```  1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
```
``````use crate::ty::error::TypeError;
use crate::ty::relate::{self, Relate, RelateResult, TypeRelation};
use crate::ty::{self, InferConst, Ty, TyCtxt};

/// A type "A" *matches* "B" if the fresh types in B could be
/// substituted with values so as to make it equal to A. Matching is
/// intended to be used only on freshened types, and it basically
/// indicates if the non-freshened versions of A and B could have been
/// unified.
///
/// It is only an approximation. If it yields false, unification would
/// definitely fail, but a true result doesn't mean unification would
/// succeed. This is because we don't track the "side-constraints" on
/// type variables, nor do we track if the same freshened type appears
/// more than once. To some extent these approximations could be
/// fixed, given effort.
///
/// Like subtyping, matching is really a binary relation, so the only
/// important thing about the result is Ok/Err. Also, matching never
/// affects any type variables or unification state.
pub struct Match<'tcx> {
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
}

impl Match<'tcx> {
pub fn new(tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> Match<'tcx> {
Match { tcx, param_env }
}
}

impl TypeRelation<'tcx> for Match<'tcx> {
fn tag(&self) -> &'static str {
"Match"
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.param_env
}
fn a_is_expected(&self) -> bool {
true
} // irrelevant

fn relate_with_variance<T: Relate<'tcx>>(
&mut self,
_: ty::Variance,
_: ty::VarianceDiagInfo<'tcx>,
a: T,
b: T,
) -> RelateResult<'tcx, T> {
self.relate(a, b)
}

fn regions(
&mut self,
a: ty::Region<'tcx>,
b: ty::Region<'tcx>,
) -> RelateResult<'tcx, ty::Region<'tcx>> {
debug!("{}.regions({:?}, {:?})", self.tag(), a, b);
Ok(a)
}

fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
debug!("{}.tys({:?}, {:?})", self.tag(), a, b);
if a == b {
return Ok(a);
}

match (a.kind(), b.kind()) {
(
_,
&ty::Infer(ty::FreshTy(_))
| &ty::Infer(ty::FreshIntTy(_))
| &ty::Infer(ty::FreshFloatTy(_)),
) => Ok(a),

(&ty::Infer(_), _) | (_, &ty::Infer(_)) => {
Err(TypeError::Sorts(relate::expected_found(self, &a, &b)))
}

(&ty::Error(_), _) | (_, &ty::Error(_)) => Ok(self.tcx().ty_error()),

_ => relate::super_relate_tys(self, a, b),
}
}

fn consts(
&mut self,
a: &'tcx ty::Const<'tcx>,
b: &'tcx ty::Const<'tcx>,
) -> RelateResult<'tcx, &'tcx ty::Const<'tcx>> {
debug!("{}.consts({:?}, {:?})", self.tag(), a, b);
if a == b {
return Ok(a);
}

match (a.val, b.val) {
(_, ty::ConstKind::Infer(InferConst::Fresh(_))) => {
return Ok(a);
}

(ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
return Err(TypeError::ConstMismatch(relate::expected_found(self, &a, &b)));
}

_ => {}
}

relate::super_relate_consts(self, a, b)
}

fn binders<T>(
&mut self,
a: ty::Binder<'tcx, T>,
b: ty::Binder<'tcx, T>,
) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
where
T: Relate<'tcx>,
{
Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
}
}
``````