1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
//! Propagates constants for early reporting of statically known
//! assertion failures

use std::cell::Cell;

use rustc_ast::ast::Mutability;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir::def::DefKind;
use rustc_hir::HirId;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::interpret::{InterpResult, Scalar};
use rustc_middle::mir::visit::{
    MutVisitor, MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor,
};
use rustc_middle::mir::{
    AggregateKind, AssertKind, BasicBlock, BinOp, Body, ClearCrossCrate, Constant, Local,
    LocalDecl, LocalKind, Location, Operand, Place, Rvalue, SourceInfo, SourceScope,
    SourceScopeData, Statement, StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE,
};
use rustc_middle::ty::layout::{HasTyCtxt, LayoutError, TyAndLayout};
use rustc_middle::ty::subst::{InternalSubsts, Subst};
use rustc_middle::ty::{self, ConstInt, ConstKind, Instance, ParamEnv, Ty, TyCtxt, TypeFoldable};
use rustc_session::lint;
use rustc_span::{def_id::DefId, Span};
use rustc_target::abi::{HasDataLayout, LayoutOf, Size, TargetDataLayout};
use rustc_trait_selection::traits;

use crate::const_eval::error_to_const_error;
use crate::interpret::{
    self, compile_time_machine, truncate, AllocId, Allocation, Frame, ImmTy, Immediate, InterpCx,
    LocalState, LocalValue, MemPlace, Memory, MemoryKind, OpTy, Operand as InterpOperand, PlaceTy,
    Pointer, ScalarMaybeUninit, StackPopCleanup,
};
use crate::transform::{MirPass, MirSource};

/// The maximum number of bytes that we'll allocate space for a local or the return value.
/// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;

/// Macro for machine-specific `InterpError` without allocation.
/// (These will never be shown to the user, but they help diagnose ICEs.)
macro_rules! throw_machine_stop_str {
    ($($tt:tt)*) => {{
        // We make a new local type for it. The type itself does not carry any information,
        // but its vtable (for the `MachineStopType` trait) does.
        struct Zst;
        // Printing this type shows the desired string.
        impl std::fmt::Display for Zst {
            fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                write!(f, $($tt)*)
            }
        }
        impl rustc_middle::mir::interpret::MachineStopType for Zst {}
        throw_machine_stop!(Zst)
    }};
}

pub struct ConstProp;

impl<'tcx> MirPass<'tcx> for ConstProp {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, source: MirSource<'tcx>, body: &mut Body<'tcx>) {
        // will be evaluated by miri and produce its errors there
        if source.promoted.is_some() {
            return;
        }

        use rustc_middle::hir::map::blocks::FnLikeNode;
        let hir_id = tcx.hir().as_local_hir_id(source.def_id().expect_local());

        let is_fn_like = FnLikeNode::from_node(tcx.hir().get(hir_id)).is_some();
        let is_assoc_const = tcx.def_kind(source.def_id()) == DefKind::AssocConst;

        // Only run const prop on functions, methods, closures and associated constants
        if !is_fn_like && !is_assoc_const {
            // skip anon_const/statics/consts because they'll be evaluated by miri anyway
            trace!("ConstProp skipped for {:?}", source.def_id());
            return;
        }

        let is_generator = tcx.type_of(source.def_id()).is_generator();
        // FIXME(welseywiser) const prop doesn't work on generators because of query cycles
        // computing their layout.
        if is_generator {
            trace!("ConstProp skipped for generator {:?}", source.def_id());
            return;
        }

        // Check if it's even possible to satisfy the 'where' clauses
        // for this item.
        // This branch will never be taken for any normal function.
        // However, it's possible to `#!feature(trivial_bounds)]` to write
        // a function with impossible to satisfy clauses, e.g.:
        // `fn foo() where String: Copy {}`
        //
        // We don't usually need to worry about this kind of case,
        // since we would get a compilation error if the user tried
        // to call it. However, since we can do const propagation
        // even without any calls to the function, we need to make
        // sure that it even makes sense to try to evaluate the body.
        // If there are unsatisfiable where clauses, then all bets are
        // off, and we just give up.
        //
        // We manually filter the predicates, skipping anything that's not
        // "global". We are in a potentially generic context
        // (e.g. we are evaluating a function without substituting generic
        // parameters, so this filtering serves two purposes:
        //
        // 1. We skip evaluating any predicates that we would
        // never be able prove are unsatisfiable (e.g. `<T as Foo>`
        // 2. We avoid trying to normalize predicates involving generic
        // parameters (e.g. `<T as Foo>::MyItem`). This can confuse
        // the normalization code (leading to cycle errors), since
        // it's usually never invoked in this way.
        let predicates = tcx
            .predicates_of(source.def_id())
            .predicates
            .iter()
            .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
        if traits::impossible_predicates(
            tcx,
            traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(),
        ) {
            trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", source.def_id());
            return;
        }

        trace!("ConstProp starting for {:?}", source.def_id());

        let dummy_body = &Body::new(
            body.basic_blocks().clone(),
            body.source_scopes.clone(),
            body.local_decls.clone(),
            Default::default(),
            body.arg_count,
            Default::default(),
            tcx.def_span(source.def_id()),
            body.generator_kind,
        );

        // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
        // constants, instead of just checking for const-folding succeeding.
        // That would require an uniform one-def no-mutation analysis
        // and RPO (or recursing when needing the value of a local).
        let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx, source);
        optimization_finder.visit_body(body);

        trace!("ConstProp done for {:?}", source.def_id());
    }
}

struct ConstPropMachine<'mir, 'tcx> {
    /// The virtual call stack.
    stack: Vec<Frame<'mir, 'tcx, (), ()>>,
    /// `OnlyInsideOwnBlock` locals that were written in the current block get erased at the end.
    written_only_inside_own_block_locals: FxHashSet<Local>,
    /// Locals that need to be cleared after every block terminates.
    only_propagate_inside_block_locals: BitSet<Local>,
    can_const_prop: IndexVec<Local, ConstPropMode>,
}

impl<'mir, 'tcx> ConstPropMachine<'mir, 'tcx> {
    fn new(
        only_propagate_inside_block_locals: BitSet<Local>,
        can_const_prop: IndexVec<Local, ConstPropMode>,
    ) -> Self {
        Self {
            stack: Vec::new(),
            written_only_inside_own_block_locals: Default::default(),
            only_propagate_inside_block_locals,
            can_const_prop,
        }
    }
}

impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for ConstPropMachine<'mir, 'tcx> {
    compile_time_machine!(<'mir, 'tcx>);

    type MemoryExtra = ();

    fn find_mir_or_eval_fn(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _args: &[OpTy<'tcx>],
        _ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
        _unwind: Option<BasicBlock>,
    ) -> InterpResult<'tcx, Option<&'mir Body<'tcx>>> {
        Ok(None)
    }

    fn call_intrinsic(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _instance: ty::Instance<'tcx>,
        _args: &[OpTy<'tcx>],
        _ret: Option<(PlaceTy<'tcx>, BasicBlock)>,
        _unwind: Option<BasicBlock>,
    ) -> InterpResult<'tcx> {
        throw_machine_stop_str!("calling intrinsics isn't supported in ConstProp")
    }

    fn assert_panic(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _msg: &rustc_middle::mir::AssertMessage<'tcx>,
        _unwind: Option<rustc_middle::mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        bug!("panics terminators are not evaluated in ConstProp")
    }

    fn ptr_to_int(_mem: &Memory<'mir, 'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx, u64> {
        throw_unsup!(ReadPointerAsBytes)
    }

    fn binary_ptr_op(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        _bin_op: BinOp,
        _left: ImmTy<'tcx>,
        _right: ImmTy<'tcx>,
    ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
        // We can't do this because aliasing of memory can differ between const eval and llvm
        throw_machine_stop_str!("pointer arithmetic or comparisons aren't supported in ConstProp")
    }

    fn box_alloc(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _dest: PlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        throw_machine_stop_str!("can't const prop heap allocations")
    }

    fn access_local(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
        local: Local,
    ) -> InterpResult<'tcx, InterpOperand<Self::PointerTag>> {
        let l = &frame.locals[local];

        if l.value == LocalValue::Uninitialized {
            throw_machine_stop_str!("tried to access an uninitialized local")
        }

        l.access()
    }

    fn access_local_mut<'a>(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
        frame: usize,
        local: Local,
    ) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
    {
        if ecx.machine.can_const_prop[local] == ConstPropMode::NoPropagation {
            throw_machine_stop_str!("tried to write to a local that is marked as not propagatable")
        }
        if frame == 0 && ecx.machine.only_propagate_inside_block_locals.contains(local) {
            ecx.machine.written_only_inside_own_block_locals.insert(local);
        }
        ecx.machine.stack[frame].locals[local].access_mut()
    }

    fn before_access_global(
        _memory_extra: &(),
        _alloc_id: AllocId,
        allocation: &Allocation<Self::PointerTag, Self::AllocExtra>,
        _static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        if is_write {
            throw_machine_stop_str!("can't write to global");
        }
        // If the static allocation is mutable, then we can't const prop it as its content
        // might be different at runtime.
        if allocation.mutability == Mutability::Mut {
            throw_machine_stop_str!("can't access mutable globals in ConstProp");
        }

        Ok(())
    }

    #[inline(always)]
    fn stack(
        ecx: &'a InterpCx<'mir, 'tcx, Self>,
    ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] {
        &ecx.machine.stack
    }

    #[inline(always)]
    fn stack_mut(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>> {
        &mut ecx.machine.stack
    }
}

/// Finds optimization opportunities on the MIR.
struct ConstPropagator<'mir, 'tcx> {
    ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    // FIXME(eddyb) avoid cloning these two fields more than once,
    // by accessing them through `ecx` instead.
    source_scopes: IndexVec<SourceScope, SourceScopeData>,
    local_decls: IndexVec<Local, LocalDecl<'tcx>>,
    // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store
    // the last known `SourceInfo` here and just keep revisiting it.
    source_info: Option<SourceInfo>,
}

impl<'mir, 'tcx> LayoutOf for ConstPropagator<'mir, 'tcx> {
    type Ty = Ty<'tcx>;
    type TyAndLayout = Result<TyAndLayout<'tcx>, LayoutError<'tcx>>;

    fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyAndLayout {
        self.tcx.layout_of(self.param_env.and(ty))
    }
}

impl<'mir, 'tcx> HasDataLayout for ConstPropagator<'mir, 'tcx> {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        &self.tcx.data_layout
    }
}

impl<'mir, 'tcx> HasTyCtxt<'tcx> for ConstPropagator<'mir, 'tcx> {
    #[inline]
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }
}

impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> {
    fn new(
        body: &Body<'tcx>,
        dummy_body: &'mir Body<'tcx>,
        tcx: TyCtxt<'tcx>,
        source: MirSource<'tcx>,
    ) -> ConstPropagator<'mir, 'tcx> {
        let def_id = source.def_id();
        let substs = &InternalSubsts::identity_for_item(tcx, def_id);
        let param_env = tcx.param_env_reveal_all_normalized(def_id);

        let span = tcx.def_span(def_id);
        // FIXME: `CanConstProp::check` computes the layout of all locals, return those layouts
        // so we can write them to `ecx.frame_mut().locals.layout, reducing the duplication in
        // `layout_of` query invocations.
        let can_const_prop = CanConstProp::check(tcx, param_env, body);
        let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len());
        for (l, mode) in can_const_prop.iter_enumerated() {
            if *mode == ConstPropMode::OnlyInsideOwnBlock {
                only_propagate_inside_block_locals.insert(l);
            }
        }
        let mut ecx = InterpCx::new(
            tcx,
            span,
            param_env,
            ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop),
            (),
        );

        let ret = ecx
            .layout_of(body.return_ty().subst(tcx, substs))
            .ok()
            // Don't bother allocating memory for ZST types which have no values
            // or for large values.
            .filter(|ret_layout| {
                !ret_layout.is_zst() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT)
            })
            .map(|ret_layout| ecx.allocate(ret_layout, MemoryKind::Stack));

        ecx.push_stack_frame(
            Instance::new(def_id, substs),
            dummy_body,
            ret.map(Into::into),
            StackPopCleanup::None { cleanup: false },
        )
        .expect("failed to push initial stack frame");

        ConstPropagator {
            ecx,
            tcx,
            param_env,
            // FIXME(eddyb) avoid cloning these two fields more than once,
            // by accessing them through `ecx` instead.
            source_scopes: body.source_scopes.clone(),
            //FIXME(wesleywiser) we can't steal this because `Visitor::super_visit_body()` needs it
            local_decls: body.local_decls.clone(),
            source_info: None,
        }
    }

    fn get_const(&self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        let op = match self.ecx.eval_place_to_op(place, None) {
            Ok(op) => op,
            Err(e) => {
                trace!("get_const failed: {}", e);
                return None;
            }
        };

        // Try to read the local as an immediate so that if it is representable as a scalar, we can
        // handle it as such, but otherwise, just return the value as is.
        Some(match self.ecx.try_read_immediate(op) {
            Ok(Ok(imm)) => imm.into(),
            _ => op,
        })
    }

    /// Remove `local` from the pool of `Locals`. Allows writing to them,
    /// but not reading from them anymore.
    fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) {
        ecx.frame_mut().locals[local] =
            LocalState { value: LocalValue::Uninitialized, layout: Cell::new(None) };
    }

    fn lint_root(&self, source_info: SourceInfo) -> Option<HirId> {
        match &self.source_scopes[source_info.scope].local_data {
            ClearCrossCrate::Set(data) => Some(data.lint_root),
            ClearCrossCrate::Clear => None,
        }
    }

    fn use_ecx<F, T>(&mut self, f: F) -> Option<T>
    where
        F: FnOnce(&mut Self) -> InterpResult<'tcx, T>,
    {
        match f(self) {
            Ok(val) => Some(val),
            Err(error) => {
                // Some errors shouldn't come up because creating them causes
                // an allocation, which we should avoid. When that happens,
                // dedicated error variants should be introduced instead.
                assert!(
                    !error.kind.allocates(),
                    "const-prop encountered allocating error: {}",
                    error
                );
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `c`.
    fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
        // FIXME we need to revisit this for #67176
        if c.needs_subst() {
            return None;
        }

        match self.ecx.const_to_op(c.literal, None) {
            Ok(op) => Some(op),
            Err(error) => {
                let tcx = self.ecx.tcx.at(c.span);
                let err = error_to_const_error(&self.ecx, error, Some(c.span));
                if let Some(lint_root) = self.lint_root(source_info) {
                    let lint_only = match c.literal.val {
                        // Promoteds must lint and not error as the user didn't ask for them
                        ConstKind::Unevaluated(_, _, Some(_)) => true,
                        // Out of backwards compatibility we cannot report hard errors in unused
                        // generic functions using associated constants of the generic parameters.
                        _ => c.literal.needs_subst(),
                    };
                    if lint_only {
                        // Out of backwards compatibility we cannot report hard errors in unused
                        // generic functions using associated constants of the generic parameters.
                        err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span));
                    } else {
                        err.report_as_error(tcx, "erroneous constant used");
                    }
                } else {
                    err.report_as_error(tcx, "erroneous constant used");
                }
                None
            }
        }
    }

    /// Returns the value, if any, of evaluating `place`.
    fn eval_place(&mut self, place: Place<'tcx>) -> Option<OpTy<'tcx>> {
        trace!("eval_place(place={:?})", place);
        self.use_ecx(|this| this.ecx.eval_place_to_op(place, None))
    }

    /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant`
    /// or `eval_place`, depending on the variant of `Operand` used.
    fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option<OpTy<'tcx>> {
        match *op {
            Operand::Constant(ref c) => self.eval_constant(c, source_info),
            Operand::Move(place) | Operand::Copy(place) => self.eval_place(place),
        }
    }

    fn report_assert_as_lint(
        &self,
        lint: &'static lint::Lint,
        source_info: SourceInfo,
        message: &'static str,
        panic: AssertKind<impl std::fmt::Debug>,
    ) -> Option<()> {
        let lint_root = self.lint_root(source_info)?;
        self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| {
            let mut err = lint.build(message);
            err.span_label(source_info.span, format!("{:?}", panic));
            err.emit()
        });
        None
    }

    fn check_unary_op(
        &mut self,
        op: UnOp,
        arg: &Operand<'tcx>,
        source_info: SourceInfo,
    ) -> Option<()> {
        if let (val, true) = self.use_ecx(|this| {
            let val = this.ecx.read_immediate(this.ecx.eval_operand(arg, None)?)?;
            let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, val)?;
            Ok((val, overflow))
        })? {
            // `AssertKind` only has an `OverflowNeg` variant, so make sure that is
            // appropriate to use.
            assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow");
            self.report_assert_as_lint(
                lint::builtin::ARITHMETIC_OVERFLOW,
                source_info,
                "this arithmetic operation will overflow",
                AssertKind::OverflowNeg(val.to_const_int()),
            )?;
        }

        Some(())
    }

    fn check_binary_op(
        &mut self,
        op: BinOp,
        left: &Operand<'tcx>,
        right: &Operand<'tcx>,
        source_info: SourceInfo,
    ) -> Option<()> {
        let r = self.use_ecx(|this| this.ecx.read_immediate(this.ecx.eval_operand(right, None)?));
        let l = self.use_ecx(|this| this.ecx.read_immediate(this.ecx.eval_operand(left, None)?));
        // Check for exceeding shifts *even if* we cannot evaluate the LHS.
        if op == BinOp::Shr || op == BinOp::Shl {
            let r = r?;
            // We need the type of the LHS. We cannot use `place_layout` as that is the type
            // of the result, which for checked binops is not the same!
            let left_ty = left.ty(&self.local_decls, self.tcx);
            let left_size = self.ecx.layout_of(left_ty).ok()?.size;
            let right_size = r.layout.size;
            let r_bits = r.to_scalar().ok();
            // This is basically `force_bits`.
            let r_bits = r_bits.and_then(|r| r.to_bits_or_ptr(right_size, &self.tcx).ok());
            if r_bits.map_or(false, |b| b >= left_size.bits() as u128) {
                debug!("check_binary_op: reporting assert for {:?}", source_info);
                self.report_assert_as_lint(
                    lint::builtin::ARITHMETIC_OVERFLOW,
                    source_info,
                    "this arithmetic operation will overflow",
                    AssertKind::Overflow(
                        op,
                        match l {
                            Some(l) => l.to_const_int(),
                            // Invent a dummy value, the diagnostic ignores it anyway
                            None => ConstInt::new(
                                1,
                                left_size,
                                left_ty.is_signed(),
                                left_ty.is_ptr_sized_integral(),
                            ),
                        },
                        r.to_const_int(),
                    ),
                )?;
            }
        }

        if let (Some(l), Some(r)) = (l, r) {
            // The remaining operators are handled through `overflowing_binary_op`.
            if self.use_ecx(|this| {
                let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, l, r)?;
                Ok(overflow)
            })? {
                self.report_assert_as_lint(
                    lint::builtin::ARITHMETIC_OVERFLOW,
                    source_info,
                    "this arithmetic operation will overflow",
                    AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()),
                )?;
            }
        }
        Some(())
    }

    fn propagate_operand(&mut self, operand: &mut Operand<'tcx>) {
        match *operand {
            Operand::Copy(l) | Operand::Move(l) => {
                if let Some(value) = self.get_const(l) {
                    if self.should_const_prop(value) {
                        // FIXME(felix91gr): this code only handles `Scalar` cases.
                        // For now, we're not handling `ScalarPair` cases because
                        // doing so here would require a lot of code duplication.
                        // We should hopefully generalize `Operand` handling into a fn,
                        // and use it to do const-prop here and everywhere else
                        // where it makes sense.
                        if let interpret::Operand::Immediate(interpret::Immediate::Scalar(
                            ScalarMaybeUninit::Scalar(scalar),
                        )) = *value
                        {
                            *operand = self.operand_from_scalar(
                                scalar,
                                value.layout.ty,
                                self.source_info.unwrap().span,
                            );
                        }
                    }
                }
            }
            Operand::Constant(_) => (),
        }
    }

    fn const_prop(
        &mut self,
        rvalue: &Rvalue<'tcx>,
        source_info: SourceInfo,
        place: Place<'tcx>,
    ) -> Option<()> {
        // Perform any special handling for specific Rvalue types.
        // Generally, checks here fall into one of two categories:
        //   1. Additional checking to provide useful lints to the user
        //        - In this case, we will do some validation and then fall through to the
        //          end of the function which evals the assignment.
        //   2. Working around bugs in other parts of the compiler
        //        - In this case, we'll return `None` from this function to stop evaluation.
        match rvalue {
            // Additional checking: give lints to the user if an overflow would occur.
            // We do this here and not in the `Assert` terminator as that terminator is
            // only sometimes emitted (overflow checks can be disabled), but we want to always
            // lint.
            Rvalue::UnaryOp(op, arg) => {
                trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg);
                self.check_unary_op(*op, arg, source_info)?;
            }
            Rvalue::BinaryOp(op, left, right) => {
                trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right);
                self.check_binary_op(*op, left, right, source_info)?;
            }
            Rvalue::CheckedBinaryOp(op, left, right) => {
                trace!(
                    "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})",
                    op,
                    left,
                    right
                );
                self.check_binary_op(*op, left, right, source_info)?;
            }

            // Do not try creating references (#67862)
            Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => {
                trace!("skipping AddressOf | Ref for {:?}", place);

                // This may be creating mutable references or immutable references to cells.
                // If that happens, the pointed to value could be mutated via that reference.
                // Since we aren't tracking references, the const propagator loses track of what
                // value the local has right now.
                // Thus, all locals that have their reference taken
                // must not take part in propagation.
                Self::remove_const(&mut self.ecx, place.local);

                return None;
            }
            Rvalue::ThreadLocalRef(def_id) => {
                trace!("skipping ThreadLocalRef({:?})", def_id);

                return None;
            }

            // There's no other checking to do at this time.
            Rvalue::Aggregate(..)
            | Rvalue::Use(..)
            | Rvalue::Repeat(..)
            | Rvalue::Len(..)
            | Rvalue::Cast(..)
            | Rvalue::Discriminant(..)
            | Rvalue::NullaryOp(..) => {}
        }

        // FIXME we need to revisit this for #67176
        if rvalue.needs_subst() {
            return None;
        }

        if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 3 {
            self.eval_rvalue_with_identities(rvalue, place)
        } else {
            self.use_ecx(|this| this.ecx.eval_rvalue_into_place(rvalue, place))
        }
    }

    // Attempt to use albegraic identities to eliminate constant expressions
    fn eval_rvalue_with_identities(
        &mut self,
        rvalue: &Rvalue<'tcx>,
        place: Place<'tcx>,
    ) -> Option<()> {
        self.use_ecx(|this| {
            match rvalue {
                Rvalue::BinaryOp(op, left, right) | Rvalue::CheckedBinaryOp(op, left, right) => {
                    let l = this.ecx.eval_operand(left, None);
                    let r = this.ecx.eval_operand(right, None);

                    let const_arg = match (l, r) {
                        (Ok(x), Err(_)) | (Err(_), Ok(x)) => this.ecx.read_immediate(x)?,
                        (Err(e), Err(_)) => return Err(e),
                        (Ok(_), Ok(_)) => {
                            this.ecx.eval_rvalue_into_place(rvalue, place)?;
                            return Ok(());
                        }
                    };

                    let arg_value =
                        this.ecx.force_bits(const_arg.to_scalar()?, const_arg.layout.size)?;
                    let dest = this.ecx.eval_place(place)?;

                    match op {
                        BinOp::BitAnd => {
                            if arg_value == 0 {
                                this.ecx.write_immediate(*const_arg, dest)?;
                            }
                        }
                        BinOp::BitOr => {
                            if arg_value == truncate(u128::MAX, const_arg.layout.size)
                                || (const_arg.layout.ty.is_bool() && arg_value == 1)
                            {
                                this.ecx.write_immediate(*const_arg, dest)?;
                            }
                        }
                        BinOp::Mul => {
                            if const_arg.layout.ty.is_integral() && arg_value == 0 {
                                if let Rvalue::CheckedBinaryOp(_, _, _) = rvalue {
                                    let val = Immediate::ScalarPair(
                                        const_arg.to_scalar()?.into(),
                                        Scalar::from_bool(false).into(),
                                    );
                                    this.ecx.write_immediate(val, dest)?;
                                } else {
                                    this.ecx.write_immediate(*const_arg, dest)?;
                                }
                            }
                        }
                        _ => {
                            this.ecx.eval_rvalue_into_place(rvalue, place)?;
                        }
                    }
                }
                _ => {
                    this.ecx.eval_rvalue_into_place(rvalue, place)?;
                }
            }

            Ok(())
        })
    }

    /// Creates a new `Operand::Constant` from a `Scalar` value
    fn operand_from_scalar(&self, scalar: Scalar, ty: Ty<'tcx>, span: Span) -> Operand<'tcx> {
        Operand::Constant(Box::new(Constant {
            span,
            user_ty: None,
            literal: ty::Const::from_scalar(self.tcx, scalar, ty),
        }))
    }

    fn replace_with_const(
        &mut self,
        rval: &mut Rvalue<'tcx>,
        value: OpTy<'tcx>,
        source_info: SourceInfo,
    ) {
        if let Rvalue::Use(Operand::Constant(c)) = rval {
            if !matches!(c.literal.val, ConstKind::Unevaluated(..)) {
                trace!("skipping replace of Rvalue::Use({:?} because it is already a const", c);
                return;
            }
        }

        trace!("attepting to replace {:?} with {:?}", rval, value);
        if let Err(e) = self.ecx.const_validate_operand(
            value,
            vec![],
            // FIXME: is ref tracking too expensive?
            &mut interpret::RefTracking::empty(),
            /*may_ref_to_static*/ true,
        ) {
            trace!("validation error, attempt failed: {:?}", e);
            return;
        }

        // FIXME> figure out what to do when try_read_immediate fails
        let imm = self.use_ecx(|this| this.ecx.try_read_immediate(value));

        if let Some(Ok(imm)) = imm {
            match *imm {
                interpret::Immediate::Scalar(ScalarMaybeUninit::Scalar(scalar)) => {
                    *rval = Rvalue::Use(self.operand_from_scalar(
                        scalar,
                        value.layout.ty,
                        source_info.span,
                    ));
                }
                Immediate::ScalarPair(
                    ScalarMaybeUninit::Scalar(one),
                    ScalarMaybeUninit::Scalar(two),
                ) => {
                    // Found a value represented as a pair. For now only do cont-prop if type of
                    // Rvalue is also a pair with two scalars. The more general case is more
                    // complicated to implement so we'll do it later.
                    // FIXME: implement the general case stated above ^.
                    let ty = &value.layout.ty.kind;
                    // Only do it for tuples
                    if let ty::Tuple(substs) = ty {
                        // Only do it if tuple is also a pair with two scalars
                        if substs.len() == 2 {
                            let opt_ty1_ty2 = self.use_ecx(|this| {
                                let ty1 = substs[0].expect_ty();
                                let ty2 = substs[1].expect_ty();
                                let ty_is_scalar = |ty| {
                                    this.ecx.layout_of(ty).ok().map(|layout| layout.abi.is_scalar())
                                        == Some(true)
                                };
                                if ty_is_scalar(ty1) && ty_is_scalar(ty2) {
                                    Ok(Some((ty1, ty2)))
                                } else {
                                    Ok(None)
                                }
                            });

                            if let Some(Some((ty1, ty2))) = opt_ty1_ty2 {
                                *rval = Rvalue::Aggregate(
                                    Box::new(AggregateKind::Tuple),
                                    vec![
                                        self.operand_from_scalar(one, ty1, source_info.span),
                                        self.operand_from_scalar(two, ty2, source_info.span),
                                    ],
                                );
                            }
                        }
                    }
                }
                _ => {}
            }
        }
    }

    /// Returns `true` if and only if this `op` should be const-propagated into.
    fn should_const_prop(&mut self, op: OpTy<'tcx>) -> bool {
        let mir_opt_level = self.tcx.sess.opts.debugging_opts.mir_opt_level;

        if mir_opt_level == 0 {
            return false;
        }

        match *op {
            interpret::Operand::Immediate(Immediate::Scalar(ScalarMaybeUninit::Scalar(s))) => {
                s.is_bits()
            }
            interpret::Operand::Immediate(Immediate::ScalarPair(
                ScalarMaybeUninit::Scalar(l),
                ScalarMaybeUninit::Scalar(r),
            )) => l.is_bits() && r.is_bits(),
            _ => false,
        }
    }
}

/// The mode that `ConstProp` is allowed to run in for a given `Local`.
#[derive(Clone, Copy, Debug, PartialEq)]
enum ConstPropMode {
    /// The `Local` can be propagated into and reads of this `Local` can also be propagated.
    FullConstProp,
    /// The `Local` can only be propagated into and from its own block.
    OnlyInsideOwnBlock,
    /// The `Local` can be propagated into but reads cannot be propagated.
    OnlyPropagateInto,
    /// The `Local` cannot be part of propagation at all. Any statement
    /// referencing it either for reading or writing will not get propagated.
    NoPropagation,
}

struct CanConstProp {
    can_const_prop: IndexVec<Local, ConstPropMode>,
    // False at the beginning. Once set, no more assignments are allowed to that local.
    found_assignment: BitSet<Local>,
    // Cache of locals' information
    local_kinds: IndexVec<Local, LocalKind>,
}

impl CanConstProp {
    /// Returns true if `local` can be propagated
    fn check(
        tcx: TyCtxt<'tcx>,
        param_env: ParamEnv<'tcx>,
        body: &Body<'tcx>,
    ) -> IndexVec<Local, ConstPropMode> {
        let mut cpv = CanConstProp {
            can_const_prop: IndexVec::from_elem(ConstPropMode::FullConstProp, &body.local_decls),
            found_assignment: BitSet::new_empty(body.local_decls.len()),
            local_kinds: IndexVec::from_fn_n(
                |local| body.local_kind(local),
                body.local_decls.len(),
            ),
        };
        for (local, val) in cpv.can_const_prop.iter_enumerated_mut() {
            let ty = body.local_decls[local].ty;
            match tcx.layout_of(param_env.and(ty)) {
                Ok(layout) if layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) => {}
                // Either the layout fails to compute, then we can't use this local anyway
                // or the local is too large, then we don't want to.
                _ => {
                    *val = ConstPropMode::NoPropagation;
                    continue;
                }
            }
            // Cannot use args at all
            // Cannot use locals because if x < y { y - x } else { x - y } would
            //        lint for x != y
            // FIXME(oli-obk): lint variables until they are used in a condition
            // FIXME(oli-obk): lint if return value is constant
            if cpv.local_kinds[local] == LocalKind::Arg {
                *val = ConstPropMode::OnlyPropagateInto;
                trace!(
                    "local {:?} can't be const propagated because it's a function argument",
                    local
                );
            } else if cpv.local_kinds[local] == LocalKind::Var {
                *val = ConstPropMode::OnlyInsideOwnBlock;
                trace!(
                    "local {:?} will only be propagated inside its block, because it's a user variable",
                    local
                );
            }
        }
        cpv.visit_body(&body);
        cpv.can_const_prop
    }
}

impl<'tcx> Visitor<'tcx> for CanConstProp {
    fn visit_local(&mut self, &local: &Local, context: PlaceContext, _: Location) {
        use rustc_middle::mir::visit::PlaceContext::*;
        match context {
            // Projections are fine, because `&mut foo.x` will be caught by
            // `MutatingUseContext::Borrow` elsewhere.
            MutatingUse(MutatingUseContext::Projection)
            // These are just stores, where the storing is not propagatable, but there may be later
            // mutations of the same local via `Store`
            | MutatingUse(MutatingUseContext::Call)
            // Actual store that can possibly even propagate a value
            | MutatingUse(MutatingUseContext::Store) => {
                if !self.found_assignment.insert(local) {
                    match &mut self.can_const_prop[local] {
                        // If the local can only get propagated in its own block, then we don't have
                        // to worry about multiple assignments, as we'll nuke the const state at the
                        // end of the block anyway, and inside the block we overwrite previous
                        // states as applicable.
                        ConstPropMode::OnlyInsideOwnBlock => {}
                        ConstPropMode::NoPropagation => {}
                        ConstPropMode::OnlyPropagateInto => {}
                        other @ ConstPropMode::FullConstProp => {
                            trace!(
                                "local {:?} can't be propagated because of multiple assignments",
                                local,
                            );
                            *other = ConstPropMode::OnlyPropagateInto;
                        }
                    }
                }
            }
            // Reading constants is allowed an arbitrary number of times
            NonMutatingUse(NonMutatingUseContext::Copy)
            | NonMutatingUse(NonMutatingUseContext::Move)
            | NonMutatingUse(NonMutatingUseContext::Inspect)
            | NonMutatingUse(NonMutatingUseContext::Projection)
            | NonUse(_) => {}

            // These could be propagated with a smarter analysis or just some careful thinking about
            // whether they'd be fine right now.
            MutatingUse(MutatingUseContext::AsmOutput)
            | MutatingUse(MutatingUseContext::Yield)
            | MutatingUse(MutatingUseContext::Drop)
            | MutatingUse(MutatingUseContext::Retag)
            // These can't ever be propagated under any scheme, as we can't reason about indirect
            // mutation.
            | NonMutatingUse(NonMutatingUseContext::SharedBorrow)
            | NonMutatingUse(NonMutatingUseContext::ShallowBorrow)
            | NonMutatingUse(NonMutatingUseContext::UniqueBorrow)
            | NonMutatingUse(NonMutatingUseContext::AddressOf)
            | MutatingUse(MutatingUseContext::Borrow)
            | MutatingUse(MutatingUseContext::AddressOf) => {
                trace!("local {:?} can't be propagaged because it's used: {:?}", local, context);
                self.can_const_prop[local] = ConstPropMode::NoPropagation;
            }
        }
    }
}

impl<'mir, 'tcx> MutVisitor<'tcx> for ConstPropagator<'mir, 'tcx> {
    fn tcx(&self) -> TyCtxt<'tcx> {
        self.tcx
    }

    fn visit_body(&mut self, body: &mut Body<'tcx>) {
        for (bb, data) in body.basic_blocks_mut().iter_enumerated_mut() {
            self.visit_basic_block_data(bb, data);
        }
    }

    fn visit_operand(&mut self, operand: &mut Operand<'tcx>, location: Location) {
        self.super_operand(operand, location);

        // Only const prop copies and moves on `mir_opt_level=3` as doing so
        // currently increases compile time.
        if self.tcx.sess.opts.debugging_opts.mir_opt_level >= 3 {
            self.propagate_operand(operand)
        }
    }

    fn visit_constant(&mut self, constant: &mut Constant<'tcx>, location: Location) {
        trace!("visit_constant: {:?}", constant);
        self.super_constant(constant, location);
        self.eval_constant(constant, self.source_info.unwrap());
    }

    fn visit_statement(&mut self, statement: &mut Statement<'tcx>, location: Location) {
        trace!("visit_statement: {:?}", statement);
        let source_info = statement.source_info;
        self.source_info = Some(source_info);
        if let StatementKind::Assign(box (place, ref mut rval)) = statement.kind {
            let can_const_prop = self.ecx.machine.can_const_prop[place.local];
            if let Some(()) = self.const_prop(rval, source_info, place) {
                // This will return None if the above `const_prop` invocation only "wrote" a
                // type whose creation requires no write. E.g. a generator whose initial state
                // consists solely of uninitialized memory (so it doesn't capture any locals).
                if let Some(value) = self.get_const(place) {
                    if self.should_const_prop(value) {
                        trace!("replacing {:?} with {:?}", rval, value);
                        self.replace_with_const(rval, value, source_info);
                        if can_const_prop == ConstPropMode::FullConstProp
                            || can_const_prop == ConstPropMode::OnlyInsideOwnBlock
                        {
                            trace!("propagated into {:?}", place);
                        }
                    }
                }
                match can_const_prop {
                    ConstPropMode::OnlyInsideOwnBlock => {
                        trace!(
                            "found local restricted to its block. \
                                Will remove it from const-prop after block is finished. Local: {:?}",
                            place.local
                        );
                    }
                    ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => {
                        trace!("can't propagate into {:?}", place);
                        if place.local != RETURN_PLACE {
                            Self::remove_const(&mut self.ecx, place.local);
                        }
                    }
                    ConstPropMode::FullConstProp => {}
                }
            } else {
                // Const prop failed, so erase the destination, ensuring that whatever happens
                // from here on, does not know about the previous value.
                // This is important in case we have
                // ```rust
                // let mut x = 42;
                // x = SOME_MUTABLE_STATIC;
                // // x must now be undefined
                // ```
                // FIXME: we overzealously erase the entire local, because that's easier to
                // implement.
                trace!(
                    "propagation into {:?} failed.
                        Nuking the entire site from orbit, it's the only way to be sure",
                    place,
                );
                Self::remove_const(&mut self.ecx, place.local);
            }
        } else {
            match statement.kind {
                StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => {
                    let frame = self.ecx.frame_mut();
                    frame.locals[local].value =
                        if let StatementKind::StorageLive(_) = statement.kind {
                            LocalValue::Uninitialized
                        } else {
                            LocalValue::Dead
                        };
                }
                _ => {}
            }
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
        let source_info = terminator.source_info;
        self.source_info = Some(source_info);
        self.super_terminator(terminator, location);
        match &mut terminator.kind {
            TerminatorKind::Assert { expected, ref msg, ref mut cond, .. } => {
                if let Some(value) = self.eval_operand(&cond, source_info) {
                    trace!("assertion on {:?} should be {:?}", value, expected);
                    let expected = ScalarMaybeUninit::from(Scalar::from_bool(*expected));
                    let value_const = self.ecx.read_scalar(value).unwrap();
                    if expected != value_const {
                        enum DbgVal<T> {
                            Val(T),
                            Underscore,
                        }
                        impl<T: std::fmt::Debug> std::fmt::Debug for DbgVal<T> {
                            fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
                                match self {
                                    Self::Val(val) => val.fmt(fmt),
                                    Self::Underscore => fmt.write_str("_"),
                                }
                            }
                        }
                        let mut eval_to_int = |op| {
                            // This can be `None` if the lhs wasn't const propagated and we just
                            // triggered the assert on the value of the rhs.
                            match self.eval_operand(op, source_info) {
                                Some(op) => {
                                    DbgVal::Val(self.ecx.read_immediate(op).unwrap().to_const_int())
                                }
                                None => DbgVal::Underscore,
                            }
                        };
                        let msg = match msg {
                            AssertKind::DivisionByZero(op) => {
                                Some(AssertKind::DivisionByZero(eval_to_int(op)))
                            }
                            AssertKind::RemainderByZero(op) => {
                                Some(AssertKind::RemainderByZero(eval_to_int(op)))
                            }
                            AssertKind::BoundsCheck { ref len, ref index } => {
                                let len = eval_to_int(len);
                                let index = eval_to_int(index);
                                Some(AssertKind::BoundsCheck { len, index })
                            }
                            // Overflow is are already covered by checks on the binary operators.
                            AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None,
                            // Need proper const propagator for these.
                            _ => None,
                        };
                        // Poison all places this operand references so that further code
                        // doesn't use the invalid value
                        match cond {
                            Operand::Move(ref place) | Operand::Copy(ref place) => {
                                Self::remove_const(&mut self.ecx, place.local);
                            }
                            Operand::Constant(_) => {}
                        }
                        if let Some(msg) = msg {
                            self.report_assert_as_lint(
                                lint::builtin::UNCONDITIONAL_PANIC,
                                source_info,
                                "this operation will panic at runtime",
                                msg,
                            );
                        }
                    } else {
                        if self.should_const_prop(value) {
                            if let ScalarMaybeUninit::Scalar(scalar) = value_const {
                                *cond = self.operand_from_scalar(
                                    scalar,
                                    self.tcx.types.bool,
                                    source_info.span,
                                );
                            }
                        }
                    }
                }
            }
            TerminatorKind::SwitchInt { ref mut discr, .. } => {
                // FIXME: This is currently redundant with `visit_operand`, but sadly
                // always visiting operands currently causes a perf regression in LLVM codegen, so
                // `visit_operand` currently only runs for propagates places for `mir_opt_level=3`.
                self.propagate_operand(discr)
            }
            // None of these have Operands to const-propagate.
            TerminatorKind::Goto { .. }
            | TerminatorKind::Resume
            | TerminatorKind::Abort
            | TerminatorKind::Return
            | TerminatorKind::Unreachable
            | TerminatorKind::Drop { .. }
            | TerminatorKind::DropAndReplace { .. }
            | TerminatorKind::Yield { .. }
            | TerminatorKind::GeneratorDrop
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::InlineAsm { .. } => {}
            // Every argument in our function calls have already been propagated in `visit_operand`.
            //
            // NOTE: because LLVM codegen gives performance regressions with it, so this is gated
            // on `mir_opt_level=3`.
            TerminatorKind::Call { .. } => {}
        }

        // We remove all Locals which are restricted in propagation to their containing blocks and
        // which were modified in the current block.
        // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`.
        let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals);
        for &local in locals.iter() {
            Self::remove_const(&mut self.ecx, local);
        }
        locals.clear();
        // Put it back so we reuse the heap of the storage
        self.ecx.machine.written_only_inside_own_block_locals = locals;
        if cfg!(debug_assertions) {
            // Ensure we are correctly erasing locals with the non-debug-assert logic.
            for local in self.ecx.machine.only_propagate_inside_block_locals.iter() {
                assert!(
                    self.get_const(local.into()).is_none()
                        || self
                            .layout_of(self.local_decls[local].ty)
                            .map_or(true, |layout| layout.is_zst())
                )
            }
        }
    }
}