rustc_mir_build/build/coverageinfo/
mcdc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use std::collections::VecDeque;

use rustc_middle::bug;
use rustc_middle::mir::coverage::{
    BlockMarkerId, ConditionId, ConditionInfo, MCDCBranchSpan, MCDCDecisionSpan,
};
use rustc_middle::mir::{BasicBlock, SourceInfo};
use rustc_middle::thir::LogicalOp;
use rustc_middle::ty::TyCtxt;
use rustc_span::Span;

use crate::build::Builder;
use crate::errors::MCDCExceedsConditionLimit;

/// LLVM uses `i16` to represent condition id. Hence `i16::MAX` is the hard limit for number of
/// conditions in a decision.
const MAX_CONDITIONS_IN_DECISION: usize = i16::MAX as usize;

#[derive(Default)]
struct MCDCDecisionCtx {
    /// To construct condition evaluation tree.
    decision_stack: VecDeque<ConditionInfo>,
    processing_decision: Option<MCDCDecisionSpan>,
    conditions: Vec<MCDCBranchSpan>,
}

struct MCDCState {
    decision_ctx_stack: Vec<MCDCDecisionCtx>,
}

impl MCDCState {
    fn new() -> Self {
        Self { decision_ctx_stack: vec![MCDCDecisionCtx::default()] }
    }

    /// Decision depth is given as a u16 to reduce the size of the `CoverageKind`,
    /// as it is very unlikely that the depth ever reaches 2^16.
    #[inline]
    fn decision_depth(&self) -> u16 {
        match u16::try_from(self.decision_ctx_stack.len())
            .expect(
                "decision depth did not fit in u16, this is likely to be an instrumentation error",
            )
            .checked_sub(1)
        {
            Some(d) => d,
            None => bug!("Unexpected empty decision stack"),
        }
    }

    // At first we assign ConditionIds for each sub expression.
    // If the sub expression is composite, re-assign its ConditionId to its LHS and generate a new ConditionId for its RHS.
    //
    // Example: "x = (A && B) || (C && D) || (D && F)"
    //
    //      Visit Depth1:
    //              (A && B) || (C && D) || (D && F)
    //              ^-------LHS--------^    ^-RHS--^
    //                      ID=1              ID=2
    //
    //      Visit LHS-Depth2:
    //              (A && B) || (C && D)
    //              ^-LHS--^    ^-RHS--^
    //                ID=1        ID=3
    //
    //      Visit LHS-Depth3:
    //               (A && B)
    //               LHS   RHS
    //               ID=1  ID=4
    //
    //      Visit RHS-Depth3:
    //                         (C && D)
    //                         LHS   RHS
    //                         ID=3  ID=5
    //
    //      Visit RHS-Depth2:              (D && F)
    //                                     LHS   RHS
    //                                     ID=2  ID=6
    //
    //      Visit Depth1:
    //              (A && B)  || (C && D)  || (D && F)
    //              ID=1  ID=4   ID=3  ID=5   ID=2  ID=6
    //
    // A node ID of '0' always means MC/DC isn't being tracked.
    //
    // If a "next" node ID is '0', it means it's the end of the test vector.
    //
    // As the compiler tracks expression in pre-order, we can ensure that condition info of parents are always properly assigned when their children are visited.
    // - If the op is AND, the "false_next" of LHS and RHS should be the parent's "false_next". While "true_next" of the LHS is the RHS, the "true next" of RHS is the parent's "true_next".
    // - If the op is OR, the "true_next" of LHS and RHS should be the parent's "true_next". While "false_next" of the LHS is the RHS, the "false next" of RHS is the parent's "false_next".
    fn record_conditions(&mut self, op: LogicalOp, span: Span) {
        let decision_depth = self.decision_depth();
        let Some(decision_ctx) = self.decision_ctx_stack.last_mut() else {
            bug!("Unexpected empty decision_ctx_stack")
        };
        let decision = match decision_ctx.processing_decision.as_mut() {
            Some(decision) => {
                decision.span = decision.span.to(span);
                decision
            }
            None => decision_ctx.processing_decision.insert(MCDCDecisionSpan {
                span,
                num_conditions: 0,
                end_markers: vec![],
                decision_depth,
            }),
        };

        let parent_condition = decision_ctx.decision_stack.pop_back().unwrap_or_else(|| {
            assert_eq!(
                decision.num_conditions, 0,
                "decision stack must be empty only for empty decision"
            );
            decision.num_conditions += 1;
            ConditionInfo {
                condition_id: ConditionId::START,
                true_next_id: None,
                false_next_id: None,
            }
        });
        let lhs_id = parent_condition.condition_id;

        let rhs_condition_id = ConditionId::from(decision.num_conditions);
        decision.num_conditions += 1;
        let (lhs, rhs) = match op {
            LogicalOp::And => {
                let lhs = ConditionInfo {
                    condition_id: lhs_id,
                    true_next_id: Some(rhs_condition_id),
                    false_next_id: parent_condition.false_next_id,
                };
                let rhs = ConditionInfo {
                    condition_id: rhs_condition_id,
                    true_next_id: parent_condition.true_next_id,
                    false_next_id: parent_condition.false_next_id,
                };
                (lhs, rhs)
            }
            LogicalOp::Or => {
                let lhs = ConditionInfo {
                    condition_id: lhs_id,
                    true_next_id: parent_condition.true_next_id,
                    false_next_id: Some(rhs_condition_id),
                };
                let rhs = ConditionInfo {
                    condition_id: rhs_condition_id,
                    true_next_id: parent_condition.true_next_id,
                    false_next_id: parent_condition.false_next_id,
                };
                (lhs, rhs)
            }
        };
        // We visit expressions tree in pre-order, so place the left-hand side on the top.
        decision_ctx.decision_stack.push_back(rhs);
        decision_ctx.decision_stack.push_back(lhs);
    }

    fn try_finish_decision(
        &mut self,
        span: Span,
        true_marker: BlockMarkerId,
        false_marker: BlockMarkerId,
        degraded_branches: &mut Vec<MCDCBranchSpan>,
    ) -> Option<(MCDCDecisionSpan, Vec<MCDCBranchSpan>)> {
        let Some(decision_ctx) = self.decision_ctx_stack.last_mut() else {
            bug!("Unexpected empty decision_ctx_stack")
        };
        let Some(condition_info) = decision_ctx.decision_stack.pop_back() else {
            let branch = MCDCBranchSpan {
                span,
                condition_info: ConditionInfo {
                    condition_id: ConditionId::START,
                    true_next_id: None,
                    false_next_id: None,
                },
                true_marker,
                false_marker,
            };
            degraded_branches.push(branch);
            return None;
        };
        let Some(decision) = decision_ctx.processing_decision.as_mut() else {
            bug!("Processing decision should have been created before any conditions are taken");
        };
        if condition_info.true_next_id.is_none() {
            decision.end_markers.push(true_marker);
        }
        if condition_info.false_next_id.is_none() {
            decision.end_markers.push(false_marker);
        }
        decision_ctx.conditions.push(MCDCBranchSpan {
            span,
            condition_info,
            true_marker,
            false_marker,
        });

        if decision_ctx.decision_stack.is_empty() {
            let conditions = std::mem::take(&mut decision_ctx.conditions);
            decision_ctx.processing_decision.take().map(|decision| (decision, conditions))
        } else {
            None
        }
    }
}

pub(crate) struct MCDCInfoBuilder {
    degraded_spans: Vec<MCDCBranchSpan>,
    mcdc_spans: Vec<(MCDCDecisionSpan, Vec<MCDCBranchSpan>)>,
    state: MCDCState,
}

impl MCDCInfoBuilder {
    pub(crate) fn new() -> Self {
        Self { degraded_spans: vec![], mcdc_spans: vec![], state: MCDCState::new() }
    }

    pub(crate) fn visit_evaluated_condition(
        &mut self,
        tcx: TyCtxt<'_>,
        source_info: SourceInfo,
        true_block: BasicBlock,
        false_block: BasicBlock,
        mut inject_block_marker: impl FnMut(SourceInfo, BasicBlock) -> BlockMarkerId,
    ) {
        let true_marker = inject_block_marker(source_info, true_block);
        let false_marker = inject_block_marker(source_info, false_block);

        // take_condition() returns Some for decision_result when the decision stack
        // is empty, i.e. when all the conditions of the decision were instrumented,
        // and the decision is "complete".
        if let Some((decision, conditions)) = self.state.try_finish_decision(
            source_info.span,
            true_marker,
            false_marker,
            &mut self.degraded_spans,
        ) {
            let num_conditions = conditions.len();
            assert_eq!(
                num_conditions, decision.num_conditions,
                "final number of conditions is not correct"
            );
            match num_conditions {
                0 => {
                    unreachable!("Decision with no condition is not expected");
                }
                1..=MAX_CONDITIONS_IN_DECISION => {
                    self.mcdc_spans.push((decision, conditions));
                }
                _ => {
                    self.degraded_spans.extend(conditions);

                    tcx.dcx().emit_warn(MCDCExceedsConditionLimit {
                        span: decision.span,
                        num_conditions,
                        max_conditions: MAX_CONDITIONS_IN_DECISION,
                    });
                }
            }
        }
    }

    pub(crate) fn into_done(
        self,
    ) -> (Vec<(MCDCDecisionSpan, Vec<MCDCBranchSpan>)>, Vec<MCDCBranchSpan>) {
        (self.mcdc_spans, self.degraded_spans)
    }
}

impl Builder<'_, '_> {
    pub(crate) fn visit_coverage_branch_operation(&mut self, logical_op: LogicalOp, span: Span) {
        if let Some(coverage_info) = self.coverage_info.as_mut()
            && let Some(mcdc_info) = coverage_info.mcdc_info.as_mut()
        {
            mcdc_info.state.record_conditions(logical_op, span);
        }
    }

    pub(crate) fn mcdc_increment_depth_if_enabled(&mut self) {
        if let Some(coverage_info) = self.coverage_info.as_mut()
            && let Some(mcdc_info) = coverage_info.mcdc_info.as_mut()
        {
            mcdc_info.state.decision_ctx_stack.push(MCDCDecisionCtx::default());
        };
    }

    pub(crate) fn mcdc_decrement_depth_if_enabled(&mut self) {
        if let Some(coverage_info) = self.coverage_info.as_mut()
            && let Some(mcdc_info) = coverage_info.mcdc_info.as_mut()
            && mcdc_info.state.decision_ctx_stack.pop().is_none()
        {
            bug!("Unexpected empty decision stack");
        };
    }
}