /// ```text
    ///     ...
    ///      +---------------+------------+
    ///      |               |            |
    /// [ P matches ] [ Q matches ] [ otherwise ]
    ///      |               |            |
    ///      +---------------+            |
    ///      |                           ...
    /// [ match R, S ]
    ///      |
    ///     ...
    /// ```
    ///
    /// Note that this takes place _after_ the subcandidates have participated
    /// in match tree lowering.
    fn merge_trivial_subcandidates(&mut self, candidate: &mut Candidate<'_, 'tcx>) {
        assert!(!candidate.subcandidates.is_empty());
        if candidate.has_guard {
            // FIXME(or_patterns; matthewjasper) Don't give up if we have a guard.
            return;
        }

        // FIXME(or_patterns; matthewjasper) Try to be more aggressive here.
        let can_merge = candidate.subcandidates.iter().all(|subcandidate| {
            subcandidate.subcandidates.is_empty() && subcandidate.extra_data.is_empty()
        });
        if !can_merge {
            return;
        }

        let mut last_otherwise = None;
        let shared_pre_binding_block = self.cfg.start_new_block();
        // This candidate is about to become a leaf, so unset `or_span`.
        let or_span = candidate.or_span.take().unwrap();
        let source_info = self.source_info(or_span);

        if candidate.false_edge_start_block.is_none() {
            candidate.false_edge_start_block = candidate.subcandidates[0].false_edge_start_block;
        }

        // Remove the (known-trivial) subcandidates from the candidate tree,
        // so that they aren't visible after match tree lowering, and wire them
        // all to join up at a single shared pre-binding block.
        // (Note that the subcandidates have already had their part of the match
        // tree lowered by this point, which is why we can add a goto to them.)
        for subcandidate in mem::take(&mut candidate.subcandidates) {
            let subcandidate_block = subcandidate.pre_binding_block.unwrap();
            self.cfg.goto(subcandidate_block, source_info, shared_pre_binding_block);
            last_otherwise = subcandidate.otherwise_block;
        }
        candidate.pre_binding_block = Some(shared_pre_binding_block);
        assert!(last_otherwise.is_some());
        candidate.otherwise_block = last_otherwise;
    }

    /// Never subcandidates may have a set of bindings inconsistent with their siblings,
    /// which would break later code. So we filter them out. Note that we can't filter out
    /// top-level candidates this way.
    fn remove_never_subcandidates(&mut self, candidate: &mut Candidate<'_, 'tcx>) {
        if candidate.subcandidates.is_empty() {
            return;
        }

        candidate.subcandidates.retain_mut(|candidate| {
            if candidate.extra_data.is_never {
                candidate.visit_leaves(|subcandidate| {
                    let block = subcandidate.pre_binding_block.unwrap();
                    // That block is already unreachable but needs a terminator to make the MIR well-formed.
                    let source_info = self.source_info(subcandidate.extra_data.span);
                    self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
                });
                false
            } else {
                true
            }
        });
        if candidate.subcandidates.is_empty() {
            // If `candidate` has become a leaf candidate, ensure it has a `pre_binding_block`.
            candidate.pre_binding_block = Some(self.cfg.start_new_block());
        }
    }

    /// If more match pairs remain, test them after each subcandidate.
    /// We could have added them to the or-candidates during or-pattern expansion, but that
    /// would make it impossible to detect simplifiable or-patterns. That would guarantee
    /// exponentially large CFGs for cases like `(1 | 2, 3 | 4, ...)`.
    fn test_remaining_match_pairs_after_or(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        candidate: &mut Candidate<'_, 'tcx>,
    ) {
        if candidate.match_pairs.is_empty() {
            return;
        }

        let or_span = candidate.or_span.unwrap_or(candidate.extra_data.span);
        let source_info = self.source_info(or_span);
        let mut last_otherwise = None;
        candidate.visit_leaves(|leaf_candidate| {
            last_otherwise = leaf_candidate.otherwise_block;
        });

        let remaining_match_pairs = mem::take(&mut candidate.match_pairs);
        // We're testing match pairs that remained after an `Or`, so the remaining
        // pairs should all be `Or` too, due to the sorting invariant.
        debug_assert!(
            remaining_match_pairs
                .iter()
                .all(|match_pair| matches!(match_pair.test_case, TestCase::Or { .. }))
        );

        candidate.visit_leaves(|leaf_candidate| {
            // At this point the leaf's own match pairs have all been lowered
            // and removed, so `extend` and assignment are equivalent,
            // but extending can also recycle any existing vector capacity.
            assert!(leaf_candidate.match_pairs.is_empty());
            leaf_candidate.match_pairs.extend(remaining_match_pairs.iter().cloned());

            let or_start = leaf_candidate.pre_binding_block.unwrap();
            let otherwise =
                self.match_candidates(span, scrutinee_span, or_start, &mut [leaf_candidate]);
            // In a case like `(P | Q, R | S)`, if `P` succeeds and `R | S` fails, we know `(Q,
            // R | S)` will fail too. If there is no guard, we skip testing of `Q` by branching
            // directly to `last_otherwise`. If there is a guard,
            // `leaf_candidate.otherwise_block` can be reached by guard failure as well, so we
            // can't skip `Q`.
            let or_otherwise = if leaf_candidate.has_guard {
                leaf_candidate.otherwise_block.unwrap()
            } else {
                last_otherwise.unwrap()
            };
            self.cfg.goto(otherwise, source_info, or_otherwise);
        });
    }

    /// Pick a test to run. Which test doesn't matter as long as it is guaranteed to fully match at
    /// least one match pair. We currently simply pick the test corresponding to the first match
    /// pair of the first candidate in the list.
    ///
    /// *Note:* taking the first match pair is somewhat arbitrary, and we might do better here by
    /// choosing more carefully what to test.
    ///
    /// For example, consider the following possible match-pairs:
    ///
    /// 1. `x @ Some(P)` -- we will do a [`Switch`] to decide what variant `x` has
    /// 2. `x @ 22` -- we will do a [`SwitchInt`] to decide what value `x` has
    /// 3. `x @ 3..5` -- we will do a [`Range`] test to decide what range `x` falls in
    /// 4. etc.
    ///
    /// [`Switch`]: TestKind::Switch
    /// [`SwitchInt`]: TestKind::SwitchInt
    /// [`Range`]: TestKind::Range
    fn pick_test(&mut self, candidates: &[&mut Candidate<'_, 'tcx>]) -> (Place<'tcx>, Test<'tcx>) {
        // Extract the match-pair from the highest priority candidate
        let match_pair = &candidates[0].match_pairs[0];
        let test = self.pick_test_for_match_pair(match_pair);
        // Unwrap is ok after simplification.
        let match_place = match_pair.place.unwrap();
        debug!(?test, ?match_pair);

        (match_place, test)
    }

    /// Given a test, we sort the input candidates into several buckets. If a candidate only matches
    /// in one of the branches of `test`, we move it there. If it could match in more than one of
    /// the branches of `test`, we stop sorting candidates.
    ///
    /// This returns a pair of
    /// - the candidates that weren't sorted;
    /// - for each possible outcome of the test, the candidates that match in that outcome.
    ///
    /// Moreover, we transform the branched candidates to reflect the fact that we know which
    /// outcome of `test` occurred.
    ///
    /// For example:
    /// ```
    /// # let (x, y, z) = (true, true, true);
    /// match (x, y, z) {
    ///     (true , _    , true ) => true,  // (0)
    ///     (false, false, _    ) => false, // (1)
    ///     (_    , true , _    ) => true,  // (2)
    ///     (true , _    , false) => false, // (3)
    /// }
    /// # ;
    /// ```
    ///
    /// Assume we are testing on `x`. There are 2 overlapping candidate sets:
    /// - If the outcome is that `x` is true, candidates 0, 2, and 3
    /// - If the outcome is that `x` is false, candidates 1 and 2
    ///
    /// Following our algorithm, candidate 0 is sorted into outcome `x == true`, candidate 1 goes
    /// into outcome `x == false`, and candidate 2 and 3 remain unsorted.
    ///
    /// The sorted candidates are transformed:
    /// - candidate 0 becomes `[z @ true]` since we know that `x` was `true`;
    /// - candidate 1 becomes `[y @ false]` since we know that `x` was `false`.
    fn sort_candidates<'b, 'c, 'pat>(
        &mut self,
        match_place: Place<'tcx>,
        test: &Test<'tcx>,
        mut candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
    ) -> (
        &'b mut [&'c mut Candidate<'pat, 'tcx>],
        FxIndexMap<TestBranch<'tcx>, Vec<&'b mut Candidate<'pat, 'tcx>>>,
    ) {
        // For each of the possible outcomes, collect vector of candidates that apply if the test
        // has that particular outcome.
        let mut target_candidates: FxIndexMap<_, Vec<&mut Candidate<'_, '_>>> = Default::default();

        let total_candidate_count = candidates.len();

        // Sort the candidates into the appropriate vector in `target_candidates`. Note that at some
        // point we may encounter a candidate where the test is not relevant; at that point, we stop
        // sorting.
        while let Some(candidate) = candidates.first_mut() {
            let Some(branch) =
                self.sort_candidate(match_place, test, candidate, &target_candidates)
            else {
                break;
            };
            let (candidate, rest) = candidates.split_first_mut().unwrap();
            target_candidates.entry(branch).or_insert_with(Vec::new).push(candidate);
            candidates = rest;
        }

        // At least the first candidate ought to be tested
        assert!(
            total_candidate_count > candidates.len(),
            "{total_candidate_count}, {candidates:#?}"
        );
        debug!("tested_candidates: {}", total_candidate_count - candidates.len());
        debug!("untested_candidates: {}", candidates.len());

        (candidates, target_candidates)
    }

    /// This is the most subtle part of the match lowering algorithm. At this point, the input
    /// candidates have been fully simplified, so all remaining match-pairs require some sort of
    /// test.
    ///
    /// Once we pick what sort of test we are going to perform, this test will help us winnow down
    /// our candidates. So we walk over the candidates (from high to low priority) and check. We
    /// compute, for each outcome of the test, a transformed list of candidates. If a candidate
    /// matches in a single branch of our test, we add it to the corresponding outcome. We also
    /// transform it to record the fact that we know which outcome occurred.
    ///
    /// For example, if we are testing `x.0`'s variant, and we have a candidate `(x.0 @ Some(v), x.1
    /// @ 22)`, then we would have a resulting candidate of `((x.0 as Some).0 @ v, x.1 @ 22)` in the
    /// branch corresponding to `Some`. To ensure we make progress, we always pick a test that
    /// results in simplifying the first candidate.
    ///
    /// But there may also be candidates that the test doesn't
    /// apply to. The classical example is wildcards:
    ///
    /// ```
    /// # let (x, y, z) = (true, true, true);
    /// match (x, y, z) {
    ///     (true , _    , true ) => true,  // (0)
    ///     (false, false, _    ) => false, // (1)
    ///     (_    , true , _    ) => true,  // (2)
    ///     (true , _    , false) => false, // (3)
    /// }
    /// # ;
    /// ```
    ///
    /// Here, the traditional "decision tree" method would generate 2 separate code-paths for the 2
    /// possible values of `x`. This would however duplicate some candidates, which would need to be
    /// lowered several times.
    ///
    /// In some cases, this duplication can create an exponential amount of
    /// code. This is most easily seen by noticing that this method terminates
    /// with precisely the reachable arms being reachable - but that problem
    /// is trivially NP-complete:
    ///
    /// ```ignore (illustrative)
    /// match (var0, var1, var2, var3, ...) {
    ///     (true , _   , _    , false, true, ...) => false,
    ///     (_    , true, true , false, _   , ...) => false,
    ///     (false, _   , false, false, _   , ...) => false,
    ///     ...
    ///     _ => true
    /// }
    /// ```
    ///
    /// Here the last arm is reachable only if there is an assignment to
    /// the variables that does not match any of the literals. Therefore,
    /// compilation would take an exponential amount of time in some cases.
    ///
    /// In rustc, we opt instead for the "backtracking automaton" approach. This guarantees we never
    /// duplicate a candidate (except in the presence of or-patterns). In fact this guarantee is
    /// ensured by the fact that we carry around `&mut Candidate`s which can't be duplicated.
    ///
    /// To make this work, whenever we decide to perform a test, if we encounter a candidate that
    /// could match in more than one branch of the test, we stop. We generate code for the test and
    /// for the candidates in its branches; the remaining candidates will be tested if the
    /// candidates in the branches fail to match.
    ///
    /// For example, if we test on `x` in the following:
    /// ```
    /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
    /// match (x, y, z) {
    ///     (true , _    , true ) => 0,
    ///     (false, false, _    ) => 1,
    ///     (_    , true , _    ) => 2,
    ///     (true , _    , false) => 3,
    /// }
    /// # }
    /// ```
    /// this function generates code that looks more of less like:
    /// ```
    /// # fn foo((x, y, z): (bool, bool, bool)) -> u32 {
    /// if x {
    ///     match (y, z) {
    ///         (_, true) => return 0,
    ///         _ => {} // continue matching
    ///     }
    /// } else {
    ///     match (y, z) {
    ///         (false, _) => return 1,
    ///         _ => {} // continue matching
    ///     }
    /// }
    /// // the block here is `remainder_start`
    /// match (x, y, z) {
    ///     (_    , true , _    ) => 2,
    ///     (true , _    , false) => 3,
    ///     _ => unreachable!(),
    /// }
    /// # }
    /// ```
    ///
    /// We return the unprocessed candidates.
    fn test_candidates<'pat, 'b, 'c>(
        &mut self,
        span: Span,
        scrutinee_span: Span,
        candidates: &'b mut [&'c mut Candidate<'pat, 'tcx>],
        start_block: BasicBlock,
    ) -> BlockAnd<&'b mut [&'c mut Candidate<'pat, 'tcx>]> {
        // Extract the match-pair from the highest priority candidate and build a test from it.
        let (match_place, test) = self.pick_test(candidates);

        // For each of the N possible test outcomes, build the vector of candidates that applies if
        // the test has that particular outcome.
        let (remaining_candidates, target_candidates) =
            self.sort_candidates(match_place, &test, candidates);

        // The block that we should branch to if none of the
        // `target_candidates` match.
        let remainder_start = self.cfg.start_new_block();

        // For each outcome of test, process the candidates that still apply.
        let target_blocks: FxIndexMap<_, _> = target_candidates
            .into_iter()
            .map(|(branch, mut candidates)| {
                let branch_start = self.cfg.start_new_block();
                let branch_otherwise =
                    self.match_candidates(span, scrutinee_span, branch_start, &mut *candidates);
                let source_info = self.source_info(span);
                self.cfg.goto(branch_otherwise, source_info, remainder_start);
                (branch, branch_start)
            })
            .collect();

        // Perform the test, branching to one of N blocks.
        self.perform_test(
            span,
            scrutinee_span,
            start_block,
            remainder_start,
            match_place,
            &test,
            target_blocks,
        );

        remainder_start.and(remaining_candidates)
    }
}

///////////////////////////////////////////////////////////////////////////
// Pat binding - used for `let` and function parameters as well.

impl<'a, 'tcx> Builder<'a, 'tcx> {
    /// Lowers a `let` expression that appears in a suitable context
    /// (e.g. an `if` condition or match guard).
    ///
    /// Also used for lowering let-else statements, since they have similar
    /// needs despite not actually using `let` expressions.
    ///
    /// Use [`DeclareLetBindings`] to control whether the `let` bindings are
    /// declared or not.
    pub(crate) fn lower_let_expr(
        &mut self,
        mut block: BasicBlock,
        expr_id: ExprId,
        pat: &Pat<'tcx>,
        source_scope: Option<SourceScope>,
        scope_span: Span,
        declare_let_bindings: DeclareLetBindings,
        emit_storage_live: EmitStorageLive,
    ) -> BlockAnd<()> {
        let expr_span = self.thir[expr_id].span;
        let scrutinee = unpack!(block = self.lower_scrutinee(block, expr_id, expr_span));
        let mut candidate = Candidate::new(scrutinee.clone(), pat, false, self);
        let otherwise_block = self.lower_match_tree(
            block,
            expr_span,
            &scrutinee,
            pat.span,
            &mut [&mut candidate],
            true,
        );

        self.break_for_else(otherwise_block, self.source_info(expr_span));

        match declare_let_bindings {
            DeclareLetBindings::Yes => {
                let expr_place = scrutinee.try_to_place(self);
                let opt_expr_place = expr_place.as_ref().map(|place| (Some(place), expr_span));
                self.declare_bindings(
                    source_scope,
                    pat.span.to(scope_span),
                    pat,
                    None,
                    opt_expr_place,
                );
            }
            DeclareLetBindings::No => {} // Caller is responsible for bindings.
            DeclareLetBindings::LetNotPermitted => {
                self.tcx.dcx().span_bug(expr_span, "let expression not expected in this context")
            }
        }

        let success = self.bind_pattern(
            self.source_info(pat.span),
            candidate,
            &[],
            expr_span,
            None,
            emit_storage_live,
        );

        // If branch coverage is enabled, record this branch.
        self.visit_coverage_conditional_let(pat, success, otherwise_block);

        success.unit()
    }

    /// Initializes each of the bindings from the candidate by
    /// moving/copying/ref'ing the source as appropriate. Tests the guard, if
    /// any, and then branches to the arm. Returns the block for the case where
    /// the guard succeeds.
    ///
    /// Note: we do not check earlier that if there is a guard,
    /// there cannot be move bindings. We avoid a use-after-move by only
    /// moving the binding once the guard has evaluated to true (see below).
    fn bind_and_guard_matched_candidate<'pat>(
        &mut self,
        candidate: Candidate<'pat, 'tcx>,
        parent_data: &[PatternExtraData<'tcx>],
        fake_borrows: &[(Place<'tcx>, Local, FakeBorrowKind)],
        scrutinee_span: Span,
        arm_match_scope: Option<(&Arm<'tcx>, region::Scope)>,
        schedule_drops: ScheduleDrops,
        emit_storage_live: EmitStorageLive,
    ) -> BasicBlock {
        debug!("bind_and_guard_matched_candidate(candidate={:?})", candidate);

        debug_assert!(candidate.match_pairs.is_empty());

        let candidate_source_info = self.source_info(candidate.extra_data.span);

        let mut block = candidate.pre_binding_block.unwrap();

        if candidate.next_candidate_start_block.is_some() {
            let fresh_block = self.cfg.start_new_block();
            self.false_edges(
                block,
                fresh_block,
                candidate.next_candidate_start_block,
                candidate_source_info,
            );
            block = fresh_block;
        }

        if candidate.extra_data.is_never {
            // This arm has a dummy body, we don't need to generate code for it. `block` is already
            // unreachable (except via false edge).
            let source_info = self.source_info(candidate.extra_data.span);
            self.cfg.terminate(block, source_info, TerminatorKind::Unreachable);
            return self.cfg.start_new_block();
        }

        let ascriptions = parent_data
            .iter()
            .flat_map(|d| &d.ascriptions)
            .cloned()
            .chain(candidate.extra_data.ascriptions);
        let bindings =
            parent_data.iter().flat_map(|d| &d.bindings).chain(&candidate.extra_data.bindings);

        self.ascribe_types(block, ascriptions);

        // Lower an instance of the arm guard (if present) for this candidate,
        // and then perform bindings for the arm body.
        if let Some((arm, match_scope)) = arm_match_scope
            && let Some(guard) = arm.guard
        {
            let tcx = self.tcx;

            // Bindings for guards require some extra handling to automatically
            // insert implicit references/dereferences.
            self.bind_matched_candidate_for_guard(block, schedule_drops, bindings.clone());
            let guard_frame = GuardFrame {
                locals: bindings.clone().map(|b| GuardFrameLocal::new(b.var_id)).collect(),
            };
            debug!("entering guard building context: {:?}", guard_frame);
            self.guard_context.push(guard_frame);

            let re_erased = tcx.lifetimes.re_erased;
            let scrutinee_source_info = self.source_info(scrutinee_span);
            for &(place, temp, kind) in fake_borrows {
                let borrow = Rvalue::Ref(re_erased, BorrowKind::Fake(kind), place);
                self.cfg.push_assign(block, scrutinee_source_info, Place::from(temp), borrow);
            }

            let mut guard_span = rustc_span::DUMMY_SP;

            let (post_guard_block, otherwise_post_guard_block) =
                self.in_if_then_scope(match_scope, guard_span, |this| {
                    guard_span = this.thir[guard].span;
                    this.then_else_break(
                        block,
                        guard,
                        None, // Use `self.local_scope()` as the temp scope
                        this.source_info(arm.span),
                        DeclareLetBindings::No, // For guards, `let` bindings are declared separately
                    )
                });

            let source_info = self.source_info(guard_span);
            let guard_end = self.source_info(tcx.sess.source_map().end_point(guard_span));
            let guard_frame = self.guard_context.pop().unwrap();
            debug!("Exiting guard building context with locals: {:?}", guard_frame);

            for &(_, temp, _) in fake_borrows {
                let cause = FakeReadCause::ForMatchGuard;
                self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(temp));
            }

            let otherwise_block = candidate.otherwise_block.unwrap_or_else(|| {
                let unreachable = self.cfg.start_new_block();
                self.cfg.terminate(unreachable, source_info, TerminatorKind::Unreachable);
                unreachable
            });
            self.false_edges(
                otherwise_post_guard_block,
                otherwise_block,
                candidate.next_candidate_start_block,
                source_info,
            );

            // We want to ensure that the matched candidates are bound
            // after we have confirmed this candidate *and* any
            // associated guard; Binding them on `block` is too soon,
            // because that would be before we've checked the result
            // from the guard.
            //
            // But binding them on the arm is *too late*, because
            // then all of the candidates for a single arm would be
            // bound in the same place, that would cause a case like:
            //
            // ```rust
            // match (30, 2) {
            //     (mut x, 1) | (2, mut x) if { true } => { ... }
            //     ...                                 // ^^^^^^^ (this is `arm_block`)
            // }
            // ```
            //
            // would yield an `arm_block` something like:
            //
            // ```
            // StorageLive(_4);        // _4 is `x`
            // _4 = &mut (_1.0: i32);  // this is handling `(mut x, 1)` case
            // _4 = &mut (_1.1: i32);  // this is handling `(2, mut x)` case
            // ```
            //
            // and that is clearly not correct.
            let by_value_bindings =
                bindings.filter(|binding| matches!(binding.binding_mode.0, ByRef::No));
            // Read all of the by reference bindings to ensure that the
            // place they refer to can't be modified by the guard.
            for binding in by_value_bindings.clone() {
                let local_id = self.var_local_id(binding.var_id, RefWithinGuard);
                let cause = FakeReadCause::ForGuardBinding;
                self.cfg.push_fake_read(post_guard_block, guard_end, cause, Place::from(local_id));
            }
            assert_matches!(
                schedule_drops,
                ScheduleDrops::Yes,
                "patterns with guards must schedule drops"
            );
            self.bind_matched_candidate_for_arm_body(
                post_guard_block,
                ScheduleDrops::Yes,
                by_value_bindings,
                emit_storage_live,
            );

            post_guard_block
        } else {
            // (Here, it is not too early to bind the matched
            // candidate on `block`, because there is no guard result
            // that we have to inspect before we bind them.)
            self.bind_matched_candidate_for_arm_body(
                block,
                schedule_drops,
                bindings,
                emit_storage_live,
            );
            block
        }
    }

    /// Append `AscribeUserType` statements onto the end of `block`
    /// for each ascription
    fn ascribe_types(
        &mut self,
        block: BasicBlock,
        ascriptions: impl IntoIterator<Item = Ascription<'tcx>>,
    ) {
        for ascription in ascriptions {
            let source_info = self.source_info(ascription.annotation.span);

            let base = self.canonical_user_type_annotations.push(ascription.annotation);
            self.cfg.push(
                block,
                Statement {
                    source_info,
                    kind: StatementKind::AscribeUserType(
                        Box::new((
                            ascription.source,
                            UserTypeProjection { base, projs: Vec::new() },
                        )),
                        ascription.variance,
                    ),
                },
            );
        }
    }

    /// Binding for guards is a bit different from binding for the arm body,
    /// because an extra layer of implicit reference/dereference is added.
    ///
    /// The idea is that any pattern bindings of type T will map to a `&T` within
    /// the context of the guard expression, but will continue to map to a `T`
    /// in the context of the arm body. To avoid surfacing this distinction in
    /// the user source code (which would be a severe change to the language and
    /// require far more revision to the compiler), any occurrence of the
    /// identifier in the guard expression will automatically get a deref op
    /// applied to it. (See the caller of [`Self::is_bound_var_in_guard`].)
    ///
    /// So an input like:
    ///
    /// ```ignore (illustrative)
    /// let place = Foo::new();
    /// match place { foo if inspect(foo)
    ///     => feed(foo), ... }
    /// ```
    ///
    /// will be treated as if it were really something like:
    ///
    /// ```ignore (illustrative)
    /// let place = Foo::new();
    /// match place { Foo { .. } if { let tmp1 = &place; inspect(*tmp1) }
    ///     => { let tmp2 = place; feed(tmp2) }, ... }
    /// ```
    ///
    /// And an input like:
    ///
    /// ```ignore (illustrative)
    /// let place = Foo::new();
    /// match place { ref mut foo if inspect(foo)
    ///     => feed(foo), ... }
    /// ```
    ///
    /// will be treated as if it were really something like:
    ///
    /// ```ignore (illustrative)
    /// let place = Foo::new();
    /// match place { Foo { .. } if { let tmp1 = & &mut place; inspect(*tmp1) }
    ///     => { let tmp2 = &mut place; feed(tmp2) }, ... }
    /// ```
    /// ---
    ///
    /// ## Implementation notes
    ///
    /// To encode the distinction above, we must inject the
    /// temporaries `tmp1` and `tmp2`.
    ///
    /// There are two cases of interest: binding by-value, and binding by-ref.
    ///
    /// 1. Binding by-value: Things are simple.
    ///
    ///    * Establishing `tmp1` creates a reference into the
    ///      matched place. This code is emitted by
    ///      [`Self::bind_matched_candidate_for_guard`].
    ///
    ///    * `tmp2` is only initialized "lazily", after we have
    ///      checked the guard. Thus, the code that can trigger
    ///      moves out of the candidate can only fire after the
    ///      guard evaluated to true. This initialization code is
    ///      emitted by [`Self::bind_matched_candidate_for_arm_body`].
    ///
    /// 2. Binding by-reference: Things are tricky.
    ///
    ///    * Here, the guard expression wants a `&&` or `&&mut`
    ///      into the original input. This means we need to borrow
    ///      the reference that we create for the arm.
    ///    * So we eagerly create the reference for the arm and then take a
    ///      reference to that.
    ///
    /// ---
    ///
    /// See these PRs for some historical context:
    /// - <https://github.com/rust-lang/rust/pull/49870> (introduction of autoref)
    /// - <https://github.com/rust-lang/rust/pull/59114> (always use autoref)
    fn bind_matched_candidate_for_guard<'b>(
        &mut self,
        block: BasicBlock,
        schedule_drops: ScheduleDrops,
        bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
    ) where
        'tcx: 'b,
    {
        debug!("bind_matched_candidate_for_guard(block={:?})", block);

        // Assign each of the bindings. Since we are binding for a
        // guard expression, this will never trigger moves out of the
        // candidate.
        let re_erased = self.tcx.lifetimes.re_erased;
        for binding in bindings {
            debug!("bind_matched_candidate_for_guard(binding={:?})", binding);
            let source_info = self.source_info(binding.span);

            // For each pattern ident P of type T, `ref_for_guard` is
            // a reference R: &T pointing to the location matched by
            // the pattern, and every occurrence of P within a guard
            // denotes *R.
            let ref_for_guard = self.storage_live_binding(
                block,
                binding.var_id,
                binding.span,
                RefWithinGuard,
                schedule_drops,
            );
            match binding.binding_mode.0 {
                ByRef::No => {
                    // The arm binding will be by value, so for the guard binding
                    // just take a shared reference to the matched place.
                    let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, binding.source);
                    self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
                }
                ByRef::Yes(mutbl) => {
                    // The arm binding will be by reference, so eagerly create it now.
                    let value_for_arm = self.storage_live_binding(
                        block,
                        binding.var_id,
                        binding.span,
                        OutsideGuard,
                        schedule_drops,
                    );

                    let rvalue =
                        Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source);
                    self.cfg.push_assign(block, source_info, value_for_arm, rvalue);
                    // For the guard binding, take a shared reference to that reference.
                    let rvalue = Rvalue::Ref(re_erased, BorrowKind::Shared, value_for_arm);
                    self.cfg.push_assign(block, source_info, ref_for_guard, rvalue);
                }
            }
        }
    }

    fn bind_matched_candidate_for_arm_body<'b>(
        &mut self,
        block: BasicBlock,
        schedule_drops: ScheduleDrops,
        bindings: impl IntoIterator<Item = &'b Binding<'tcx>>,
        emit_storage_live: EmitStorageLive,
    ) where
        'tcx: 'b,
    {
        debug!("bind_matched_candidate_for_arm_body(block={:?})", block);

        let re_erased = self.tcx.lifetimes.re_erased;
        // Assign each of the bindings. This may trigger moves out of the candidate.
        for binding in bindings {
            let source_info = self.source_info(binding.span);
            let local = match emit_storage_live {
                // Here storages are already alive, probably because this is a binding
                // from let-else.
                // We just need to schedule drop for the value.
                EmitStorageLive::No => self.var_local_id(binding.var_id, OutsideGuard).into(),
                EmitStorageLive::Yes => self.storage_live_binding(
                    block,
                    binding.var_id,
                    binding.span,
                    OutsideGuard,
                    schedule_drops,
                ),
            };
            if matches!(schedule_drops, ScheduleDrops::Yes) {
                self.schedule_drop_for_binding(binding.var_id, binding.span, OutsideGuard);
            }
            let rvalue = match binding.binding_mode.0 {
                ByRef::No => Rvalue::Use(self.consume_by_copy_or_move(binding.source)),
                ByRef::Yes(mutbl) => {
                    Rvalue::Ref(re_erased, util::ref_pat_borrow_kind(mutbl), binding.source)
                }
            };
            self.cfg.push_assign(block, source_info, local, rvalue);
        }
    }

    /// Each binding (`ref mut var`/`ref var`/`mut var`/`var`, where the bound
    /// `var` has type `T` in the arm body) in a pattern maps to 2 locals. The
    /// first local is a binding for occurrences of `var` in the guard, which
    /// will have type `&T`. The second local is a binding for occurrences of
    /// `var` in the arm body, which will have type `T`.
    #[instrument(skip(self), level = "debug")]
    fn declare_binding(
        &mut self,
        source_info: SourceInfo,
        visibility_scope: SourceScope,
        name: Symbol,
        mode: BindingMode,
        var_id: LocalVarId,
        var_ty: Ty<'tcx>,
        user_ty: UserTypeProjections,
        has_guard: ArmHasGuard,
        opt_match_place: Option<(Option<Place<'tcx>>, Span)>,
        pat_span: Span,
    ) {
        let tcx = self.tcx;
        let debug_source_info = SourceInfo { span: source_info.span, scope: visibility_scope };
        let local = LocalDecl {
            mutability: mode.1,
            ty: var_ty,
            user_ty: if user_ty.is_empty() { None } else { Some(Box::new(user_ty)) },
            source_info,
            local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(BindingForm::Var(
                VarBindingForm {
                    binding_mode: mode,
                    // hypothetically, `visit_primary_bindings` could try to unzip
                    // an outermost hir::Ty as we descend, matching up
                    // idents in pat; but complex w/ unclear UI payoff.
                    // Instead, just abandon providing diagnostic info.
                    opt_ty_info: None,
                    opt_match_place,
                    pat_span,
                },
            )))),
        };
        let for_arm_body = self.local_decls.push(local);
        self.var_debug_info.push(VarDebugInfo {
            name,
            source_info: debug_source_info,
            value: VarDebugInfoContents::Place(for_arm_body.into()),
            composite: None,
            argument_index: None,
        });
        let locals = if has_guard.0 {
            let ref_for_guard = self.local_decls.push(LocalDecl::<'tcx> {
                // This variable isn't mutated but has a name, so has to be
                // immutable to avoid the unused mut lint.
                mutability: Mutability::Not,
                ty: Ty::new_imm_ref(tcx, tcx.lifetimes.re_erased, var_ty),
                user_ty: None,
                source_info,
                local_info: ClearCrossCrate::Set(Box::new(LocalInfo::User(
                    BindingForm::RefForGuard,
                ))),
            });
            self.var_debug_info.push(VarDebugInfo {
                name,
                source_info: debug_source_info,
                value: VarDebugInfoContents::Place(ref_for_guard.into()),
                composite: None,
                argument_index: None,
            });
            LocalsForNode::ForGuard { ref_for_guard, for_arm_body }
        } else {
            LocalsForNode::One(for_arm_body)
        };
        debug!(?locals);
        self.var_indices.insert(var_id, locals);
    }
}