1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//! This module contains everything needed to instantiate an interpreter.
//! This separation exists to ensure that no fancy miri features like
//! interpreting common C functions leak into CTFE.

use std::borrow::{Borrow, Cow};
use std::hash::Hash;

use rustc_middle::mir;
use rustc_middle::ty::{self, Ty};
use rustc_span::def_id::DefId;

use super::{
    AllocId, Allocation, AllocationExtra, CheckInAllocMsg, Frame, ImmTy, InterpCx, InterpResult,
    LocalValue, MemPlace, Memory, MemoryKind, OpTy, Operand, PlaceTy, Pointer, Scalar,
};

/// Data returned by Machine::stack_pop,
/// to provide further control over the popping of the stack frame
#[derive(Eq, PartialEq, Debug, Copy, Clone)]
pub enum StackPopJump {
    /// Indicates that no special handling should be
    /// done - we'll either return normally or unwind
    /// based on the terminator for the function
    /// we're leaving.
    Normal,

    /// Indicates that we should *not* jump to the return/unwind address, as the callback already
    /// took care of everything.
    NoJump,
}

/// Whether this kind of memory is allowed to leak
pub trait MayLeak: Copy {
    fn may_leak(self) -> bool;
}

/// The functionality needed by memory to manage its allocations
pub trait AllocMap<K: Hash + Eq, V> {
    /// Tests if the map contains the given key.
    /// Deliberately takes `&mut` because that is sufficient, and some implementations
    /// can be more efficient then (using `RefCell::get_mut`).
    fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
    where
        K: Borrow<Q>;

    /// Inserts a new entry into the map.
    fn insert(&mut self, k: K, v: V) -> Option<V>;

    /// Removes an entry from the map.
    fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>;

    /// Returns data based on the keys and values in the map.
    fn filter_map_collect<T>(&self, f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T>;

    /// Returns a reference to entry `k`. If no such entry exists, call
    /// `vacant` and either forward its error, or add its result to the map
    /// and return a reference to *that*.
    fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E>;

    /// Returns a mutable reference to entry `k`. If no such entry exists, call
    /// `vacant` and either forward its error, or add its result to the map
    /// and return a reference to *that*.
    fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E>;

    /// Read-only lookup.
    fn get(&self, k: K) -> Option<&V> {
        self.get_or(k, || Err(())).ok()
    }

    /// Mutable lookup.
    fn get_mut(&mut self, k: K) -> Option<&mut V> {
        self.get_mut_or(k, || Err(())).ok()
    }
}

/// Methods of this trait signifies a point where CTFE evaluation would fail
/// and some use case dependent behaviour can instead be applied.
pub trait Machine<'mir, 'tcx>: Sized {
    /// Additional memory kinds a machine wishes to distinguish from the builtin ones
    type MemoryKind: ::std::fmt::Debug + ::std::fmt::Display + MayLeak + Eq + 'static;

    /// Tag tracked alongside every pointer. This is used to implement "Stacked Borrows"
    /// <https://www.ralfj.de/blog/2018/08/07/stacked-borrows.html>.
    /// The `default()` is used for pointers to consts, statics, vtables and functions.
    /// The `Debug` formatting is used for displaying pointers; we cannot use `Display`
    /// as `()` does not implement that, but it should be "nice" output.
    type PointerTag: ::std::fmt::Debug + Copy + Eq + Hash + 'static;

    /// Machines can define extra (non-instance) things that represent values of function pointers.
    /// For example, Miri uses this to return a function pointer from `dlsym`
    /// that can later be called to execute the right thing.
    type ExtraFnVal: ::std::fmt::Debug + Copy;

    /// Extra data stored in every call frame.
    type FrameExtra;

    /// Extra data stored in memory. A reference to this is available when `AllocExtra`
    /// gets initialized, so you can e.g., have an `Rc` here if there is global state you
    /// need access to in the `AllocExtra` hooks.
    type MemoryExtra;

    /// Extra data stored in every allocation.
    type AllocExtra: AllocationExtra<Self::PointerTag> + 'static;

    /// Memory's allocation map
    type MemoryMap: AllocMap<
            AllocId,
            (MemoryKind<Self::MemoryKind>, Allocation<Self::PointerTag, Self::AllocExtra>),
        > + Default
        + Clone;

    /// The memory kind to use for copied global memory (held in `tcx`) --
    /// or None if such memory should not be mutated and thus any such attempt will cause
    /// a `ModifiedStatic` error to be raised.
    /// Statics are copied under two circumstances: When they are mutated, and when
    /// `tag_allocation` (see below) returns an owned allocation
    /// that is added to the memory so that the work is not done twice.
    const GLOBAL_KIND: Option<Self::MemoryKind>;

    /// Whether memory accesses should be alignment-checked.
    fn enforce_alignment(memory_extra: &Self::MemoryExtra) -> bool;

    /// Whether to enforce the validity invariant
    fn enforce_validity(ecx: &InterpCx<'mir, 'tcx, Self>) -> bool;

    /// Entry point to all function calls.
    ///
    /// Returns either the mir to use for the call, or `None` if execution should
    /// just proceed (which usually means this hook did all the work that the
    /// called function should usually have done). In the latter case, it is
    /// this hook's responsibility to advance the instruction pointer!
    /// (This is to support functions like `__rust_maybe_catch_panic` that neither find a MIR
    /// nor just jump to `ret`, but instead push their own stack frame.)
    /// Passing `dest`and `ret` in the same `Option` proved very annoying when only one of them
    /// was used.
    fn find_mir_or_eval_fn(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx, Self::PointerTag>],
        ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>>;

    /// Execute `fn_val`.  It is the hook's responsibility to advance the instruction
    /// pointer as appropriate.
    fn call_extra_fn(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        fn_val: Self::ExtraFnVal,
        args: &[OpTy<'tcx, Self::PointerTag>],
        ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx>;

    /// Directly process an intrinsic without pushing a stack frame. It is the hook's
    /// responsibility to advance the instruction pointer as appropriate.
    fn call_intrinsic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx, Self::PointerTag>],
        ret: Option<(PlaceTy<'tcx, Self::PointerTag>, mir::BasicBlock)>,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx>;

    /// Called to evaluate `Assert` MIR terminators that trigger a panic.
    fn assert_panic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        msg: &mir::AssertMessage<'tcx>,
        unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx>;

    /// Called to evaluate `Abort` MIR terminator.
    fn abort(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx, !> {
        throw_unsup_format!("aborting execution is not supported")
    }

    /// Called for all binary operations where the LHS has pointer type.
    ///
    /// Returns a (value, overflowed) pair if the operation succeeded
    fn binary_ptr_op(
        ecx: &InterpCx<'mir, 'tcx, Self>,
        bin_op: mir::BinOp,
        left: ImmTy<'tcx, Self::PointerTag>,
        right: ImmTy<'tcx, Self::PointerTag>,
    ) -> InterpResult<'tcx, (Scalar<Self::PointerTag>, bool, Ty<'tcx>)>;

    /// Heap allocations via the `box` keyword.
    fn box_alloc(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        dest: PlaceTy<'tcx, Self::PointerTag>,
    ) -> InterpResult<'tcx>;

    /// Called to read the specified `local` from the `frame`.
    /// Since reading a ZST is not actually accessing memory or locals, this is never invoked
    /// for ZST reads.
    #[inline]
    fn access_local(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        frame: &Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
        local: mir::Local,
    ) -> InterpResult<'tcx, Operand<Self::PointerTag>> {
        frame.locals[local].access()
    }

    /// Called to write the specified `local` from the `frame`.
    /// Since writing a ZST is not actually accessing memory or locals, this is never invoked
    /// for ZST reads.
    #[inline]
    fn access_local_mut<'a>(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
        frame: usize,
        local: mir::Local,
    ) -> InterpResult<'tcx, Result<&'a mut LocalValue<Self::PointerTag>, MemPlace<Self::PointerTag>>>
    where
        'tcx: 'mir,
    {
        ecx.stack_mut()[frame].locals[local].access_mut()
    }

    /// Called before a basic block terminator is executed.
    /// You can use this to detect endlessly running programs.
    #[inline]
    fn before_terminator(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Called before a global allocation is accessed.
    /// `def_id` is `Some` if this is the "lazy" allocation of a static.
    #[inline]
    fn before_access_global(
        _memory_extra: &Self::MemoryExtra,
        _alloc_id: AllocId,
        _allocation: &Allocation,
        _static_def_id: Option<DefId>,
        _is_write: bool,
    ) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Return the `AllocId` for the given thread-local static in the current thread.
    fn thread_local_static_alloc_id(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        def_id: DefId,
    ) -> InterpResult<'tcx, AllocId> {
        throw_unsup!(ThreadLocalStatic(def_id))
    }

    /// Return the `AllocId` backing the given `extern static`.
    fn extern_static_alloc_id(
        mem: &Memory<'mir, 'tcx, Self>,
        def_id: DefId,
    ) -> InterpResult<'tcx, AllocId> {
        // Use the `AllocId` associated with the `DefId`. Any actual *access* will fail.
        Ok(mem.tcx.create_static_alloc(def_id))
    }

    /// Return the "base" tag for the given *global* allocation: the one that is used for direct
    /// accesses to this static/const/fn allocation. If `id` is not a global allocation,
    /// this will return an unusable tag (i.e., accesses will be UB)!
    ///
    /// Called on the id returned by `thread_local_static_alloc_id` and `extern_static_alloc_id`, if needed.
    fn tag_global_base_pointer(memory_extra: &Self::MemoryExtra, id: AllocId) -> Self::PointerTag;

    /// Called to initialize the "extra" state of an allocation and make the pointers
    /// it contains (in relocations) tagged.  The way we construct allocations is
    /// to always first construct it without extra and then add the extra.
    /// This keeps uniform code paths for handling both allocations created by CTFE
    /// for globals, and allocations created by Miri during evaluation.
    ///
    /// `kind` is the kind of the allocation being tagged; it can be `None` when
    /// it's a global and `GLOBAL_KIND` is `None`.
    ///
    /// This should avoid copying if no work has to be done! If this returns an owned
    /// allocation (because a copy had to be done to add tags or metadata), machine memory will
    /// cache the result. (This relies on `AllocMap::get_or` being able to add the
    /// owned allocation to the map even when the map is shared.)
    ///
    /// Also return the "base" tag to use for this allocation: the one that is used for direct
    /// accesses to this allocation. If `kind == STATIC_KIND`, this tag must be consistent
    /// with `tag_global_base_pointer`.
    fn init_allocation_extra<'b>(
        memory_extra: &Self::MemoryExtra,
        id: AllocId,
        alloc: Cow<'b, Allocation>,
        kind: Option<MemoryKind<Self::MemoryKind>>,
    ) -> (Cow<'b, Allocation<Self::PointerTag, Self::AllocExtra>>, Self::PointerTag);

    /// Called to notify the machine before a deallocation occurs.
    fn before_deallocation(
        _memory_extra: &mut Self::MemoryExtra,
        _id: AllocId,
    ) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Executes a retagging operation
    #[inline]
    fn retag(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _kind: mir::RetagKind,
        _place: PlaceTy<'tcx, Self::PointerTag>,
    ) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Called immediately before a new stack frame gets pushed.
    fn init_frame_extra(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        frame: Frame<'mir, 'tcx, Self::PointerTag>,
    ) -> InterpResult<'tcx, Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>>;

    /// Borrow the current thread's stack.
    fn stack(
        ecx: &'a InterpCx<'mir, 'tcx, Self>,
    ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>];

    /// Mutably borrow the current thread's stack.
    fn stack_mut(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>>;

    /// Called immediately after a stack frame got pushed and its locals got initialized.
    fn after_stack_push(_ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
        Ok(())
    }

    /// Called immediately after a stack frame got popped, but before jumping back to the caller.
    fn after_stack_pop(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _frame: Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>,
        _unwinding: bool,
    ) -> InterpResult<'tcx, StackPopJump> {
        // By default, we do not support unwinding from panics
        Ok(StackPopJump::Normal)
    }

    fn int_to_ptr(
        _mem: &Memory<'mir, 'tcx, Self>,
        int: u64,
    ) -> InterpResult<'tcx, Pointer<Self::PointerTag>> {
        Err((if int == 0 {
            // This is UB, seriously.
            err_ub!(DanglingIntPointer(0, CheckInAllocMsg::InboundsTest))
        } else {
            // This is just something we cannot support during const-eval.
            err_unsup!(ReadBytesAsPointer)
        })
        .into())
    }

    fn ptr_to_int(
        _mem: &Memory<'mir, 'tcx, Self>,
        _ptr: Pointer<Self::PointerTag>,
    ) -> InterpResult<'tcx, u64>;
}

// A lot of the flexibility above is just needed for `Miri`, but all "compile-time" machines
// (CTFE and ConstProp) use the same instance.  Here, we share that code.
pub macro compile_time_machine(<$mir: lifetime, $tcx: lifetime>) {
    type PointerTag = ();
    type ExtraFnVal = !;

    type MemoryKind = !;
    type MemoryMap = rustc_data_structures::fx::FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
    const GLOBAL_KIND: Option<!> = None; // no copying of globals from `tcx` to machine memory

    type AllocExtra = ();
    type FrameExtra = ();

    #[inline(always)]
    fn enforce_alignment(_memory_extra: &Self::MemoryExtra) -> bool {
        // We do not check for alignment to avoid having to carry an `Align`
        // in `ConstValue::ByRef`.
        false
    }

    #[inline(always)]
    fn enforce_validity(_ecx: &InterpCx<$mir, $tcx, Self>) -> bool {
        false // for now, we don't enforce validity
    }

    #[inline(always)]
    fn call_extra_fn(
        _ecx: &mut InterpCx<$mir, $tcx, Self>,
        fn_val: !,
        _args: &[OpTy<$tcx>],
        _ret: Option<(PlaceTy<$tcx>, mir::BasicBlock)>,
        _unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<$tcx> {
        match fn_val {}
    }

    #[inline(always)]
    fn init_allocation_extra<'b>(
        _memory_extra: &Self::MemoryExtra,
        _id: AllocId,
        alloc: Cow<'b, Allocation>,
        _kind: Option<MemoryKind<!>>,
    ) -> (Cow<'b, Allocation<Self::PointerTag>>, Self::PointerTag) {
        // We do not use a tag so we can just cheaply forward the allocation
        (alloc, ())
    }

    #[inline(always)]
    fn tag_global_base_pointer(
        _memory_extra: &Self::MemoryExtra,
        _id: AllocId,
    ) -> Self::PointerTag {
        ()
    }

    #[inline(always)]
    fn init_frame_extra(
        _ecx: &mut InterpCx<$mir, $tcx, Self>,
        frame: Frame<$mir, $tcx>,
    ) -> InterpResult<$tcx, Frame<$mir, $tcx>> {
        Ok(frame)
    }
}