1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
use rustc_middle::mir;
use rustc_middle::ty::layout::HasTyCtxt;
use rustc_middle::ty::{self, Ty};
use std::borrow::Borrow;
use std::collections::hash_map::Entry;
use std::hash::Hash;

use rustc_data_structures::fx::FxHashMap;

use rustc_ast::ast::Mutability;
use rustc_hir::def_id::DefId;
use rustc_middle::mir::AssertMessage;
use rustc_session::Limit;
use rustc_span::symbol::Symbol;

use crate::interpret::{
    self, compile_time_machine, AllocId, Allocation, Frame, GlobalId, ImmTy, InterpCx,
    InterpResult, Memory, OpTy, PlaceTy, Pointer, Scalar,
};

use super::error::*;

impl<'mir, 'tcx> InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>> {
    /// Evaluate a const function where all arguments (if any) are zero-sized types.
    /// The evaluation is memoized thanks to the query system.
    ///
    /// Returns `true` if the call has been evaluated.
    fn try_eval_const_fn_call(
        &mut self,
        instance: ty::Instance<'tcx>,
        ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
        args: &[OpTy<'tcx>],
    ) -> InterpResult<'tcx, bool> {
        trace!("try_eval_const_fn_call: {:?}", instance);
        // Because `#[track_caller]` adds an implicit non-ZST argument, we also cannot
        // perform this optimization on items tagged with it.
        if instance.def.requires_caller_location(self.tcx()) {
            return Ok(false);
        }
        // For the moment we only do this for functions which take no arguments
        // (or all arguments are ZSTs) so that we don't memoize too much.
        if args.iter().any(|a| !a.layout.is_zst()) {
            return Ok(false);
        }

        let dest = match ret {
            Some((dest, _)) => dest,
            // Don't memoize diverging function calls.
            None => return Ok(false),
        };

        let gid = GlobalId { instance, promoted: None };

        let place = self.const_eval_raw(gid)?;

        self.copy_op(place.into(), dest)?;

        self.return_to_block(ret.map(|r| r.1))?;
        self.dump_place(*dest);
        Ok(true)
    }

    /// "Intercept" a function call to a panic-related function
    /// because we have something special to do for it.
    /// If this returns successfully (`Ok`), the function should just be evaluated normally.
    fn hook_panic_fn(
        &mut self,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
    ) -> InterpResult<'tcx> {
        let def_id = instance.def_id();
        if Some(def_id) == self.tcx.lang_items().panic_fn()
            || Some(def_id) == self.tcx.lang_items().begin_panic_fn()
        {
            // &'static str
            assert!(args.len() == 1);

            let msg_place = self.deref_operand(args[0])?;
            let msg = Symbol::intern(self.read_str(msg_place)?);
            let span = self.find_closest_untracked_caller_location();
            let (file, line, col) = self.location_triple_for_span(span);
            Err(ConstEvalErrKind::Panic { msg, file, line, col }.into())
        } else {
            Ok(())
        }
    }
}

/// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'mir, 'tcx> {
    /// For now, the number of terminators that can be evaluated before we throw a resource
    /// exhuastion error.
    ///
    /// Setting this to `0` disables the limit and allows the interpreter to run forever.
    pub steps_remaining: usize,

    /// The virtual call stack.
    pub(crate) stack: Vec<Frame<'mir, 'tcx, (), ()>>,
}

#[derive(Copy, Clone, Debug)]
pub struct MemoryExtra {
    /// We need to make sure consts never point to anything mutable, even recursively. That is
    /// relied on for pattern matching on consts with references.
    /// To achieve this, two pieces have to work together:
    /// * Interning makes everything outside of statics immutable.
    /// * Pointers to allocations inside of statics can never leak outside, to a non-static global.
    /// This boolean here controls the second part.
    pub(super) can_access_statics: bool,
}

impl<'mir, 'tcx> CompileTimeInterpreter<'mir, 'tcx> {
    pub(super) fn new(const_eval_limit: Limit) -> Self {
        CompileTimeInterpreter { steps_remaining: const_eval_limit.0, stack: Vec::new() }
    }
}

impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxHashMap<K, V> {
    #[inline(always)]
    fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
    where
        K: Borrow<Q>,
    {
        FxHashMap::contains_key(self, k)
    }

    #[inline(always)]
    fn insert(&mut self, k: K, v: V) -> Option<V> {
        FxHashMap::insert(self, k, v)
    }

    #[inline(always)]
    fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
    {
        FxHashMap::remove(self, k)
    }

    #[inline(always)]
    fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
        self.iter().filter_map(move |(k, v)| f(k, &*v)).collect()
    }

    #[inline(always)]
    fn get_or<E>(&self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&V, E> {
        match self.get(&k) {
            Some(v) => Ok(v),
            None => {
                vacant()?;
                bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
            }
        }
    }

    #[inline(always)]
    fn get_mut_or<E>(&mut self, k: K, vacant: impl FnOnce() -> Result<V, E>) -> Result<&mut V, E> {
        match self.entry(k) {
            Entry::Occupied(e) => Ok(e.into_mut()),
            Entry::Vacant(e) => {
                let v = vacant()?;
                Ok(e.insert(v))
            }
        }
    }
}

crate type CompileTimeEvalContext<'mir, 'tcx> =
    InterpCx<'mir, 'tcx, CompileTimeInterpreter<'mir, 'tcx>>;

impl interpret::MayLeak for ! {
    #[inline(always)]
    fn may_leak(self) -> bool {
        // `self` is uninhabited
        self
    }
}

impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir, 'tcx> {
    compile_time_machine!(<'mir, 'tcx>);

    type MemoryExtra = MemoryExtra;

    fn find_mir_or_eval_fn(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
        _unwind: Option<mir::BasicBlock>, // unwinding is not supported in consts
    ) -> InterpResult<'tcx, Option<&'mir mir::Body<'tcx>>> {
        debug!("find_mir_or_eval_fn: {:?}", instance);

        // Only check non-glue functions
        if let ty::InstanceDef::Item(def_id) = instance.def {
            // Execution might have wandered off into other crates, so we cannot do a stability-
            // sensitive check here.  But we can at least rule out functions that are not const
            // at all.
            if ecx.tcx.is_const_fn_raw(def_id) {
                // If this function is a `const fn` then under certain circumstances we
                // can evaluate call via the query system, thus memoizing all future calls.
                if ecx.try_eval_const_fn_call(instance, ret, args)? {
                    return Ok(None);
                }
            } else {
                // Some functions we support even if they are non-const -- but avoid testing
                // that for const fn!
                ecx.hook_panic_fn(instance, args)?;
                // We certainly do *not* want to actually call the fn
                // though, so be sure we return here.
                throw_unsup_format!("calling non-const function `{}`", instance)
            }
        }
        // This is a const fn. Call it.
        Ok(Some(match ecx.load_mir(instance.def, None) {
            Ok(body) => body,
            Err(err) => {
                if let err_unsup!(NoMirFor(did)) = err.kind {
                    let path = ecx.tcx.def_path_str(did);
                    return Err(ConstEvalErrKind::NeedsRfc(format!(
                        "calling extern function `{}`",
                        path
                    ))
                    .into());
                }
                return Err(err);
            }
        }))
    }

    fn call_intrinsic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        instance: ty::Instance<'tcx>,
        args: &[OpTy<'tcx>],
        ret: Option<(PlaceTy<'tcx>, mir::BasicBlock)>,
        _unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        if ecx.emulate_intrinsic(instance, args, ret)? {
            return Ok(());
        }
        // An intrinsic that we do not support
        let intrinsic_name = ecx.tcx.item_name(instance.def_id());
        Err(ConstEvalErrKind::NeedsRfc(format!("calling intrinsic `{}`", intrinsic_name)).into())
    }

    fn assert_panic(
        ecx: &mut InterpCx<'mir, 'tcx, Self>,
        msg: &AssertMessage<'tcx>,
        _unwind: Option<mir::BasicBlock>,
    ) -> InterpResult<'tcx> {
        use rustc_middle::mir::AssertKind::*;
        // Convert `AssertKind<Operand>` to `AssertKind<Scalar>`.
        let eval_to_int =
            |op| ecx.read_immediate(ecx.eval_operand(op, None)?).map(|x| x.to_const_int());
        let err = match msg {
            BoundsCheck { ref len, ref index } => {
                let len = eval_to_int(len)?;
                let index = eval_to_int(index)?;
                BoundsCheck { len, index }
            }
            Overflow(op, l, r) => Overflow(*op, eval_to_int(l)?, eval_to_int(r)?),
            OverflowNeg(op) => OverflowNeg(eval_to_int(op)?),
            DivisionByZero(op) => DivisionByZero(eval_to_int(op)?),
            RemainderByZero(op) => RemainderByZero(eval_to_int(op)?),
            ResumedAfterReturn(generator_kind) => ResumedAfterReturn(*generator_kind),
            ResumedAfterPanic(generator_kind) => ResumedAfterPanic(*generator_kind),
        };
        Err(ConstEvalErrKind::AssertFailure(err).into())
    }

    fn ptr_to_int(_mem: &Memory<'mir, 'tcx, Self>, _ptr: Pointer) -> InterpResult<'tcx, u64> {
        Err(ConstEvalErrKind::NeedsRfc("pointer-to-integer cast".to_string()).into())
    }

    fn binary_ptr_op(
        _ecx: &InterpCx<'mir, 'tcx, Self>,
        _bin_op: mir::BinOp,
        _left: ImmTy<'tcx>,
        _right: ImmTy<'tcx>,
    ) -> InterpResult<'tcx, (Scalar, bool, Ty<'tcx>)> {
        Err(ConstEvalErrKind::NeedsRfc("pointer arithmetic or comparison".to_string()).into())
    }

    fn box_alloc(
        _ecx: &mut InterpCx<'mir, 'tcx, Self>,
        _dest: PlaceTy<'tcx>,
    ) -> InterpResult<'tcx> {
        Err(ConstEvalErrKind::NeedsRfc("heap allocations via `box` keyword".to_string()).into())
    }

    fn before_terminator(ecx: &mut InterpCx<'mir, 'tcx, Self>) -> InterpResult<'tcx> {
        // The step limit has already been hit in a previous call to `before_terminator`.
        if ecx.machine.steps_remaining == 0 {
            return Ok(());
        }

        ecx.machine.steps_remaining -= 1;
        if ecx.machine.steps_remaining == 0 {
            throw_exhaust!(StepLimitReached)
        }

        Ok(())
    }

    #[inline(always)]
    fn stack(
        ecx: &'a InterpCx<'mir, 'tcx, Self>,
    ) -> &'a [Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>] {
        &ecx.machine.stack
    }

    #[inline(always)]
    fn stack_mut(
        ecx: &'a mut InterpCx<'mir, 'tcx, Self>,
    ) -> &'a mut Vec<Frame<'mir, 'tcx, Self::PointerTag, Self::FrameExtra>> {
        &mut ecx.machine.stack
    }

    fn before_access_global(
        memory_extra: &MemoryExtra,
        alloc_id: AllocId,
        allocation: &Allocation,
        static_def_id: Option<DefId>,
        is_write: bool,
    ) -> InterpResult<'tcx> {
        if is_write {
            // Write access. These are never allowed, but we give a targeted error message.
            if allocation.mutability == Mutability::Not {
                Err(err_ub!(WriteToReadOnly(alloc_id)).into())
            } else {
                Err(ConstEvalErrKind::ModifiedGlobal.into())
            }
        } else {
            // Read access. These are usually allowed, with some exceptions.
            if memory_extra.can_access_statics {
                // Machine configuration allows us read from anything (e.g., `static` initializer).
                Ok(())
            } else if static_def_id.is_some() {
                // Machine configuration does not allow us to read statics
                // (e.g., `const` initializer).
                // See const_eval::machine::MemoryExtra::can_access_statics for why
                // this check is so important: if we could read statics, we could read pointers
                // to mutable allocations *inside* statics. These allocations are not themselves
                // statics, so pointers to them can get around the check in `validity.rs`.
                Err(ConstEvalErrKind::ConstAccessesStatic.into())
            } else {
                // Immutable global, this read is fine.
                // But make sure we never accept a read from something mutable, that would be
                // unsound. The reason is that as the content of this allocation may be different
                // now and at run-time, so if we permit reading now we might return the wrong value.
                assert_eq!(allocation.mutability, Mutability::Not);
                Ok(())
            }
        }
    }
}

// Please do not add any code below the above `Machine` trait impl. I (oli-obk) plan more cleanups
// so we can end up having a file with just that impl, but for now, let's keep the impl discoverable
// at the bottom of this file.