1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
use std::borrow::Cow;
use std::convert::TryFrom;

use rustc_middle::ty::layout::TyAndLayout;
use rustc_middle::ty::Instance;
use rustc_middle::{mir, ty};
use rustc_target::abi::{self, LayoutOf as _};
use rustc_target::spec::abi::Abi;

use super::{
    FnVal, ImmTy, InterpCx, InterpResult, MPlaceTy, Machine, OpTy, PlaceTy, StackPopCleanup,
};

impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
    pub(super) fn eval_terminator(
        &mut self,
        terminator: &mir::Terminator<'tcx>,
    ) -> InterpResult<'tcx> {
        use rustc_middle::mir::TerminatorKind::*;
        match terminator.kind {
            Return => {
                self.pop_stack_frame(/* unwinding */ false)?
            }

            Goto { target } => self.go_to_block(target),

            SwitchInt { ref discr, ref values, ref targets, switch_ty } => {
                let discr = self.read_immediate(self.eval_operand(discr, None)?)?;
                trace!("SwitchInt({:?})", *discr);
                assert_eq!(discr.layout.ty, switch_ty);

                // Branch to the `otherwise` case by default, if no match is found.
                assert!(!targets.is_empty());
                let mut target_block = targets[targets.len() - 1];

                for (index, &const_int) in values.iter().enumerate() {
                    // Compare using binary_op, to also support pointer values
                    let res = self
                        .overflowing_binary_op(
                            mir::BinOp::Eq,
                            discr,
                            ImmTy::from_uint(const_int, discr.layout),
                        )?
                        .0;
                    if res.to_bool()? {
                        target_block = targets[index];
                        break;
                    }
                }

                self.go_to_block(target_block);
            }

            Call { ref func, ref args, destination, ref cleanup, from_hir_call: _, fn_span: _ } => {
                let old_stack = self.frame_idx();
                let old_loc = self.frame().loc;
                let func = self.eval_operand(func, None)?;
                let (fn_val, abi) = match func.layout.ty.kind {
                    ty::FnPtr(sig) => {
                        let caller_abi = sig.abi();
                        let fn_ptr = self.read_scalar(func)?.not_undef()?;
                        let fn_val = self.memory.get_fn(fn_ptr)?;
                        (fn_val, caller_abi)
                    }
                    ty::FnDef(def_id, substs) => {
                        let sig = func.layout.ty.fn_sig(*self.tcx);
                        (FnVal::Instance(self.resolve(def_id, substs)?), sig.abi())
                    }
                    _ => span_bug!(
                        terminator.source_info.span,
                        "invalid callee of type {:?}",
                        func.layout.ty
                    ),
                };
                let args = self.eval_operands(args)?;
                let ret = match destination {
                    Some((dest, ret)) => Some((self.eval_place(dest)?, ret)),
                    None => None,
                };
                self.eval_fn_call(fn_val, abi, &args[..], ret, *cleanup)?;
                // Sanity-check that `eval_fn_call` either pushed a new frame or
                // did a jump to another block.
                if self.frame_idx() == old_stack && self.frame().loc == old_loc {
                    span_bug!(terminator.source_info.span, "evaluating this call made no progress");
                }
            }

            Drop { place, target, unwind } => {
                let place = self.eval_place(place)?;
                let ty = place.layout.ty;
                trace!("TerminatorKind::drop: {:?}, type {}", place, ty);

                let instance = Instance::resolve_drop_in_place(*self.tcx, ty);
                self.drop_in_place(place, instance, target, unwind)?;
            }

            Assert { ref cond, expected, ref msg, target, cleanup } => {
                let cond_val =
                    self.read_immediate(self.eval_operand(cond, None)?)?.to_scalar()?.to_bool()?;
                if expected == cond_val {
                    self.go_to_block(target);
                } else {
                    M::assert_panic(self, msg, cleanup)?;
                }
            }

            Abort => {
                M::abort(self)?;
            }

            // When we encounter Resume, we've finished unwinding
            // cleanup for the current stack frame. We pop it in order
            // to continue unwinding the next frame
            Resume => {
                trace!("unwinding: resuming from cleanup");
                // By definition, a Resume terminator means
                // that we're unwinding
                self.pop_stack_frame(/* unwinding */ true)?;
                return Ok(());
            }

            // It is UB to ever encounter this.
            Unreachable => throw_ub!(Unreachable),

            // These should never occur for MIR we actually run.
            DropAndReplace { .. }
            | FalseEdge { .. }
            | FalseUnwind { .. }
            | Yield { .. }
            | GeneratorDrop => span_bug!(
                terminator.source_info.span,
                "{:#?} should have been eliminated by MIR pass",
                terminator.kind
            ),

            // Inline assembly can't be interpreted.
            InlineAsm { .. } => throw_unsup_format!("inline assembly is not supported"),
        }

        Ok(())
    }

    fn check_argument_compat(
        rust_abi: bool,
        caller: TyAndLayout<'tcx>,
        callee: TyAndLayout<'tcx>,
    ) -> bool {
        if caller.ty == callee.ty {
            // No question
            return true;
        }
        if !rust_abi {
            // Don't risk anything
            return false;
        }
        // Compare layout
        match (&caller.abi, &callee.abi) {
            // Different valid ranges are okay (once we enforce validity,
            // that will take care to make it UB to leave the range, just
            // like for transmute).
            (abi::Abi::Scalar(ref caller), abi::Abi::Scalar(ref callee)) => {
                caller.value == callee.value
            }
            (
                abi::Abi::ScalarPair(ref caller1, ref caller2),
                abi::Abi::ScalarPair(ref callee1, ref callee2),
            ) => caller1.value == callee1.value && caller2.value == callee2.value,
            // Be conservative
            _ => false,
        }
    }

    /// Pass a single argument, checking the types for compatibility.
    fn pass_argument(
        &mut self,
        rust_abi: bool,
        caller_arg: &mut impl Iterator<Item = OpTy<'tcx, M::PointerTag>>,
        callee_arg: PlaceTy<'tcx, M::PointerTag>,
    ) -> InterpResult<'tcx> {
        if rust_abi && callee_arg.layout.is_zst() {
            // Nothing to do.
            trace!("Skipping callee ZST");
            return Ok(());
        }
        let caller_arg = caller_arg.next().ok_or_else(|| {
            err_ub_format!("calling a function with fewer arguments than it requires")
        })?;
        if rust_abi {
            assert!(!caller_arg.layout.is_zst(), "ZSTs must have been already filtered out");
        }
        // Now, check
        if !Self::check_argument_compat(rust_abi, caller_arg.layout, callee_arg.layout) {
            throw_ub_format!(
                "calling a function with argument of type {:?} passing data of type {:?}",
                callee_arg.layout.ty,
                caller_arg.layout.ty
            )
        }
        // We allow some transmutes here
        self.copy_op_transmute(caller_arg, callee_arg)
    }

    /// Call this function -- pushing the stack frame and initializing the arguments.
    fn eval_fn_call(
        &mut self,
        fn_val: FnVal<'tcx, M::ExtraFnVal>,
        caller_abi: Abi,
        args: &[OpTy<'tcx, M::PointerTag>],
        ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        trace!("eval_fn_call: {:#?}", fn_val);

        let instance = match fn_val {
            FnVal::Instance(instance) => instance,
            FnVal::Other(extra) => {
                return M::call_extra_fn(self, extra, args, ret, unwind);
            }
        };

        // ABI check
        {
            let callee_abi = {
                let instance_ty = instance.ty_env(*self.tcx, self.param_env);
                match instance_ty.kind {
                    ty::FnDef(..) => instance_ty.fn_sig(*self.tcx).abi(),
                    ty::Closure(..) => Abi::RustCall,
                    ty::Generator(..) => Abi::Rust,
                    _ => span_bug!(self.cur_span(), "unexpected callee ty: {:?}", instance_ty),
                }
            };
            let normalize_abi = |abi| match abi {
                Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic =>
                // These are all the same ABI, really.
                {
                    Abi::Rust
                }
                abi => abi,
            };
            if normalize_abi(caller_abi) != normalize_abi(callee_abi) {
                throw_ub_format!(
                    "calling a function with ABI {:?} using caller ABI {:?}",
                    callee_abi,
                    caller_abi
                )
            }
        }

        match instance.def {
            ty::InstanceDef::Intrinsic(..) => {
                assert!(caller_abi == Abi::RustIntrinsic || caller_abi == Abi::PlatformIntrinsic);
                M::call_intrinsic(self, instance, args, ret, unwind)
            }
            ty::InstanceDef::VtableShim(..)
            | ty::InstanceDef::ReifyShim(..)
            | ty::InstanceDef::ClosureOnceShim { .. }
            | ty::InstanceDef::FnPtrShim(..)
            | ty::InstanceDef::DropGlue(..)
            | ty::InstanceDef::CloneShim(..)
            | ty::InstanceDef::Item(_) => {
                // We need MIR for this fn
                let body = match M::find_mir_or_eval_fn(self, instance, args, ret, unwind)? {
                    Some(body) => body,
                    None => return Ok(()),
                };

                self.push_stack_frame(
                    instance,
                    body,
                    ret.map(|p| p.0),
                    StackPopCleanup::Goto { ret: ret.map(|p| p.1), unwind },
                )?;

                // If an error is raised here, pop the frame again to get an accurate backtrace.
                // To this end, we wrap it all in a `try` block.
                let res: InterpResult<'tcx> = try {
                    trace!(
                        "caller ABI: {:?}, args: {:#?}",
                        caller_abi,
                        args.iter()
                            .map(|arg| (arg.layout.ty, format!("{:?}", **arg)))
                            .collect::<Vec<_>>()
                    );
                    trace!(
                        "spread_arg: {:?}, locals: {:#?}",
                        body.spread_arg,
                        body.args_iter()
                            .map(|local| (
                                local,
                                self.layout_of_local(self.frame(), local, None).unwrap().ty
                            ))
                            .collect::<Vec<_>>()
                    );

                    // Figure out how to pass which arguments.
                    // The Rust ABI is special: ZST get skipped.
                    let rust_abi = match caller_abi {
                        Abi::Rust | Abi::RustCall => true,
                        _ => false,
                    };
                    // We have two iterators: Where the arguments come from,
                    // and where they go to.

                    // For where they come from: If the ABI is RustCall, we untuple the
                    // last incoming argument.  These two iterators do not have the same type,
                    // so to keep the code paths uniform we accept an allocation
                    // (for RustCall ABI only).
                    let caller_args: Cow<'_, [OpTy<'tcx, M::PointerTag>]> =
                        if caller_abi == Abi::RustCall && !args.is_empty() {
                            // Untuple
                            let (&untuple_arg, args) = args.split_last().unwrap();
                            trace!("eval_fn_call: Will pass last argument by untupling");
                            Cow::from(
                                args.iter()
                                    .map(|&a| Ok(a))
                                    .chain(
                                        (0..untuple_arg.layout.fields.count())
                                            .map(|i| self.operand_field(untuple_arg, i)),
                                    )
                                    .collect::<InterpResult<'_, Vec<OpTy<'tcx, M::PointerTag>>>>(
                                    )?,
                            )
                        } else {
                            // Plain arg passing
                            Cow::from(args)
                        };
                    // Skip ZSTs
                    let mut caller_iter =
                        caller_args.iter().filter(|op| !rust_abi || !op.layout.is_zst()).copied();

                    // Now we have to spread them out across the callee's locals,
                    // taking into account the `spread_arg`.  If we could write
                    // this is a single iterator (that handles `spread_arg`), then
                    // `pass_argument` would be the loop body. It takes care to
                    // not advance `caller_iter` for ZSTs.
                    for local in body.args_iter() {
                        let dest = self.eval_place(mir::Place::from(local))?;
                        if Some(local) == body.spread_arg {
                            // Must be a tuple
                            for i in 0..dest.layout.fields.count() {
                                let dest = self.place_field(dest, i)?;
                                self.pass_argument(rust_abi, &mut caller_iter, dest)?;
                            }
                        } else {
                            // Normal argument
                            self.pass_argument(rust_abi, &mut caller_iter, dest)?;
                        }
                    }
                    // Now we should have no more caller args
                    if caller_iter.next().is_some() {
                        throw_ub_format!("calling a function with more arguments than it expected")
                    }
                    // Don't forget to check the return type!
                    if let Some((caller_ret, _)) = ret {
                        let callee_ret = self.eval_place(mir::Place::return_place())?;
                        if !Self::check_argument_compat(
                            rust_abi,
                            caller_ret.layout,
                            callee_ret.layout,
                        ) {
                            throw_ub_format!(
                                "calling a function with return type {:?} passing \
                                     return place of type {:?}",
                                callee_ret.layout.ty,
                                caller_ret.layout.ty
                            )
                        }
                    } else {
                        let local = mir::RETURN_PLACE;
                        let callee_layout = self.layout_of_local(self.frame(), local, None)?;
                        if !callee_layout.abi.is_uninhabited() {
                            throw_ub_format!("calling a returning function without a return place")
                        }
                    }
                };
                match res {
                    Err(err) => {
                        self.stack_mut().pop();
                        Err(err)
                    }
                    Ok(()) => Ok(()),
                }
            }
            // cannot use the shim here, because that will only result in infinite recursion
            ty::InstanceDef::Virtual(_, idx) => {
                let mut args = args.to_vec();
                // We have to implement all "object safe receivers".  Currently we
                // support built-in pointers (&, &mut, Box) as well as unsized-self.  We do
                // not yet support custom self types.
                // Also see librustc_codegen_llvm/abi.rs and librustc_codegen_llvm/mir/block.rs.
                let receiver_place = match args[0].layout.ty.builtin_deref(true) {
                    Some(_) => {
                        // Built-in pointer.
                        self.deref_operand(args[0])?
                    }
                    None => {
                        // Unsized self.
                        args[0].assert_mem_place(self)
                    }
                };
                // Find and consult vtable
                let vtable = receiver_place.vtable();
                let drop_fn = self.get_vtable_slot(vtable, u64::try_from(idx).unwrap())?;

                // `*mut receiver_place.layout.ty` is almost the layout that we
                // want for args[0]: We have to project to field 0 because we want
                // a thin pointer.
                assert!(receiver_place.layout.is_unsized());
                let receiver_ptr_ty = self.tcx.mk_mut_ptr(receiver_place.layout.ty);
                let this_receiver_ptr = self.layout_of(receiver_ptr_ty)?.field(self, 0)?;
                // Adjust receiver argument.
                args[0] =
                    OpTy::from(ImmTy::from_immediate(receiver_place.ptr.into(), this_receiver_ptr));
                trace!("Patched self operand to {:#?}", args[0]);
                // recurse with concrete function
                self.eval_fn_call(drop_fn, caller_abi, &args, ret, unwind)
            }
        }
    }

    fn drop_in_place(
        &mut self,
        place: PlaceTy<'tcx, M::PointerTag>,
        instance: ty::Instance<'tcx>,
        target: mir::BasicBlock,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        trace!("drop_in_place: {:?},\n  {:?}, {:?}", *place, place.layout.ty, instance);
        // We take the address of the object.  This may well be unaligned, which is fine
        // for us here.  However, unaligned accesses will probably make the actual drop
        // implementation fail -- a problem shared by rustc.
        let place = self.force_allocation(place)?;

        let (instance, place) = match place.layout.ty.kind {
            ty::Dynamic(..) => {
                // Dropping a trait object.
                self.unpack_dyn_trait(place)?
            }
            _ => (instance, place),
        };

        let arg = ImmTy::from_immediate(
            place.to_ref(),
            self.layout_of(self.tcx.mk_mut_ptr(place.layout.ty))?,
        );

        let ty = self.tcx.mk_unit(); // return type is ()
        let dest = MPlaceTy::dangling(self.layout_of(ty)?, self);

        self.eval_fn_call(
            FnVal::Instance(instance),
            Abi::Rust,
            &[arg.into()],
            Some((dest.into(), target)),
            unwind,
        )
    }
}