1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
use std::collections::VecDeque;
use std::rc::Rc;

use rustc_data_structures::binary_search_util;
use rustc_data_structures::frozen::Frozen;
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::graph::scc::Sccs;
use rustc_hir::def_id::DefId;
use rustc_index::vec::IndexVec;
use rustc_infer::infer::canonical::QueryOutlivesConstraint;
use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound};
use rustc_infer::infer::{InferCtxt, NLLRegionVariableOrigin, RegionVariableOrigin};
use rustc_middle::mir::{
    Body, ClosureOutlivesRequirement, ClosureOutlivesSubject, ClosureRegionRequirements,
    ConstraintCategory, Local, Location, ReturnConstraint,
};
use rustc_middle::ty::{self, subst::SubstsRef, RegionVid, Ty, TyCtxt, TypeFoldable};
use rustc_span::Span;

use crate::borrow_check::{
    constraints::{
        graph::NormalConstraintGraph, ConstraintSccIndex, OutlivesConstraint, OutlivesConstraintSet,
    },
    diagnostics::{RegionErrorKind, RegionErrors},
    member_constraints::{MemberConstraintSet, NllMemberConstraintIndex},
    nll::{PoloniusOutput, ToRegionVid},
    region_infer::reverse_sccs::ReverseSccGraph,
    region_infer::values::{
        LivenessValues, PlaceholderIndices, RegionElement, RegionValueElements, RegionValues,
        ToElementIndex,
    },
    type_check::{free_region_relations::UniversalRegionRelations, Locations},
    universal_regions::UniversalRegions,
};

mod dump_mir;
mod graphviz;
mod opaque_types;
mod reverse_sccs;

pub mod values;

pub struct RegionInferenceContext<'tcx> {
    /// Contains the definition for every region variable. Region
    /// variables are identified by their index (`RegionVid`). The
    /// definition contains information about where the region came
    /// from as well as its final inferred value.
    definitions: IndexVec<RegionVid, RegionDefinition<'tcx>>,

    /// The liveness constraints added to each region. For most
    /// regions, these start out empty and steadily grow, though for
    /// each universally quantified region R they start out containing
    /// the entire CFG and `end(R)`.
    liveness_constraints: LivenessValues<RegionVid>,

    /// The outlives constraints computed by the type-check.
    constraints: Frozen<OutlivesConstraintSet>,

    /// The constraint-set, but in graph form, making it easy to traverse
    /// the constraints adjacent to a particular region. Used to construct
    /// the SCC (see `constraint_sccs`) and for error reporting.
    constraint_graph: Frozen<NormalConstraintGraph>,

    /// The SCC computed from `constraints` and the constraint
    /// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
    /// compute the values of each region.
    constraint_sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>,

    /// Reverse of the SCC constraint graph --  i.e., an edge `A -> B` exists if
    /// `B: A`. This is used to compute the universal regions that are required
    /// to outlive a given SCC. Computed lazily.
    rev_scc_graph: Option<Rc<ReverseSccGraph>>,

    /// The "R0 member of [R1..Rn]" constraints, indexed by SCC.
    member_constraints: Rc<MemberConstraintSet<'tcx, ConstraintSccIndex>>,

    /// Records the member constraints that we applied to each scc.
    /// This is useful for error reporting. Once constraint
    /// propagation is done, this vector is sorted according to
    /// `member_region_scc`.
    member_constraints_applied: Vec<AppliedMemberConstraint>,

    /// Map closure bounds to a `Span` that should be used for error reporting.
    closure_bounds_mapping:
        FxHashMap<Location, FxHashMap<(RegionVid, RegionVid), (ConstraintCategory, Span)>>,

    /// Contains the minimum universe of any variable within the same
    /// SCC. We will ensure that no SCC contains values that are not
    /// visible from this index.
    scc_universes: IndexVec<ConstraintSccIndex, ty::UniverseIndex>,

    /// Contains a "representative" from each SCC. This will be the
    /// minimal RegionVid belonging to that universe. It is used as a
    /// kind of hacky way to manage checking outlives relationships,
    /// since we can 'canonicalize' each region to the representative
    /// of its SCC and be sure that -- if they have the same repr --
    /// they *must* be equal (though not having the same repr does not
    /// mean they are unequal).
    scc_representatives: IndexVec<ConstraintSccIndex, ty::RegionVid>,

    /// The final inferred values of the region variables; we compute
    /// one value per SCC. To get the value for any given *region*,
    /// you first find which scc it is a part of.
    scc_values: RegionValues<ConstraintSccIndex>,

    /// Type constraints that we check after solving.
    type_tests: Vec<TypeTest<'tcx>>,

    /// Information about the universally quantified regions in scope
    /// on this function.
    universal_regions: Rc<UniversalRegions<'tcx>>,

    /// Information about how the universally quantified regions in
    /// scope on this function relate to one another.
    universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
}

/// Each time that `apply_member_constraint` is successful, it appends
/// one of these structs to the `member_constraints_applied` field.
/// This is used in error reporting to trace out what happened.
///
/// The way that `apply_member_constraint` works is that it effectively
/// adds a new lower bound to the SCC it is analyzing: so you wind up
/// with `'R: 'O` where `'R` is the pick-region and `'O` is the
/// minimal viable option.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub(crate) struct AppliedMemberConstraint {
    /// The SCC that was affected. (The "member region".)
    ///
    /// The vector if `AppliedMemberConstraint` elements is kept sorted
    /// by this field.
    pub(in crate::borrow_check) member_region_scc: ConstraintSccIndex,

    /// The "best option" that `apply_member_constraint` found -- this was
    /// added as an "ad-hoc" lower-bound to `member_region_scc`.
    pub(in crate::borrow_check) min_choice: ty::RegionVid,

    /// The "member constraint index" -- we can find out details about
    /// the constraint from
    /// `set.member_constraints[member_constraint_index]`.
    pub(in crate::borrow_check) member_constraint_index: NllMemberConstraintIndex,
}

pub(crate) struct RegionDefinition<'tcx> {
    /// What kind of variable is this -- a free region? existential
    /// variable? etc. (See the `NLLRegionVariableOrigin` for more
    /// info.)
    pub(in crate::borrow_check) origin: NLLRegionVariableOrigin,

    /// Which universe is this region variable defined in? This is
    /// most often `ty::UniverseIndex::ROOT`, but when we encounter
    /// forall-quantifiers like `for<'a> { 'a = 'b }`, we would create
    /// the variable for `'a` in a fresh universe that extends ROOT.
    pub(in crate::borrow_check) universe: ty::UniverseIndex,

    /// If this is 'static or an early-bound region, then this is
    /// `Some(X)` where `X` is the name of the region.
    pub(in crate::borrow_check) external_name: Option<ty::Region<'tcx>>,
}

/// N.B., the variants in `Cause` are intentionally ordered. Lower
/// values are preferred when it comes to error messages. Do not
/// reorder willy nilly.
#[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
pub(crate) enum Cause {
    /// point inserted because Local was live at the given Location
    LiveVar(Local, Location),

    /// point inserted because Local was dropped at the given Location
    DropVar(Local, Location),
}

/// A "type test" corresponds to an outlives constraint between a type
/// and a lifetime, like `T: 'x` or `<T as Foo>::Bar: 'x`. They are
/// translated from the `Verify` region constraints in the ordinary
/// inference context.
///
/// These sorts of constraints are handled differently than ordinary
/// constraints, at least at present. During type checking, the
/// `InferCtxt::process_registered_region_obligations` method will
/// attempt to convert a type test like `T: 'x` into an ordinary
/// outlives constraint when possible (for example, `&'a T: 'b` will
/// be converted into `'a: 'b` and registered as a `Constraint`).
///
/// In some cases, however, there are outlives relationships that are
/// not converted into a region constraint, but rather into one of
/// these "type tests". The distinction is that a type test does not
/// influence the inference result, but instead just examines the
/// values that we ultimately inferred for each region variable and
/// checks that they meet certain extra criteria. If not, an error
/// can be issued.
///
/// One reason for this is that these type tests typically boil down
/// to a check like `'a: 'x` where `'a` is a universally quantified
/// region -- and therefore not one whose value is really meant to be
/// *inferred*, precisely (this is not always the case: one can have a
/// type test like `<Foo as Trait<'?0>>::Bar: 'x`, where `'?0` is an
/// inference variable). Another reason is that these type tests can
/// involve *disjunction* -- that is, they can be satisfied in more
/// than one way.
///
/// For more information about this translation, see
/// `InferCtxt::process_registered_region_obligations` and
/// `InferCtxt::type_must_outlive` in `rustc_infer::infer::InferCtxt`.
#[derive(Clone, Debug)]
pub struct TypeTest<'tcx> {
    /// The type `T` that must outlive the region.
    pub generic_kind: GenericKind<'tcx>,

    /// The region `'x` that the type must outlive.
    pub lower_bound: RegionVid,

    /// Where did this constraint arise and why?
    pub locations: Locations,

    /// A test which, if met by the region `'x`, proves that this type
    /// constraint is satisfied.
    pub verify_bound: VerifyBound<'tcx>,
}

/// When we have an unmet lifetime constraint, we try to propagate it outward (e.g. to a closure
/// environment). If we can't, it is an error.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum RegionRelationCheckResult {
    Ok,
    Propagated,
    Error,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum Trace {
    StartRegion,
    FromOutlivesConstraint(OutlivesConstraint),
    NotVisited,
}

impl<'tcx> RegionInferenceContext<'tcx> {
    /// Creates a new region inference context with a total of
    /// `num_region_variables` valid inference variables; the first N
    /// of those will be constant regions representing the free
    /// regions defined in `universal_regions`.
    ///
    /// The `outlives_constraints` and `type_tests` are an initial set
    /// of constraints produced by the MIR type check.
    pub(in crate::borrow_check) fn new(
        var_infos: VarInfos,
        universal_regions: Rc<UniversalRegions<'tcx>>,
        placeholder_indices: Rc<PlaceholderIndices>,
        universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
        outlives_constraints: OutlivesConstraintSet,
        member_constraints_in: MemberConstraintSet<'tcx, RegionVid>,
        closure_bounds_mapping: FxHashMap<
            Location,
            FxHashMap<(RegionVid, RegionVid), (ConstraintCategory, Span)>,
        >,
        type_tests: Vec<TypeTest<'tcx>>,
        liveness_constraints: LivenessValues<RegionVid>,
        elements: &Rc<RegionValueElements>,
    ) -> Self {
        // Create a RegionDefinition for each inference variable.
        let definitions: IndexVec<_, _> = var_infos
            .into_iter()
            .map(|info| RegionDefinition::new(info.universe, info.origin))
            .collect();

        let constraints = Frozen::freeze(outlives_constraints);
        let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
        let fr_static = universal_regions.fr_static;
        let constraint_sccs = Rc::new(constraints.compute_sccs(&constraint_graph, fr_static));

        let mut scc_values =
            RegionValues::new(elements, universal_regions.len(), &placeholder_indices);

        for region in liveness_constraints.rows() {
            let scc = constraint_sccs.scc(region);
            scc_values.merge_liveness(scc, region, &liveness_constraints);
        }

        let scc_universes = Self::compute_scc_universes(&constraint_sccs, &definitions);

        let scc_representatives = Self::compute_scc_representatives(&constraint_sccs, &definitions);

        let member_constraints =
            Rc::new(member_constraints_in.into_mapped(|r| constraint_sccs.scc(r)));

        let mut result = Self {
            definitions,
            liveness_constraints,
            constraints,
            constraint_graph,
            constraint_sccs,
            rev_scc_graph: None,
            member_constraints,
            member_constraints_applied: Vec::new(),
            closure_bounds_mapping,
            scc_universes,
            scc_representatives,
            scc_values,
            type_tests,
            universal_regions,
            universal_region_relations,
        };

        result.init_free_and_bound_regions();

        result
    }

    /// Each SCC is the combination of many region variables which
    /// have been equated. Therefore, we can associate a universe with
    /// each SCC which is minimum of all the universes of its
    /// constituent regions -- this is because whatever value the SCC
    /// takes on must be a value that each of the regions within the
    /// SCC could have as well. This implies that the SCC must have
    /// the minimum, or narrowest, universe.
    fn compute_scc_universes(
        constraint_sccs: &Sccs<RegionVid, ConstraintSccIndex>,
        definitions: &IndexVec<RegionVid, RegionDefinition<'tcx>>,
    ) -> IndexVec<ConstraintSccIndex, ty::UniverseIndex> {
        let num_sccs = constraint_sccs.num_sccs();
        let mut scc_universes = IndexVec::from_elem_n(ty::UniverseIndex::MAX, num_sccs);

        debug!("compute_scc_universes()");

        // For each region R in universe U, ensure that the universe for the SCC
        // that contains R is "no bigger" than U. This effectively sets the universe
        // for each SCC to be the minimum of the regions within.
        for (region_vid, region_definition) in definitions.iter_enumerated() {
            let scc = constraint_sccs.scc(region_vid);
            let scc_universe = &mut scc_universes[scc];
            let scc_min = std::cmp::min(region_definition.universe, *scc_universe);
            if scc_min != *scc_universe {
                *scc_universe = scc_min;
                debug!(
                    "compute_scc_universes: lowered universe of {scc:?} to {scc_min:?} \
                    because it contains {region_vid:?} in {region_universe:?}",
                    scc = scc,
                    scc_min = scc_min,
                    region_vid = region_vid,
                    region_universe = region_definition.universe,
                );
            }
        }

        // Walk each SCC `A` and `B` such that `A: B`
        // and ensure that universe(A) can see universe(B).
        //
        // This serves to enforce the 'empty/placeholder' hierarchy
        // (described in more detail on `RegionKind`):
        //
        // ```
        // static -----+
        //   |         |
        // empty(U0) placeholder(U1)
        //   |      /
        // empty(U1)
        // ```
        //
        // In particular, imagine we have variables R0 in U0 and R1
        // created in U1, and constraints like this;
        //
        // ```
        // R1: !1 // R1 outlives the placeholder in U1
        // R1: R0 // R1 outlives R0
        // ```
        //
        // Here, we wish for R1 to be `'static`, because it
        // cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
        //
        // Thanks to this loop, what happens is that the `R1: R0`
        // constraint lowers the universe of `R1` to `U0`, which in turn
        // means that the `R1: !1` constraint will (later) cause
        // `R1` to become `'static`.
        for scc_a in constraint_sccs.all_sccs() {
            for &scc_b in constraint_sccs.successors(scc_a) {
                let scc_universe_a = scc_universes[scc_a];
                let scc_universe_b = scc_universes[scc_b];
                let scc_universe_min = std::cmp::min(scc_universe_a, scc_universe_b);
                if scc_universe_a != scc_universe_min {
                    scc_universes[scc_a] = scc_universe_min;

                    debug!(
                        "compute_scc_universes: lowered universe of {scc_a:?} to {scc_universe_min:?} \
                        because {scc_a:?}: {scc_b:?} and {scc_b:?} is in universe {scc_universe_b:?}",
                        scc_a = scc_a,
                        scc_b = scc_b,
                        scc_universe_min = scc_universe_min,
                        scc_universe_b = scc_universe_b
                    );
                }
            }
        }

        debug!("compute_scc_universes: scc_universe = {:#?}", scc_universes);

        scc_universes
    }

    /// For each SCC, we compute a unique `RegionVid` (in fact, the
    /// minimal one that belongs to the SCC). See
    /// `scc_representatives` field of `RegionInferenceContext` for
    /// more details.
    fn compute_scc_representatives(
        constraints_scc: &Sccs<RegionVid, ConstraintSccIndex>,
        definitions: &IndexVec<RegionVid, RegionDefinition<'tcx>>,
    ) -> IndexVec<ConstraintSccIndex, ty::RegionVid> {
        let num_sccs = constraints_scc.num_sccs();
        let next_region_vid = definitions.next_index();
        let mut scc_representatives = IndexVec::from_elem_n(next_region_vid, num_sccs);

        for region_vid in definitions.indices() {
            let scc = constraints_scc.scc(region_vid);
            let prev_min = scc_representatives[scc];
            scc_representatives[scc] = region_vid.min(prev_min);
        }

        scc_representatives
    }

    /// Initializes the region variables for each universally
    /// quantified region (lifetime parameter). The first N variables
    /// always correspond to the regions appearing in the function
    /// signature (both named and anonymous) and where-clauses. This
    /// function iterates over those regions and initializes them with
    /// minimum values.
    ///
    /// For example:
    ///
    ///     fn foo<'a, 'b>(..) where 'a: 'b
    ///
    /// would initialize two variables like so:
    ///
    ///     R0 = { CFG, R0 } // 'a
    ///     R1 = { CFG, R0, R1 } // 'b
    ///
    /// Here, R0 represents `'a`, and it contains (a) the entire CFG
    /// and (b) any universally quantified regions that it outlives,
    /// which in this case is just itself. R1 (`'b`) in contrast also
    /// outlives `'a` and hence contains R0 and R1.
    fn init_free_and_bound_regions(&mut self) {
        // Update the names (if any)
        for (external_name, variable) in self.universal_regions.named_universal_regions() {
            debug!(
                "init_universal_regions: region {:?} has external name {:?}",
                variable, external_name
            );
            self.definitions[variable].external_name = Some(external_name);
        }

        for variable in self.definitions.indices() {
            let scc = self.constraint_sccs.scc(variable);

            match self.definitions[variable].origin {
                NLLRegionVariableOrigin::FreeRegion => {
                    // For each free, universally quantified region X:

                    // Add all nodes in the CFG to liveness constraints
                    self.liveness_constraints.add_all_points(variable);
                    self.scc_values.add_all_points(scc);

                    // Add `end(X)` into the set for X.
                    self.scc_values.add_element(scc, variable);
                }

                NLLRegionVariableOrigin::Placeholder(placeholder) => {
                    // Each placeholder region is only visible from
                    // its universe `ui` and its extensions. So we
                    // can't just add it into `scc` unless the
                    // universe of the scc can name this region.
                    let scc_universe = self.scc_universes[scc];
                    if scc_universe.can_name(placeholder.universe) {
                        self.scc_values.add_element(scc, placeholder);
                    } else {
                        debug!(
                            "init_free_and_bound_regions: placeholder {:?} is \
                             not compatible with universe {:?} of its SCC {:?}",
                            placeholder, scc_universe, scc,
                        );
                        self.add_incompatible_universe(scc);
                    }
                }

                NLLRegionVariableOrigin::RootEmptyRegion
                | NLLRegionVariableOrigin::Existential { .. } => {
                    // For existential, regions, nothing to do.
                }
            }
        }
    }

    /// Returns an iterator over all the region indices.
    pub fn regions(&self) -> impl Iterator<Item = RegionVid> {
        self.definitions.indices()
    }

    /// Given a universal region in scope on the MIR, returns the
    /// corresponding index.
    ///
    /// (Panics if `r` is not a registered universal region.)
    pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
        self.universal_regions.to_region_vid(r)
    }

    /// Adds annotations for `#[rustc_regions]`; see `UniversalRegions::annotate`.
    crate fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
        self.universal_regions.annotate(tcx, err)
    }

    /// Returns `true` if the region `r` contains the point `p`.
    ///
    /// Panics if called before `solve()` executes,
    crate fn region_contains(&self, r: impl ToRegionVid, p: impl ToElementIndex) -> bool {
        let scc = self.constraint_sccs.scc(r.to_region_vid());
        self.scc_values.contains(scc, p)
    }

    /// Returns access to the value of `r` for debugging purposes.
    crate fn region_value_str(&self, r: RegionVid) -> String {
        let scc = self.constraint_sccs.scc(r.to_region_vid());
        self.scc_values.region_value_str(scc)
    }

    /// Returns access to the value of `r` for debugging purposes.
    crate fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
        let scc = self.constraint_sccs.scc(r.to_region_vid());
        self.scc_universes[scc]
    }

    /// Once region solving has completed, this function will return
    /// the member constraints that were applied to the value of a given
    /// region `r`. See `AppliedMemberConstraint`.
    pub(in crate::borrow_check) fn applied_member_constraints(
        &self,
        r: impl ToRegionVid,
    ) -> &[AppliedMemberConstraint] {
        let scc = self.constraint_sccs.scc(r.to_region_vid());
        binary_search_util::binary_search_slice(
            &self.member_constraints_applied,
            |applied| applied.member_region_scc,
            &scc,
        )
    }

    /// Performs region inference and report errors if we see any
    /// unsatisfiable constraints. If this is a closure, returns the
    /// region requirements to propagate to our creator, if any.
    pub(super) fn solve(
        &mut self,
        infcx: &InferCtxt<'_, 'tcx>,
        body: &Body<'tcx>,
        mir_def_id: DefId,
        polonius_output: Option<Rc<PoloniusOutput>>,
    ) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>) {
        self.propagate_constraints(body);

        let mut errors_buffer = RegionErrors::new();

        // If this is a closure, we can propagate unsatisfied
        // `outlives_requirements` to our creator, so create a vector
        // to store those. Otherwise, we'll pass in `None` to the
        // functions below, which will trigger them to report errors
        // eagerly.
        let mut outlives_requirements = infcx.tcx.is_closure(mir_def_id).then(Vec::new);

        self.check_type_tests(infcx, body, outlives_requirements.as_mut(), &mut errors_buffer);

        // In Polonius mode, the errors about missing universal region relations are in the output
        // and need to be emitted or propagated. Otherwise, we need to check whether the
        // constraints were too strong, and if so, emit or propagate those errors.
        if infcx.tcx.sess.opts.debugging_opts.polonius {
            self.check_polonius_subset_errors(
                body,
                outlives_requirements.as_mut(),
                &mut errors_buffer,
                polonius_output.expect("Polonius output is unavailable despite `-Z polonius`"),
            );
        } else {
            self.check_universal_regions(body, outlives_requirements.as_mut(), &mut errors_buffer);
        }

        if errors_buffer.is_empty() {
            self.check_member_constraints(infcx, &mut errors_buffer);
        }

        let outlives_requirements = outlives_requirements.unwrap_or(vec![]);

        if outlives_requirements.is_empty() {
            (None, errors_buffer)
        } else {
            let num_external_vids = self.universal_regions.num_global_and_external_regions();
            (
                Some(ClosureRegionRequirements { num_external_vids, outlives_requirements }),
                errors_buffer,
            )
        }
    }

    /// Propagate the region constraints: this will grow the values
    /// for each region variable until all the constraints are
    /// satisfied. Note that some values may grow **too** large to be
    /// feasible, but we check this later.
    fn propagate_constraints(&mut self, _body: &Body<'tcx>) {
        debug!("propagate_constraints()");

        debug!("propagate_constraints: constraints={:#?}", {
            let mut constraints: Vec<_> = self.constraints.outlives().iter().collect();
            constraints.sort();
            constraints
                .into_iter()
                .map(|c| (c, self.constraint_sccs.scc(c.sup), self.constraint_sccs.scc(c.sub)))
                .collect::<Vec<_>>()
        });

        // To propagate constraints, we walk the DAG induced by the
        // SCC. For each SCC, we visit its successors and compute
        // their values, then we union all those values to get our
        // own.
        let constraint_sccs = self.constraint_sccs.clone();
        for scc in constraint_sccs.all_sccs() {
            self.compute_value_for_scc(scc);
        }

        // Sort the applied member constraints so we can binary search
        // through them later.
        self.member_constraints_applied.sort_by_key(|applied| applied.member_region_scc);
    }

    /// Computes the value of the SCC `scc_a`, which has not yet been
    /// computed, by unioning the values of its successors.
    /// Assumes that all successors have been computed already
    /// (which is assured by iterating over SCCs in dependency order).
    fn compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex) {
        let constraint_sccs = self.constraint_sccs.clone();

        // Walk each SCC `B` such that `A: B`...
        for &scc_b in constraint_sccs.successors(scc_a) {
            debug!("propagate_constraint_sccs: scc_a = {:?} scc_b = {:?}", scc_a, scc_b);

            // ...and add elements from `B` into `A`. One complication
            // arises because of universes: If `B` contains something
            // that `A` cannot name, then `A` can only contain `B` if
            // it outlives static.
            if self.universe_compatible(scc_b, scc_a) {
                // `A` can name everything that is in `B`, so just
                // merge the bits.
                self.scc_values.add_region(scc_a, scc_b);
            } else {
                self.add_incompatible_universe(scc_a);
            }
        }

        // Now take member constraints into account.
        let member_constraints = self.member_constraints.clone();
        for m_c_i in member_constraints.indices(scc_a) {
            self.apply_member_constraint(scc_a, m_c_i, member_constraints.choice_regions(m_c_i));
        }

        debug!(
            "propagate_constraint_sccs: scc_a = {:?} has value {:?}",
            scc_a,
            self.scc_values.region_value_str(scc_a),
        );
    }

    /// Invoked for each `R0 member of [R1..Rn]` constraint.
    ///
    /// `scc` is the SCC containing R0, and `choice_regions` are the
    /// `R1..Rn` regions -- they are always known to be universal
    /// regions (and if that's not true, we just don't attempt to
    /// enforce the constraint).
    ///
    /// The current value of `scc` at the time the method is invoked
    /// is considered a *lower bound*.  If possible, we will modify
    /// the constraint to set it equal to one of the option regions.
    /// If we make any changes, returns true, else false.
    fn apply_member_constraint(
        &mut self,
        scc: ConstraintSccIndex,
        member_constraint_index: NllMemberConstraintIndex,
        choice_regions: &[ty::RegionVid],
    ) -> bool {
        debug!("apply_member_constraint(scc={:?}, choice_regions={:#?})", scc, choice_regions,);

        if let Some(uh_oh) =
            choice_regions.iter().find(|&&r| !self.universal_regions.is_universal_region(r))
        {
            // FIXME(#61773): This case can only occur with
            // `impl_trait_in_bindings`, I believe, and we are just
            // opting not to handle it for now. See #61773 for
            // details.
            bug!(
                "member constraint for `{:?}` has an option region `{:?}` \
                 that is not a universal region",
                self.member_constraints[member_constraint_index].opaque_type_def_id,
                uh_oh,
            );
        }

        // Create a mutable vector of the options. We'll try to winnow
        // them down.
        let mut choice_regions: Vec<ty::RegionVid> = choice_regions.to_vec();

        // The 'member region' in a member constraint is part of the
        // hidden type, which must be in the root universe. Therefore,
        // it cannot have any placeholders in its value.
        assert!(self.scc_universes[scc] == ty::UniverseIndex::ROOT);
        debug_assert!(
            self.scc_values.placeholders_contained_in(scc).next().is_none(),
            "scc {:?} in a member constraint has placeholder value: {:?}",
            scc,
            self.scc_values.region_value_str(scc),
        );

        // The existing value for `scc` is a lower-bound. This will
        // consist of some set `{P} + {LB}` of points `{P}` and
        // lower-bound free regions `{LB}`. As each choice region `O`
        // is a free region, it will outlive the points. But we can
        // only consider the option `O` if `O: LB`.
        choice_regions.retain(|&o_r| {
            self.scc_values
                .universal_regions_outlived_by(scc)
                .all(|lb| self.universal_region_relations.outlives(o_r, lb))
        });
        debug!("apply_member_constraint: after lb, choice_regions={:?}", choice_regions);

        // Now find all the *upper bounds* -- that is, each UB is a
        // free region that must outlive the member region `R0` (`UB:
        // R0`). Therefore, we need only keep an option `O` if `UB: O`
        // for all UB.
        let rev_scc_graph = self.reverse_scc_graph();
        let universal_region_relations = &self.universal_region_relations;
        for ub in rev_scc_graph.upper_bounds(scc) {
            debug!("apply_member_constraint: ub={:?}", ub);
            choice_regions.retain(|&o_r| universal_region_relations.outlives(ub, o_r));
        }
        debug!("apply_member_constraint: after ub, choice_regions={:?}", choice_regions);

        // If we ruled everything out, we're done.
        if choice_regions.is_empty() {
            return false;
        }

        // Otherwise, we need to find the minimum remaining choice, if
        // any, and take that.
        debug!("apply_member_constraint: choice_regions remaining are {:#?}", choice_regions);
        let min = |r1: ty::RegionVid, r2: ty::RegionVid| -> Option<ty::RegionVid> {
            let r1_outlives_r2 = self.universal_region_relations.outlives(r1, r2);
            let r2_outlives_r1 = self.universal_region_relations.outlives(r2, r1);
            match (r1_outlives_r2, r2_outlives_r1) {
                (true, true) => Some(r1.min(r2)),
                (true, false) => Some(r2),
                (false, true) => Some(r1),
                (false, false) => None,
            }
        };
        let mut min_choice = choice_regions[0];
        for &other_option in &choice_regions[1..] {
            debug!(
                "apply_member_constraint: min_choice={:?} other_option={:?}",
                min_choice, other_option,
            );
            match min(min_choice, other_option) {
                Some(m) => min_choice = m,
                None => {
                    debug!(
                        "apply_member_constraint: {:?} and {:?} are incomparable; no min choice",
                        min_choice, other_option,
                    );
                    return false;
                }
            }
        }

        let min_choice_scc = self.constraint_sccs.scc(min_choice);
        debug!(
            "apply_member_constraint: min_choice={:?} best_choice_scc={:?}",
            min_choice, min_choice_scc,
        );
        if self.scc_values.add_region(scc, min_choice_scc) {
            self.member_constraints_applied.push(AppliedMemberConstraint {
                member_region_scc: scc,
                min_choice,
                member_constraint_index,
            });

            true
        } else {
            false
        }
    }

    /// Returns `true` if all the elements in the value of `scc_b` are nameable
    /// in `scc_a`. Used during constraint propagation, and only once
    /// the value of `scc_b` has been computed.
    fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
        let universe_a = self.scc_universes[scc_a];

        // Quick check: if scc_b's declared universe is a subset of
        // scc_a's declared univese (typically, both are ROOT), then
        // it cannot contain any problematic universe elements.
        if universe_a.can_name(self.scc_universes[scc_b]) {
            return true;
        }

        // Otherwise, we have to iterate over the universe elements in
        // B's value, and check whether all of them are nameable
        // from universe_a
        self.scc_values.placeholders_contained_in(scc_b).all(|p| universe_a.can_name(p.universe))
    }

    /// Extend `scc` so that it can outlive some placeholder region
    /// from a universe it can't name; at present, the only way for
    /// this to be true is if `scc` outlives `'static`. This is
    /// actually stricter than necessary: ideally, we'd support bounds
    /// like `for<'a: 'b`>` that might then allow us to approximate
    /// `'a` with `'b` and not `'static`. But it will have to do for
    /// now.
    fn add_incompatible_universe(&mut self, scc: ConstraintSccIndex) {
        debug!("add_incompatible_universe(scc={:?})", scc);

        let fr_static = self.universal_regions.fr_static;
        self.scc_values.add_all_points(scc);
        self.scc_values.add_element(scc, fr_static);
    }

    /// Once regions have been propagated, this method is used to see
    /// whether the "type tests" produced by typeck were satisfied;
    /// type tests encode type-outlives relationships like `T:
    /// 'a`. See `TypeTest` for more details.
    fn check_type_tests(
        &self,
        infcx: &InferCtxt<'_, 'tcx>,
        body: &Body<'tcx>,
        mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
        errors_buffer: &mut RegionErrors<'tcx>,
    ) {
        let tcx = infcx.tcx;

        // Sometimes we register equivalent type-tests that would
        // result in basically the exact same error being reported to
        // the user. Avoid that.
        let mut deduplicate_errors = FxHashSet::default();

        for type_test in &self.type_tests {
            debug!("check_type_test: {:?}", type_test);

            let generic_ty = type_test.generic_kind.to_ty(tcx);
            if self.eval_verify_bound(
                tcx,
                body,
                generic_ty,
                type_test.lower_bound,
                &type_test.verify_bound,
            ) {
                continue;
            }

            if let Some(propagated_outlives_requirements) = &mut propagated_outlives_requirements {
                if self.try_promote_type_test(
                    infcx,
                    body,
                    type_test,
                    propagated_outlives_requirements,
                ) {
                    continue;
                }
            }

            // Type-test failed. Report the error.
            let erased_generic_kind = infcx.tcx.erase_regions(&type_test.generic_kind);

            // Skip duplicate-ish errors.
            if deduplicate_errors.insert((
                erased_generic_kind,
                type_test.lower_bound,
                type_test.locations,
            )) {
                debug!(
                    "check_type_test: reporting error for erased_generic_kind={:?}, \
                     lower_bound_region={:?}, \
                     type_test.locations={:?}",
                    erased_generic_kind, type_test.lower_bound, type_test.locations,
                );

                errors_buffer.push(RegionErrorKind::TypeTestError { type_test: type_test.clone() });
            }
        }
    }

    /// Invoked when we have some type-test (e.g., `T: 'X`) that we cannot
    /// prove to be satisfied. If this is a closure, we will attempt to
    /// "promote" this type-test into our `ClosureRegionRequirements` and
    /// hence pass it up the creator. To do this, we have to phrase the
    /// type-test in terms of external free regions, as local free
    /// regions are not nameable by the closure's creator.
    ///
    /// Promotion works as follows: we first check that the type `T`
    /// contains only regions that the creator knows about. If this is
    /// true, then -- as a consequence -- we know that all regions in
    /// the type `T` are free regions that outlive the closure body. If
    /// false, then promotion fails.
    ///
    /// Once we've promoted T, we have to "promote" `'X` to some region
    /// that is "external" to the closure. Generally speaking, a region
    /// may be the union of some points in the closure body as well as
    /// various free lifetimes. We can ignore the points in the closure
    /// body: if the type T can be expressed in terms of external regions,
    /// we know it outlives the points in the closure body. That
    /// just leaves the free regions.
    ///
    /// The idea then is to lower the `T: 'X` constraint into multiple
    /// bounds -- e.g., if `'X` is the union of two free lifetimes,
    /// `'1` and `'2`, then we would create `T: '1` and `T: '2`.
    fn try_promote_type_test(
        &self,
        infcx: &InferCtxt<'_, 'tcx>,
        body: &Body<'tcx>,
        type_test: &TypeTest<'tcx>,
        propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>,
    ) -> bool {
        let tcx = infcx.tcx;

        let TypeTest { generic_kind, lower_bound, locations, verify_bound: _ } = type_test;

        let generic_ty = generic_kind.to_ty(tcx);
        let subject = match self.try_promote_type_test_subject(infcx, generic_ty) {
            Some(s) => s,
            None => return false,
        };

        // For each region outlived by lower_bound find a non-local,
        // universal region (it may be the same region) and add it to
        // `ClosureOutlivesRequirement`.
        let r_scc = self.constraint_sccs.scc(*lower_bound);
        for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
            // Check whether we can already prove that the "subject" outlives `ur`.
            // If so, we don't have to propagate this requirement to our caller.
            //
            // To continue the example from the function, if we are trying to promote
            // a requirement that `T: 'X`, and we know that `'X = '1 + '2` (i.e., the union
            // `'1` and `'2`), then in this loop `ur` will be `'1` (and `'2`). So here
            // we check whether `T: '1` is something we *can* prove. If so, no need
            // to propagate that requirement.
            //
            // This is needed because -- particularly in the case
            // where `ur` is a local bound -- we are sometimes in a
            // position to prove things that our caller cannot.  See
            // #53570 for an example.
            if self.eval_verify_bound(tcx, body, generic_ty, ur, &type_test.verify_bound) {
                continue;
            }

            debug!("try_promote_type_test: ur={:?}", ur);

            let non_local_ub = self.universal_region_relations.non_local_upper_bounds(&ur);
            debug!("try_promote_type_test: non_local_ub={:?}", non_local_ub);

            // This is slightly too conservative. To show T: '1, given `'2: '1`
            // and `'3: '1` we only need to prove that T: '2 *or* T: '3, but to
            // avoid potential non-determinism we approximate this by requiring
            // T: '1 and T: '2.
            for &upper_bound in non_local_ub {
                debug_assert!(self.universal_regions.is_universal_region(upper_bound));
                debug_assert!(!self.universal_regions.is_local_free_region(upper_bound));

                let requirement = ClosureOutlivesRequirement {
                    subject,
                    outlived_free_region: upper_bound,
                    blame_span: locations.span(body),
                    category: ConstraintCategory::Boring,
                };
                debug!("try_promote_type_test: pushing {:#?}", requirement);
                propagated_outlives_requirements.push(requirement);
            }
        }
        true
    }

    /// When we promote a type test `T: 'r`, we have to convert the
    /// type `T` into something we can store in a query result (so
    /// something allocated for `'tcx`). This is problematic if `ty`
    /// contains regions. During the course of NLL region checking, we
    /// will have replaced all of those regions with fresh inference
    /// variables. To create a test subject, we want to replace those
    /// inference variables with some region from the closure
    /// signature -- this is not always possible, so this is a
    /// fallible process. Presuming we do find a suitable region, we
    /// will use it's *external name*, which will be a `RegionKind`
    /// variant that can be used in query responses such as
    /// `ReEarlyBound`.
    fn try_promote_type_test_subject(
        &self,
        infcx: &InferCtxt<'_, 'tcx>,
        ty: Ty<'tcx>,
    ) -> Option<ClosureOutlivesSubject<'tcx>> {
        let tcx = infcx.tcx;

        debug!("try_promote_type_test_subject(ty = {:?})", ty);

        let ty = tcx.fold_regions(&ty, &mut false, |r, _depth| {
            let region_vid = self.to_region_vid(r);

            // The challenge if this. We have some region variable `r`
            // whose value is a set of CFG points and universal
            // regions. We want to find if that set is *equivalent* to
            // any of the named regions found in the closure.
            //
            // To do so, we compute the
            // `non_local_universal_upper_bound`. This will be a
            // non-local, universal region that is greater than `r`.
            // However, it might not be *contained* within `r`, so
            // then we further check whether this bound is contained
            // in `r`. If so, we can say that `r` is equivalent to the
            // bound.
            //
            // Let's work through a few examples. For these, imagine
            // that we have 3 non-local regions (I'll denote them as
            // `'static`, `'a`, and `'b`, though of course in the code
            // they would be represented with indices) where:
            //
            // - `'static: 'a`
            // - `'static: 'b`
            //
            // First, let's assume that `r` is some existential
            // variable with an inferred value `{'a, 'static}` (plus
            // some CFG nodes). In this case, the non-local upper
            // bound is `'static`, since that outlives `'a`. `'static`
            // is also a member of `r` and hence we consider `r`
            // equivalent to `'static` (and replace it with
            // `'static`).
            //
            // Now let's consider the inferred value `{'a, 'b}`. This
            // means `r` is effectively `'a | 'b`. I'm not sure if
            // this can come about, actually, but assuming it did, we
            // would get a non-local upper bound of `'static`. Since
            // `'static` is not contained in `r`, we would fail to
            // find an equivalent.
            let upper_bound = self.non_local_universal_upper_bound(region_vid);
            if self.region_contains(region_vid, upper_bound) {
                self.definitions[upper_bound].external_name.unwrap_or(r)
            } else {
                // In the case of a failure, use a `ReVar` result. This will
                // cause the `needs_infer` later on to return `None`.
                r
            }
        });

        debug!("try_promote_type_test_subject: folded ty = {:?}", ty);

        // `needs_infer` will only be true if we failed to promote some region.
        if ty.needs_infer() {
            return None;
        }

        Some(ClosureOutlivesSubject::Ty(ty))
    }

    /// Given some universal or existential region `r`, finds a
    /// non-local, universal region `r+` that outlives `r` at entry to (and
    /// exit from) the closure. In the worst case, this will be
    /// `'static`.
    ///
    /// This is used for two purposes. First, if we are propagated
    /// some requirement `T: r`, we can use this method to enlarge `r`
    /// to something we can encode for our creator (which only knows
    /// about non-local, universal regions). It is also used when
    /// encoding `T` as part of `try_promote_type_test_subject` (see
    /// that fn for details).
    ///
    /// This is based on the result `'y` of `universal_upper_bound`,
    /// except that it converts further takes the non-local upper
    /// bound of `'y`, so that the final result is non-local.
    fn non_local_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
        debug!("non_local_universal_upper_bound(r={:?}={})", r, self.region_value_str(r));

        let lub = self.universal_upper_bound(r);

        // Grow further to get smallest universal region known to
        // creator.
        let non_local_lub = self.universal_region_relations.non_local_upper_bound(lub);

        debug!("non_local_universal_upper_bound: non_local_lub={:?}", non_local_lub);

        non_local_lub
    }

    /// Returns a universally quantified region that outlives the
    /// value of `r` (`r` may be existentially or universally
    /// quantified).
    ///
    /// Since `r` is (potentially) an existential region, it has some
    /// value which may include (a) any number of points in the CFG
    /// and (b) any number of `end('x)` elements of universally
    /// quantified regions. To convert this into a single universal
    /// region we do as follows:
    ///
    /// - Ignore the CFG points in `'r`. All universally quantified regions
    ///   include the CFG anyhow.
    /// - For each `end('x)` element in `'r`, compute the mutual LUB, yielding
    ///   a result `'y`.
    pub(in crate::borrow_check) fn universal_upper_bound(&self, r: RegionVid) -> RegionVid {
        debug!("universal_upper_bound(r={:?}={})", r, self.region_value_str(r));

        // Find the smallest universal region that contains all other
        // universal regions within `region`.
        let mut lub = self.universal_regions.fr_fn_body;
        let r_scc = self.constraint_sccs.scc(r);
        for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
            lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
        }

        debug!("universal_upper_bound: r={:?} lub={:?}", r, lub);

        lub
    }

    /// Like `universal_upper_bound`, but returns an approximation more suitable
    /// for diagnostics. If `r` contains multiple disjoint universal regions
    /// (e.g. 'a and 'b in `fn foo<'a, 'b> { ... }`, we pick the lower-numbered region.
    /// This corresponds to picking named regions over unnamed regions
    /// (e.g. picking early-bound regions over a closure late-bound region).
    ///
    /// This means that the returned value may not be a true upper bound, since
    /// only 'static is known to outlive disjoint universal regions.
    /// Therefore, this method should only be used in diagnostic code,
    /// where displaying *some* named universal region is better than
    /// falling back to 'static.
    pub(in crate::borrow_check) fn approx_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
        debug!("approx_universal_upper_bound(r={:?}={})", r, self.region_value_str(r));

        // Find the smallest universal region that contains all other
        // universal regions within `region`.
        let mut lub = self.universal_regions.fr_fn_body;
        let r_scc = self.constraint_sccs.scc(r);
        let static_r = self.universal_regions.fr_static;
        for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
            let new_lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
            debug!("approx_universal_upper_bound: ur={:?} lub={:?} new_lub={:?}", ur, lub, new_lub);
            if ur != static_r && lub != static_r && new_lub == static_r {
                lub = std::cmp::min(ur, lub);
            } else {
                lub = new_lub;
            }
        }

        debug!("approx_universal_upper_bound: r={:?} lub={:?}", r, lub);

        lub
    }

    /// Tests if `test` is true when applied to `lower_bound` at
    /// `point`.
    fn eval_verify_bound(
        &self,
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        generic_ty: Ty<'tcx>,
        lower_bound: RegionVid,
        verify_bound: &VerifyBound<'tcx>,
    ) -> bool {
        debug!("eval_verify_bound(lower_bound={:?}, verify_bound={:?})", lower_bound, verify_bound);

        match verify_bound {
            VerifyBound::IfEq(test_ty, verify_bound1) => {
                self.eval_if_eq(tcx, body, generic_ty, lower_bound, test_ty, verify_bound1)
            }

            VerifyBound::IsEmpty => {
                let lower_bound_scc = self.constraint_sccs.scc(lower_bound);
                self.scc_values.elements_contained_in(lower_bound_scc).next().is_none()
            }

            VerifyBound::OutlivedBy(r) => {
                let r_vid = self.to_region_vid(r);
                self.eval_outlives(r_vid, lower_bound)
            }

            VerifyBound::AnyBound(verify_bounds) => verify_bounds.iter().any(|verify_bound| {
                self.eval_verify_bound(tcx, body, generic_ty, lower_bound, verify_bound)
            }),

            VerifyBound::AllBounds(verify_bounds) => verify_bounds.iter().all(|verify_bound| {
                self.eval_verify_bound(tcx, body, generic_ty, lower_bound, verify_bound)
            }),
        }
    }

    fn eval_if_eq(
        &self,
        tcx: TyCtxt<'tcx>,
        body: &Body<'tcx>,
        generic_ty: Ty<'tcx>,
        lower_bound: RegionVid,
        test_ty: Ty<'tcx>,
        verify_bound: &VerifyBound<'tcx>,
    ) -> bool {
        let generic_ty_normalized = self.normalize_to_scc_representatives(tcx, generic_ty);
        let test_ty_normalized = self.normalize_to_scc_representatives(tcx, test_ty);
        if generic_ty_normalized == test_ty_normalized {
            self.eval_verify_bound(tcx, body, generic_ty, lower_bound, verify_bound)
        } else {
            false
        }
    }

    /// This is a conservative normalization procedure. It takes every
    /// free region in `value` and replaces it with the
    /// "representative" of its SCC (see `scc_representatives` field).
    /// We are guaranteed that if two values normalize to the same
    /// thing, then they are equal; this is a conservative check in
    /// that they could still be equal even if they normalize to
    /// different results. (For example, there might be two regions
    /// with the same value that are not in the same SCC).
    ///
    /// N.B., this is not an ideal approach and I would like to revisit
    /// it. However, it works pretty well in practice. In particular,
    /// this is needed to deal with projection outlives bounds like
    ///
    ///     <T as Foo<'0>>::Item: '1
    ///
    /// In particular, this routine winds up being important when
    /// there are bounds like `where <T as Foo<'a>>::Item: 'b` in the
    /// environment. In this case, if we can show that `'0 == 'a`,
    /// and that `'b: '1`, then we know that the clause is
    /// satisfied. In such cases, particularly due to limitations of
    /// the trait solver =), we usually wind up with a where-clause like
    /// `T: Foo<'a>` in scope, which thus forces `'0 == 'a` to be added as
    /// a constraint, and thus ensures that they are in the same SCC.
    ///
    /// So why can't we do a more correct routine? Well, we could
    /// *almost* use the `relate_tys` code, but the way it is
    /// currently setup it creates inference variables to deal with
    /// higher-ranked things and so forth, and right now the inference
    /// context is not permitted to make more inference variables. So
    /// we use this kind of hacky solution.
    fn normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
    where
        T: TypeFoldable<'tcx>,
    {
        tcx.fold_regions(&value, &mut false, |r, _db| {
            let vid = self.to_region_vid(r);
            let scc = self.constraint_sccs.scc(vid);
            let repr = self.scc_representatives[scc];
            tcx.mk_region(ty::ReVar(repr))
        })
    }

    // Evaluate whether `sup_region == sub_region`.
    fn eval_equal(&self, r1: RegionVid, r2: RegionVid) -> bool {
        self.eval_outlives(r1, r2) && self.eval_outlives(r2, r1)
    }

    // Evaluate whether `sup_region: sub_region`.
    fn eval_outlives(&self, sup_region: RegionVid, sub_region: RegionVid) -> bool {
        debug!("eval_outlives({:?}: {:?})", sup_region, sub_region);

        debug!(
            "eval_outlives: sup_region's value = {:?} universal={:?}",
            self.region_value_str(sup_region),
            self.universal_regions.is_universal_region(sup_region),
        );
        debug!(
            "eval_outlives: sub_region's value = {:?} universal={:?}",
            self.region_value_str(sub_region),
            self.universal_regions.is_universal_region(sub_region),
        );

        let sub_region_scc = self.constraint_sccs.scc(sub_region);
        let sup_region_scc = self.constraint_sccs.scc(sup_region);

        // Both the `sub_region` and `sup_region` consist of the union
        // of some number of universal regions (along with the union
        // of various points in the CFG; ignore those points for
        // now). Therefore, the sup-region outlives the sub-region if,
        // for each universal region R1 in the sub-region, there
        // exists some region R2 in the sup-region that outlives R1.
        let universal_outlives =
            self.scc_values.universal_regions_outlived_by(sub_region_scc).all(|r1| {
                self.scc_values
                    .universal_regions_outlived_by(sup_region_scc)
                    .any(|r2| self.universal_region_relations.outlives(r2, r1))
            });

        if !universal_outlives {
            return false;
        }

        // Now we have to compare all the points in the sub region and make
        // sure they exist in the sup region.

        if self.universal_regions.is_universal_region(sup_region) {
            // Micro-opt: universal regions contain all points.
            return true;
        }

        self.scc_values.contains_points(sup_region_scc, sub_region_scc)
    }

    /// Once regions have been propagated, this method is used to see
    /// whether any of the constraints were too strong. In particular,
    /// we want to check for a case where a universally quantified
    /// region exceeded its bounds. Consider:
    ///
    ///     fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
    ///
    /// In this case, returning `x` requires `&'a u32 <: &'b u32`
    /// and hence we establish (transitively) a constraint that
    /// `'a: 'b`. The `propagate_constraints` code above will
    /// therefore add `end('a)` into the region for `'b` -- but we
    /// have no evidence that `'b` outlives `'a`, so we want to report
    /// an error.
    ///
    /// If `propagated_outlives_requirements` is `Some`, then we will
    /// push unsatisfied obligations into there. Otherwise, we'll
    /// report them as errors.
    fn check_universal_regions(
        &self,
        body: &Body<'tcx>,
        mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
        errors_buffer: &mut RegionErrors<'tcx>,
    ) {
        for (fr, fr_definition) in self.definitions.iter_enumerated() {
            match fr_definition.origin {
                NLLRegionVariableOrigin::FreeRegion => {
                    // Go through each of the universal regions `fr` and check that
                    // they did not grow too large, accumulating any requirements
                    // for our caller into the `outlives_requirements` vector.
                    self.check_universal_region(
                        body,
                        fr,
                        &mut propagated_outlives_requirements,
                        errors_buffer,
                    );
                }

                NLLRegionVariableOrigin::Placeholder(placeholder) => {
                    self.check_bound_universal_region(fr, placeholder, errors_buffer);
                }

                NLLRegionVariableOrigin::RootEmptyRegion
                | NLLRegionVariableOrigin::Existential { .. } => {
                    // nothing to check here
                }
            }
        }
    }

    /// Checks if Polonius has found any unexpected free region relations.
    ///
    /// In Polonius terms, a "subset error" (or "illegal subset relation error") is the equivalent
    /// of NLL's "checking if any region constraints were too strong": a placeholder origin `'a`
    /// was unexpectedly found to be a subset of another placeholder origin `'b`, and means in NLL
    /// terms that the "longer free region" `'a` outlived the "shorter free region" `'b`.
    ///
    /// More details can be found in this blog post by Niko:
    /// http://smallcultfollowing.com/babysteps/blog/2019/01/17/polonius-and-region-errors/
    ///
    /// In the canonical example
    ///
    ///     fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
    ///
    /// returning `x` requires `&'a u32 <: &'b u32` and hence we establish (transitively) a
    /// constraint that `'a: 'b`. It is an error that we have no evidence that this
    /// constraint holds.
    ///
    /// If `propagated_outlives_requirements` is `Some`, then we will
    /// push unsatisfied obligations into there. Otherwise, we'll
    /// report them as errors.
    fn check_polonius_subset_errors(
        &self,
        body: &Body<'tcx>,
        mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
        errors_buffer: &mut RegionErrors<'tcx>,
        polonius_output: Rc<PoloniusOutput>,
    ) {
        debug!(
            "check_polonius_subset_errors: {} subset_errors",
            polonius_output.subset_errors.len()
        );

        // Similarly to `check_universal_regions`: a free region relation, which was not explicitly
        // declared ("known") was found by Polonius, so emit an error, or propagate the
        // requirements for our caller into the `propagated_outlives_requirements` vector.
        //
        // Polonius doesn't model regions ("origins") as CFG-subsets or durations, but the
        // `longer_fr` and `shorter_fr` terminology will still be used here, for consistency with
        // the rest of the NLL infrastructure. The "subset origin" is the "longer free region",
        // and the "superset origin" is the outlived "shorter free region".
        //
        // Note: Polonius will produce a subset error at every point where the unexpected
        // `longer_fr`'s "placeholder loan" is contained in the `shorter_fr`. This can be helpful
        // for diagnostics in the future, e.g. to point more precisely at the key locations
        // requiring this constraint to hold. However, the error and diagnostics code downstream
        // expects that these errors are not duplicated (and that they are in a certain order).
        // Otherwise, diagnostics messages such as the ones giving names like `'1` to elided or
        // anonymous lifetimes for example, could give these names differently, while others like
        // the outlives suggestions or the debug output from `#[rustc_regions]` would be
        // duplicated. The polonius subset errors are deduplicated here, while keeping the
        // CFG-location ordering.
        let mut subset_errors: Vec<_> = polonius_output
            .subset_errors
            .iter()
            .flat_map(|(_location, subset_errors)| subset_errors.iter())
            .collect();
        subset_errors.sort();
        subset_errors.dedup();

        for (longer_fr, shorter_fr) in subset_errors.into_iter() {
            debug!(
                "check_polonius_subset_errors: subset_error longer_fr={:?},\
                 shorter_fr={:?}",
                longer_fr, shorter_fr
            );

            let propagated = self.try_propagate_universal_region_error(
                *longer_fr,
                *shorter_fr,
                body,
                &mut propagated_outlives_requirements,
            );
            if propagated == RegionRelationCheckResult::Error {
                errors_buffer.push(RegionErrorKind::RegionError {
                    longer_fr: *longer_fr,
                    shorter_fr: *shorter_fr,
                    fr_origin: NLLRegionVariableOrigin::FreeRegion,
                    is_reported: true,
                });
            }
        }

        // Handle the placeholder errors as usual, until the chalk-rustc-polonius triumvirate has
        // a more complete picture on how to separate this responsibility.
        for (fr, fr_definition) in self.definitions.iter_enumerated() {
            match fr_definition.origin {
                NLLRegionVariableOrigin::FreeRegion => {
                    // handled by polonius above
                }

                NLLRegionVariableOrigin::Placeholder(placeholder) => {
                    self.check_bound_universal_region(fr, placeholder, errors_buffer);
                }

                NLLRegionVariableOrigin::RootEmptyRegion
                | NLLRegionVariableOrigin::Existential { .. } => {
                    // nothing to check here
                }
            }
        }
    }

    /// Checks the final value for the free region `fr` to see if it
    /// grew too large. In particular, examine what `end(X)` points
    /// wound up in `fr`'s final value; for each `end(X)` where `X !=
    /// fr`, we want to check that `fr: X`. If not, that's either an
    /// error, or something we have to propagate to our creator.
    ///
    /// Things that are to be propagated are accumulated into the
    /// `outlives_requirements` vector.
    fn check_universal_region(
        &self,
        body: &Body<'tcx>,
        longer_fr: RegionVid,
        propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
        errors_buffer: &mut RegionErrors<'tcx>,
    ) {
        debug!("check_universal_region(fr={:?})", longer_fr);

        let longer_fr_scc = self.constraint_sccs.scc(longer_fr);

        // Because this free region must be in the ROOT universe, we
        // know it cannot contain any bound universes.
        assert!(self.scc_universes[longer_fr_scc] == ty::UniverseIndex::ROOT);
        debug_assert!(self.scc_values.placeholders_contained_in(longer_fr_scc).next().is_none());

        // Only check all of the relations for the main representative of each
        // SCC, otherwise just check that we outlive said representative. This
        // reduces the number of redundant relations propagated out of
        // closures.
        // Note that the representative will be a universal region if there is
        // one in this SCC, so we will always check the representative here.
        let representative = self.scc_representatives[longer_fr_scc];
        if representative != longer_fr {
            if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
                longer_fr,
                representative,
                body,
                propagated_outlives_requirements,
            ) {
                errors_buffer.push(RegionErrorKind::RegionError {
                    longer_fr,
                    shorter_fr: representative,
                    fr_origin: NLLRegionVariableOrigin::FreeRegion,
                    is_reported: true,
                });
            }
            return;
        }

        // Find every region `o` such that `fr: o`
        // (because `fr` includes `end(o)`).
        let mut error_reported = false;
        for shorter_fr in self.scc_values.universal_regions_outlived_by(longer_fr_scc) {
            if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
                longer_fr,
                shorter_fr,
                body,
                propagated_outlives_requirements,
            ) {
                // We only report the first region error. Subsequent errors are hidden so as
                // not to overwhelm the user, but we do record them so as to potentially print
                // better diagnostics elsewhere...
                errors_buffer.push(RegionErrorKind::RegionError {
                    longer_fr,
                    shorter_fr,
                    fr_origin: NLLRegionVariableOrigin::FreeRegion,
                    is_reported: !error_reported,
                });

                error_reported = true;
            }
        }
    }

    /// Checks that we can prove that `longer_fr: shorter_fr`. If we can't we attempt to propagate
    /// the constraint outward (e.g. to a closure environment), but if that fails, there is an
    /// error.
    fn check_universal_region_relation(
        &self,
        longer_fr: RegionVid,
        shorter_fr: RegionVid,
        body: &Body<'tcx>,
        propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
    ) -> RegionRelationCheckResult {
        // If it is known that `fr: o`, carry on.
        if self.universal_region_relations.outlives(longer_fr, shorter_fr) {
            RegionRelationCheckResult::Ok
        } else {
            // If we are not in a context where we can't propagate errors, or we
            // could not shrink `fr` to something smaller, then just report an
            // error.
            //
            // Note: in this case, we use the unapproximated regions to report the
            // error. This gives better error messages in some cases.
            self.try_propagate_universal_region_error(
                longer_fr,
                shorter_fr,
                body,
                propagated_outlives_requirements,
            )
        }
    }

    /// Attempt to propagate a region error (e.g. `'a: 'b`) that is not met to a closure's
    /// creator. If we cannot, then the caller should report an error to the user.
    fn try_propagate_universal_region_error(
        &self,
        longer_fr: RegionVid,
        shorter_fr: RegionVid,
        body: &Body<'tcx>,
        propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
    ) -> RegionRelationCheckResult {
        if let Some(propagated_outlives_requirements) = propagated_outlives_requirements {
            // Shrink `longer_fr` until we find a non-local region (if we do).
            // We'll call it `fr-` -- it's ever so slightly smaller than
            // `longer_fr`.
            if let Some(fr_minus) = self.universal_region_relations.non_local_lower_bound(longer_fr)
            {
                debug!("try_propagate_universal_region_error: fr_minus={:?}", fr_minus);

                let blame_span_category = self.find_outlives_blame_span(
                    body,
                    longer_fr,
                    NLLRegionVariableOrigin::FreeRegion,
                    shorter_fr,
                );

                // Grow `shorter_fr` until we find some non-local regions. (We
                // always will.)  We'll call them `shorter_fr+` -- they're ever
                // so slightly larger than `shorter_fr`.
                let shorter_fr_plus =
                    self.universal_region_relations.non_local_upper_bounds(&shorter_fr);
                debug!(
                    "try_propagate_universal_region_error: shorter_fr_plus={:?}",
                    shorter_fr_plus
                );
                for &&fr in &shorter_fr_plus {
                    // Push the constraint `fr-: shorter_fr+`
                    propagated_outlives_requirements.push(ClosureOutlivesRequirement {
                        subject: ClosureOutlivesSubject::Region(fr_minus),
                        outlived_free_region: fr,
                        blame_span: blame_span_category.1,
                        category: blame_span_category.0,
                    });
                }
                return RegionRelationCheckResult::Propagated;
            }
        }

        RegionRelationCheckResult::Error
    }

    fn check_bound_universal_region(
        &self,
        longer_fr: RegionVid,
        placeholder: ty::PlaceholderRegion,
        errors_buffer: &mut RegionErrors<'tcx>,
    ) {
        debug!("check_bound_universal_region(fr={:?}, placeholder={:?})", longer_fr, placeholder,);

        let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
        debug!("check_bound_universal_region: longer_fr_scc={:?}", longer_fr_scc,);

        // If we have some bound universal region `'a`, then the only
        // elements it can contain is itself -- we don't know anything
        // else about it!
        let error_element = match {
            self.scc_values.elements_contained_in(longer_fr_scc).find(|element| match element {
                RegionElement::Location(_) => true,
                RegionElement::RootUniversalRegion(_) => true,
                RegionElement::PlaceholderRegion(placeholder1) => placeholder != *placeholder1,
            })
        } {
            Some(v) => v,
            None => return,
        };
        debug!("check_bound_universal_region: error_element = {:?}", error_element);

        // Find the region that introduced this `error_element`.
        errors_buffer.push(RegionErrorKind::BoundUniversalRegionError {
            longer_fr,
            error_element,
            fr_origin: NLLRegionVariableOrigin::Placeholder(placeholder),
        });
    }

    fn check_member_constraints(
        &self,
        infcx: &InferCtxt<'_, 'tcx>,
        errors_buffer: &mut RegionErrors<'tcx>,
    ) {
        let member_constraints = self.member_constraints.clone();
        for m_c_i in member_constraints.all_indices() {
            debug!("check_member_constraint(m_c_i={:?})", m_c_i);
            let m_c = &member_constraints[m_c_i];
            let member_region_vid = m_c.member_region_vid;
            debug!(
                "check_member_constraint: member_region_vid={:?} with value {}",
                member_region_vid,
                self.region_value_str(member_region_vid),
            );
            let choice_regions = member_constraints.choice_regions(m_c_i);
            debug!("check_member_constraint: choice_regions={:?}", choice_regions);

            // Did the member region wind up equal to any of the option regions?
            if let Some(o) =
                choice_regions.iter().find(|&&o_r| self.eval_equal(o_r, m_c.member_region_vid))
            {
                debug!("check_member_constraint: evaluated as equal to {:?}", o);
                continue;
            }

            // If not, report an error.
            let member_region = infcx.tcx.mk_region(ty::ReVar(member_region_vid));
            errors_buffer.push(RegionErrorKind::UnexpectedHiddenRegion {
                span: m_c.definition_span,
                hidden_ty: m_c.hidden_ty,
                member_region,
            });
        }
    }

    /// We have a constraint `fr1: fr2` that is not satisfied, where
    /// `fr2` represents some universal region. Here, `r` is some
    /// region where we know that `fr1: r` and this function has the
    /// job of determining whether `r` is "to blame" for the fact that
    /// `fr1: fr2` is required.
    ///
    /// This is true under two conditions:
    ///
    /// - `r == fr2`
    /// - `fr2` is `'static` and `r` is some placeholder in a universe
    ///   that cannot be named by `fr1`; in that case, we will require
    ///   that `fr1: 'static` because it is the only way to `fr1: r` to
    ///   be satisfied. (See `add_incompatible_universe`.)
    crate fn provides_universal_region(
        &self,
        r: RegionVid,
        fr1: RegionVid,
        fr2: RegionVid,
    ) -> bool {
        debug!("provides_universal_region(r={:?}, fr1={:?}, fr2={:?})", r, fr1, fr2);
        let result = {
            r == fr2 || {
                fr2 == self.universal_regions.fr_static && self.cannot_name_placeholder(fr1, r)
            }
        };
        debug!("provides_universal_region: result = {:?}", result);
        result
    }

    /// If `r2` represents a placeholder region, then this returns
    /// `true` if `r1` cannot name that placeholder in its
    /// value; otherwise, returns `false`.
    crate fn cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool {
        debug!("cannot_name_value_of(r1={:?}, r2={:?})", r1, r2);

        match self.definitions[r2].origin {
            NLLRegionVariableOrigin::Placeholder(placeholder) => {
                let universe1 = self.definitions[r1].universe;
                debug!(
                    "cannot_name_value_of: universe1={:?} placeholder={:?}",
                    universe1, placeholder
                );
                universe1.cannot_name(placeholder.universe)
            }

            NLLRegionVariableOrigin::RootEmptyRegion
            | NLLRegionVariableOrigin::FreeRegion
            | NLLRegionVariableOrigin::Existential { .. } => false,
        }
    }

    crate fn retrieve_closure_constraint_info(
        &self,
        body: &Body<'tcx>,
        constraint: &OutlivesConstraint,
    ) -> (ConstraintCategory, bool, Span) {
        let loc = match constraint.locations {
            Locations::All(span) => return (constraint.category, false, span),
            Locations::Single(loc) => loc,
        };

        let opt_span_category =
            self.closure_bounds_mapping[&loc].get(&(constraint.sup, constraint.sub));
        opt_span_category.map(|&(category, span)| (category, true, span)).unwrap_or((
            constraint.category,
            false,
            body.source_info(loc).span,
        ))
    }

    /// Finds a good span to blame for the fact that `fr1` outlives `fr2`.
    crate fn find_outlives_blame_span(
        &self,
        body: &Body<'tcx>,
        fr1: RegionVid,
        fr1_origin: NLLRegionVariableOrigin,
        fr2: RegionVid,
    ) -> (ConstraintCategory, Span) {
        let (category, _, span) = self.best_blame_constraint(body, fr1, fr1_origin, |r| {
            self.provides_universal_region(r, fr1, fr2)
        });
        (category, span)
    }

    /// Walks the graph of constraints (where `'a: 'b` is considered
    /// an edge `'a -> 'b`) to find all paths from `from_region` to
    /// `to_region`. The paths are accumulated into the vector
    /// `results`. The paths are stored as a series of
    /// `ConstraintIndex` values -- in other words, a list of *edges*.
    ///
    /// Returns: a series of constraints as well as the region `R`
    /// that passed the target test.
    crate fn find_constraint_paths_between_regions(
        &self,
        from_region: RegionVid,
        target_test: impl Fn(RegionVid) -> bool,
    ) -> Option<(Vec<OutlivesConstraint>, RegionVid)> {
        let mut context = IndexVec::from_elem(Trace::NotVisited, &self.definitions);
        context[from_region] = Trace::StartRegion;

        // Use a deque so that we do a breadth-first search. We will
        // stop at the first match, which ought to be the shortest
        // path (fewest constraints).
        let mut deque = VecDeque::new();
        deque.push_back(from_region);

        while let Some(r) = deque.pop_front() {
            debug!(
                "find_constraint_paths_between_regions: from_region={:?} r={:?} value={}",
                from_region,
                r,
                self.region_value_str(r),
            );

            // Check if we reached the region we were looking for. If so,
            // we can reconstruct the path that led to it and return it.
            if target_test(r) {
                let mut result = vec![];
                let mut p = r;
                loop {
                    match context[p] {
                        Trace::NotVisited => {
                            bug!("found unvisited region {:?} on path to {:?}", p, r)
                        }

                        Trace::FromOutlivesConstraint(c) => {
                            result.push(c);
                            p = c.sup;
                        }

                        Trace::StartRegion => {
                            result.reverse();
                            return Some((result, r));
                        }
                    }
                }
            }

            // Otherwise, walk over the outgoing constraints and
            // enqueue any regions we find, keeping track of how we
            // reached them.

            // A constraint like `'r: 'x` can come from our constraint
            // graph.
            let fr_static = self.universal_regions.fr_static;
            let outgoing_edges_from_graph =
                self.constraint_graph.outgoing_edges(r, &self.constraints, fr_static);

            // Always inline this closure because it can be hot.
            let mut handle_constraint = #[inline(always)]
            |constraint: OutlivesConstraint| {
                debug_assert_eq!(constraint.sup, r);
                let sub_region = constraint.sub;
                if let Trace::NotVisited = context[sub_region] {
                    context[sub_region] = Trace::FromOutlivesConstraint(constraint);
                    deque.push_back(sub_region);
                }
            };

            // This loop can be hot.
            for constraint in outgoing_edges_from_graph {
                handle_constraint(constraint);
            }

            // Member constraints can also give rise to `'r: 'x` edges that
            // were not part of the graph initially, so watch out for those.
            // (But they are extremely rare; this loop is very cold.)
            for constraint in self.applied_member_constraints(r) {
                let p_c = &self.member_constraints[constraint.member_constraint_index];
                let constraint = OutlivesConstraint {
                    sup: r,
                    sub: constraint.min_choice,
                    locations: Locations::All(p_c.definition_span),
                    category: ConstraintCategory::OpaqueType,
                };
                handle_constraint(constraint);
            }
        }

        None
    }

    /// Finds some region R such that `fr1: R` and `R` is live at `elem`.
    crate fn find_sub_region_live_at(&self, fr1: RegionVid, elem: Location) -> RegionVid {
        debug!("find_sub_region_live_at(fr1={:?}, elem={:?})", fr1, elem);
        debug!("find_sub_region_live_at: {:?} is in scc {:?}", fr1, self.constraint_sccs.scc(fr1));
        debug!(
            "find_sub_region_live_at: {:?} is in universe {:?}",
            fr1,
            self.scc_universes[self.constraint_sccs.scc(fr1)]
        );
        self.find_constraint_paths_between_regions(fr1, |r| {
            // First look for some `r` such that `fr1: r` and `r` is live at `elem`
            debug!(
                "find_sub_region_live_at: liveness_constraints for {:?} are {:?}",
                r,
                self.liveness_constraints.region_value_str(r),
            );
            self.liveness_constraints.contains(r, elem)
        })
        .or_else(|| {
            // If we fail to find that, we may find some `r` such that
            // `fr1: r` and `r` is a placeholder from some universe
            // `fr1` cannot name. This would force `fr1` to be
            // `'static`.
            self.find_constraint_paths_between_regions(fr1, |r| {
                self.cannot_name_placeholder(fr1, r)
            })
        })
        .or_else(|| {
            // If we fail to find THAT, it may be that `fr1` is a
            // placeholder that cannot "fit" into its SCC. In that
            // case, there should be some `r` where `fr1: r` and `fr1` is a
            // placeholder that `r` cannot name. We can blame that
            // edge.
            //
            // Remember that if `R1: R2`, then the universe of R1
            // must be able to name the universe of R2, because R2 will
            // be at least `'empty(Universe(R2))`, and `R1` must be at
            // larger than that.
            self.find_constraint_paths_between_regions(fr1, |r| {
                self.cannot_name_placeholder(r, fr1)
            })
        })
        .map(|(_path, r)| r)
        .unwrap()
    }

    /// Get the region outlived by `longer_fr` and live at `element`.
    crate fn region_from_element(&self, longer_fr: RegionVid, element: RegionElement) -> RegionVid {
        match element {
            RegionElement::Location(l) => self.find_sub_region_live_at(longer_fr, l),
            RegionElement::RootUniversalRegion(r) => r,
            RegionElement::PlaceholderRegion(error_placeholder) => self
                .definitions
                .iter_enumerated()
                .find_map(|(r, definition)| match definition.origin {
                    NLLRegionVariableOrigin::Placeholder(p) if p == error_placeholder => Some(r),
                    _ => None,
                })
                .unwrap(),
        }
    }

    /// Get the region definition of `r`.
    crate fn region_definition(&self, r: RegionVid) -> &RegionDefinition<'tcx> {
        &self.definitions[r]
    }

    /// Check if the SCC of `r` contains `upper`.
    crate fn upper_bound_in_region_scc(&self, r: RegionVid, upper: RegionVid) -> bool {
        let r_scc = self.constraint_sccs.scc(r);
        self.scc_values.contains(r_scc, upper)
    }

    crate fn universal_regions(&self) -> &UniversalRegions<'tcx> {
        self.universal_regions.as_ref()
    }

    /// Tries to find the best constraint to blame for the fact that
    /// `R: from_region`, where `R` is some region that meets
    /// `target_test`. This works by following the constraint graph,
    /// creating a constraint path that forces `R` to outlive
    /// `from_region`, and then finding the best choices within that
    /// path to blame.
    crate fn best_blame_constraint(
        &self,
        body: &Body<'tcx>,
        from_region: RegionVid,
        from_region_origin: NLLRegionVariableOrigin,
        target_test: impl Fn(RegionVid) -> bool,
    ) -> (ConstraintCategory, bool, Span) {
        debug!(
            "best_blame_constraint(from_region={:?}, from_region_origin={:?})",
            from_region, from_region_origin
        );

        // Find all paths
        let (path, target_region) =
            self.find_constraint_paths_between_regions(from_region, target_test).unwrap();
        debug!(
            "best_blame_constraint: path={:#?}",
            path.iter()
                .map(|&c| format!(
                    "{:?} ({:?}: {:?})",
                    c,
                    self.constraint_sccs.scc(c.sup),
                    self.constraint_sccs.scc(c.sub),
                ))
                .collect::<Vec<_>>()
        );

        // Classify each of the constraints along the path.
        let mut categorized_path: Vec<(ConstraintCategory, bool, Span)> = path
            .iter()
            .map(|constraint| {
                if constraint.category == ConstraintCategory::ClosureBounds {
                    self.retrieve_closure_constraint_info(body, &constraint)
                } else {
                    (constraint.category, false, constraint.locations.span(body))
                }
            })
            .collect();
        debug!("best_blame_constraint: categorized_path={:#?}", categorized_path);

        // To find the best span to cite, we first try to look for the
        // final constraint that is interesting and where the `sup` is
        // not unified with the ultimate target region. The reason
        // for this is that we have a chain of constraints that lead
        // from the source to the target region, something like:
        //
        //    '0: '1 ('0 is the source)
        //    '1: '2
        //    '2: '3
        //    '3: '4
        //    '4: '5
        //    '5: '6 ('6 is the target)
        //
        // Some of those regions are unified with `'6` (in the same
        // SCC).  We want to screen those out. After that point, the
        // "closest" constraint we have to the end is going to be the
        // most likely to be the point where the value escapes -- but
        // we still want to screen for an "interesting" point to
        // highlight (e.g., a call site or something).
        let target_scc = self.constraint_sccs.scc(target_region);
        let mut range = 0..path.len();

        // As noted above, when reporting an error, there is typically a chain of constraints
        // leading from some "source" region which must outlive some "target" region.
        // In most cases, we prefer to "blame" the constraints closer to the target --
        // but there is one exception. When constraints arise from higher-ranked subtyping,
        // we generally prefer to blame the source value,
        // as the "target" in this case tends to be some type annotation that the user gave.
        // Therefore, if we find that the region origin is some instantiation
        // of a higher-ranked region, we start our search from the "source" point
        // rather than the "target", and we also tweak a few other things.
        //
        // An example might be this bit of Rust code:
        //
        // ```rust
        // let x: fn(&'static ()) = |_| {};
        // let y: for<'a> fn(&'a ()) = x;
        // ```
        //
        // In MIR, this will be converted into a combination of assignments and type ascriptions.
        // In particular, the 'static is imposed through a type ascription:
        //
        // ```rust
        // x = ...;
        // AscribeUserType(x, fn(&'static ())
        // y = x;
        // ```
        //
        // We wind up ultimately with constraints like
        //
        // ```rust
        // !a: 'temp1 // from the `y = x` statement
        // 'temp1: 'temp2
        // 'temp2: 'static // from the AscribeUserType
        // ```
        //
        // and here we prefer to blame the source (the y = x statement).
        let blame_source = match from_region_origin {
            NLLRegionVariableOrigin::FreeRegion
            | NLLRegionVariableOrigin::Existential { from_forall: false } => true,
            NLLRegionVariableOrigin::RootEmptyRegion
            | NLLRegionVariableOrigin::Placeholder(_)
            | NLLRegionVariableOrigin::Existential { from_forall: true } => false,
        };

        let find_region = |i: &usize| {
            let constraint = path[*i];

            let constraint_sup_scc = self.constraint_sccs.scc(constraint.sup);

            if blame_source {
                match categorized_path[*i].0 {
                    ConstraintCategory::OpaqueType
                    | ConstraintCategory::Boring
                    | ConstraintCategory::BoringNoLocation
                    | ConstraintCategory::Internal => false,
                    ConstraintCategory::TypeAnnotation
                    | ConstraintCategory::Return(_)
                    | ConstraintCategory::Yield => true,
                    _ => constraint_sup_scc != target_scc,
                }
            } else {
                match categorized_path[*i].0 {
                    ConstraintCategory::OpaqueType
                    | ConstraintCategory::Boring
                    | ConstraintCategory::BoringNoLocation
                    | ConstraintCategory::Internal => false,
                    _ => true,
                }
            }
        };

        let best_choice =
            if blame_source { range.rev().find(find_region) } else { range.find(find_region) };

        debug!(
            "best_blame_constraint: best_choice={:?} blame_source={}",
            best_choice, blame_source
        );

        if let Some(i) = best_choice {
            if let Some(next) = categorized_path.get(i + 1) {
                if matches!(categorized_path[i].0, ConstraintCategory::Return(_))
                    && next.0 == ConstraintCategory::OpaqueType
                {
                    // The return expression is being influenced by the return type being
                    // impl Trait, point at the return type and not the return expr.
                    return *next;
                }
            }

            if categorized_path[i].0 == ConstraintCategory::Return(ReturnConstraint::Normal) {
                let field = categorized_path.iter().find_map(|p| {
                    if let ConstraintCategory::ClosureUpvar(f) = p.0 { Some(f) } else { None }
                });

                if let Some(field) = field {
                    categorized_path[i].0 =
                        ConstraintCategory::Return(ReturnConstraint::ClosureUpvar(field));
                }
            }

            return categorized_path[i];
        }

        // If that search fails, that is.. unusual. Maybe everything
        // is in the same SCC or something. In that case, find what
        // appears to be the most interesting point to report to the
        // user via an even more ad-hoc guess.
        categorized_path.sort_by(|p0, p1| p0.0.cmp(&p1.0));
        debug!("`: sorted_path={:#?}", categorized_path);

        *categorized_path.first().unwrap()
    }
}

impl<'tcx> RegionDefinition<'tcx> {
    fn new(universe: ty::UniverseIndex, rv_origin: RegionVariableOrigin) -> Self {
        // Create a new region definition. Note that, for free
        // regions, the `external_name` field gets updated later in
        // `init_universal_regions`.

        let origin = match rv_origin {
            RegionVariableOrigin::NLL(origin) => origin,
            _ => NLLRegionVariableOrigin::Existential { from_forall: false },
        };

        Self { origin, universe, external_name: None }
    }
}

pub trait ClosureRegionRequirementsExt<'tcx> {
    fn apply_requirements(
        &self,
        tcx: TyCtxt<'tcx>,
        closure_def_id: DefId,
        closure_substs: SubstsRef<'tcx>,
    ) -> Vec<QueryOutlivesConstraint<'tcx>>;
}

impl<'tcx> ClosureRegionRequirementsExt<'tcx> for ClosureRegionRequirements<'tcx> {
    /// Given an instance T of the closure type, this method
    /// instantiates the "extra" requirements that we computed for the
    /// closure into the inference context. This has the effect of
    /// adding new outlives obligations to existing variables.
    ///
    /// As described on `ClosureRegionRequirements`, the extra
    /// requirements are expressed in terms of regionvids that index
    /// into the free regions that appear on the closure type. So, to
    /// do this, we first copy those regions out from the type T into
    /// a vector. Then we can just index into that vector to extract
    /// out the corresponding region from T and apply the
    /// requirements.
    fn apply_requirements(
        &self,
        tcx: TyCtxt<'tcx>,
        closure_def_id: DefId,
        closure_substs: SubstsRef<'tcx>,
    ) -> Vec<QueryOutlivesConstraint<'tcx>> {
        debug!(
            "apply_requirements(closure_def_id={:?}, closure_substs={:?})",
            closure_def_id, closure_substs
        );

        // Extract the values of the free regions in `closure_substs`
        // into a vector.  These are the regions that we will be
        // relating to one another.
        let closure_mapping = &UniversalRegions::closure_mapping(
            tcx,
            closure_substs,
            self.num_external_vids,
            tcx.closure_base_def_id(closure_def_id),
        );
        debug!("apply_requirements: closure_mapping={:?}", closure_mapping);

        // Create the predicates.
        self.outlives_requirements
            .iter()
            .map(|outlives_requirement| {
                let outlived_region = closure_mapping[outlives_requirement.outlived_free_region];

                match outlives_requirement.subject {
                    ClosureOutlivesSubject::Region(region) => {
                        let region = closure_mapping[region];
                        debug!(
                            "apply_requirements: region={:?} \
                             outlived_region={:?} \
                             outlives_requirement={:?}",
                            region, outlived_region, outlives_requirement,
                        );
                        ty::Binder::dummy(ty::OutlivesPredicate(region.into(), outlived_region))
                    }

                    ClosureOutlivesSubject::Ty(ty) => {
                        debug!(
                            "apply_requirements: ty={:?} \
                             outlived_region={:?} \
                             outlives_requirement={:?}",
                            ty, outlived_region, outlives_requirement,
                        );
                        ty::Binder::dummy(ty::OutlivesPredicate(ty.into(), outlived_region))
                    }
                }
            })
            .collect()
    }
}