1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use rustc_hir::Mutability;
use rustc_index::bit_set::HybridBitSet;
use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
use rustc_middle::mir::{self, BasicBlock, Local, Location};
use rustc_middle::ty::TyCtxt;

use crate::transform::{MirPass, MirSource};

/// This pass looks for MIR that always copies the same local into the return place and eliminates
/// the copy by renaming all uses of that local to `_0`.
///
/// This allows LLVM to perform an optimization similar to the named return value optimization
/// (NRVO) that is guaranteed in C++. This avoids a stack allocation and `memcpy` for the
/// relatively common pattern of allocating a buffer on the stack, mutating it, and returning it by
/// value like so:
///
/// ```rust
/// fn foo(init: fn(&mut [u8; 1024])) -> [u8; 1024] {
///     let mut buf = [0; 1024];
///     init(&mut buf);
///     buf
/// }
/// ```
///
/// For now, this pass is very simple and only capable of eliminating a single copy. A more general
/// version of copy propagation, such as the one based on non-overlapping live ranges in [#47954] and
/// [#71003], could yield even more benefits.
///
/// [#47954]: https://github.com/rust-lang/rust/pull/47954
/// [#71003]: https://github.com/rust-lang/rust/pull/71003
pub struct RenameReturnPlace;

impl<'tcx> MirPass<'tcx> for RenameReturnPlace {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, src: MirSource<'tcx>, body: &mut mir::Body<'tcx>) {
        if tcx.sess.opts.debugging_opts.mir_opt_level == 0 {
            return;
        }

        let returned_local = match local_eligible_for_nrvo(body) {
            Some(l) => l,
            None => {
                debug!("`{:?}` was ineligible for NRVO", src.def_id());
                return;
            }
        };

        debug!(
            "`{:?}` was eligible for NRVO, making {:?} the return place",
            src.def_id(),
            returned_local
        );

        RenameToReturnPlace { tcx, to_rename: returned_local }.visit_body(body);

        // Clean up the `NOP`s we inserted for statements made useless by our renaming.
        for block_data in body.basic_blocks_mut() {
            block_data.statements.retain(|stmt| stmt.kind != mir::StatementKind::Nop);
        }

        // Overwrite the debuginfo of `_0` with that of the renamed local.
        let (renamed_decl, ret_decl) =
            body.local_decls.pick2_mut(returned_local, mir::RETURN_PLACE);

        // Sometimes, the return place is assigned a local of a different but coercable type, for
        // example `&mut T` instead of `&T`. Overwriting the `LocalInfo` for the return place means
        // its type may no longer match the return type of its function. This doesn't cause a
        // problem in codegen because these two types are layout-compatible, but may be unexpected.
        debug!("_0: {:?} = {:?}: {:?}", ret_decl.ty, returned_local, renamed_decl.ty);
        ret_decl.clone_from(renamed_decl);

        // The return place is always mutable.
        ret_decl.mutability = Mutability::Mut;
    }
}

/// MIR that is eligible for the NRVO must fulfill two conditions:
///   1. The return place must not be read prior to the `Return` terminator.
///   2. A simple assignment of a whole local to the return place (e.g., `_0 = _1`) must be the
///      only definition of the return place reaching the `Return` terminator.
///
/// If the MIR fulfills both these conditions, this function returns the `Local` that is assigned
/// to the return place along all possible paths through the control-flow graph.
fn local_eligible_for_nrvo(body: &mut mir::Body<'_>) -> Option<Local> {
    if IsReturnPlaceRead::run(body) {
        return None;
    }

    let mut copied_to_return_place = None;
    for block in body.basic_blocks().indices() {
        // Look for blocks with a `Return` terminator.
        if !matches!(body[block].terminator().kind, mir::TerminatorKind::Return) {
            continue;
        }

        // Look for an assignment of a single local to the return place prior to the `Return`.
        let returned_local = find_local_assigned_to_return_place(block, body)?;
        match body.local_kind(returned_local) {
            // FIXME: Can we do this for arguments as well?
            mir::LocalKind::Arg => return None,

            mir::LocalKind::ReturnPointer => bug!("Return place was assigned to itself?"),
            mir::LocalKind::Var | mir::LocalKind::Temp => {}
        }

        // If multiple different locals are copied to the return place. We can't pick a
        // single one to rename.
        if copied_to_return_place.map_or(false, |old| old != returned_local) {
            return None;
        }

        copied_to_return_place = Some(returned_local);
    }

    copied_to_return_place
}

fn find_local_assigned_to_return_place(
    start: BasicBlock,
    body: &mut mir::Body<'_>,
) -> Option<Local> {
    let mut block = start;
    let mut seen = HybridBitSet::new_empty(body.basic_blocks().len());

    // Iterate as long as `block` has exactly one predecessor that we have not yet visited.
    while seen.insert(block) {
        trace!("Looking for assignments to `_0` in {:?}", block);

        let local = body[block].statements.iter().rev().find_map(as_local_assigned_to_return_place);
        if local.is_some() {
            return local;
        }

        match body.predecessors()[block].as_slice() {
            &[pred] => block = pred,
            _ => return None,
        }
    }

    None
}

// If this statement is an assignment of an unprojected local to the return place,
// return that local.
fn as_local_assigned_to_return_place(stmt: &mir::Statement<'_>) -> Option<Local> {
    if let mir::StatementKind::Assign(box (lhs, rhs)) = &stmt.kind {
        if lhs.as_local() == Some(mir::RETURN_PLACE) {
            if let mir::Rvalue::Use(mir::Operand::Copy(rhs) | mir::Operand::Move(rhs)) = rhs {
                return rhs.as_local();
            }
        }
    }

    None
}

struct RenameToReturnPlace<'tcx> {
    to_rename: Local,
    tcx: TyCtxt<'tcx>,
}

/// Replaces all uses of `self.to_rename` with `_0`.
impl MutVisitor<'tcx> for RenameToReturnPlace<'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_statement(&mut self, stmt: &mut mir::Statement<'tcx>, loc: Location) {
        // Remove assignments of the local being replaced to the return place, since it is now the
        // return place:
        //     _0 = _1
        if as_local_assigned_to_return_place(stmt) == Some(self.to_rename) {
            stmt.kind = mir::StatementKind::Nop;
            return;
        }

        // Remove storage annotations for the local being replaced:
        //     StorageLive(_1)
        if let mir::StatementKind::StorageLive(local) | mir::StatementKind::StorageDead(local) =
            stmt.kind
        {
            if local == self.to_rename {
                stmt.kind = mir::StatementKind::Nop;
                return;
            }
        }

        self.super_statement(stmt, loc)
    }

    fn visit_terminator(&mut self, terminator: &mut mir::Terminator<'tcx>, loc: Location) {
        // Ignore the implicit "use" of the return place in a `Return` statement.
        if let mir::TerminatorKind::Return = terminator.kind {
            return;
        }

        self.super_terminator(terminator, loc);
    }

    fn visit_local(&mut self, l: &mut Local, _: PlaceContext, _: Location) {
        assert_ne!(*l, mir::RETURN_PLACE);
        if *l == self.to_rename {
            *l = mir::RETURN_PLACE;
        }
    }
}

struct IsReturnPlaceRead(bool);

impl IsReturnPlaceRead {
    fn run(body: &mir::Body<'_>) -> bool {
        let mut vis = IsReturnPlaceRead(false);
        vis.visit_body(body);
        vis.0
    }
}

impl Visitor<'tcx> for IsReturnPlaceRead {
    fn visit_local(&mut self, &l: &Local, ctxt: PlaceContext, _: Location) {
        if l == mir::RETURN_PLACE && ctxt.is_use() && !ctxt.is_place_assignment() {
            self.0 = true;
        }
    }

    fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, loc: Location) {
        // Ignore the implicit "use" of the return place in a `Return` statement.
        if let mir::TerminatorKind::Return = terminator.kind {
            return;
        }

        self.super_terminator(terminator, loc);
    }
}