1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
//! # Categorization
//!
//! The job of the categorization module is to analyze an expression to
//! determine what kind of memory is used in evaluating it (for example,
//! where dereferences occur and what kind of pointer is dereferenced;
//! whether the memory is mutable, etc.).
//!
//! Categorization effectively transforms all of our expressions into
//! expressions of the following forms (the actual enum has many more
//! possibilities, naturally, but they are all variants of these base
//! forms):
//! ```ignore (not-rust)
//! E = rvalue    // some computed rvalue
//!   | x         // address of a local variable or argument
//!   | *E        // deref of a ptr
//!   | E.comp    // access to an interior component
//! ```
//! Imagine a routine ToAddr(Expr) that evaluates an expression and returns an
//! address where the result is to be found. If Expr is a place, then this
//! is the address of the place. If `Expr` is an rvalue, this is the address of
//! some temporary spot in memory where the result is stored.
//!
//! Now, `cat_expr()` classifies the expression `Expr` and the address `A = ToAddr(Expr)`
//! as follows:
//!
//! - `cat`: what kind of expression was this? This is a subset of the
//!   full expression forms which only includes those that we care about
//!   for the purpose of the analysis.
//! - `mutbl`: mutability of the address `A`.
//! - `ty`: the type of data found at the address `A`.
//!
//! The resulting categorization tree differs somewhat from the expressions
//! themselves. For example, auto-derefs are explicit. Also, an index `a[b]` is
//! decomposed into two operations: a dereference to reach the array data and
//! then an index to jump forward to the relevant item.
//!
//! ## By-reference upvars
//!
//! One part of the codegen which may be non-obvious is that we translate
//! closure upvars into the dereference of a borrowed pointer; this more closely
//! resembles the runtime codegen. So, for example, if we had:
//!
//!     let mut x = 3;
//!     let y = 5;
//!     let inc = || x += y;
//!
//! Then when we categorize `x` (*within* the closure) we would yield a
//! result of `*x'`, effectively, where `x'` is a `Categorization::Upvar` reference
//! tied to `x`. The type of `x'` will be a borrowed pointer.

use rustc_middle::hir::place::*;
use rustc_middle::ty::adjustment;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt};

use rustc_data_structures::fx::FxIndexMap;
use rustc_hir as hir;
use rustc_hir::def::{CtorOf, DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::pat_util::EnumerateAndAdjustIterator;
use rustc_hir::PatKind;
use rustc_infer::infer::InferCtxt;
use rustc_span::Span;
use rustc_target::abi::{FieldIdx, VariantIdx, FIRST_VARIANT};
use rustc_trait_selection::infer::InferCtxtExt;

pub(crate) trait HirNode {
    fn hir_id(&self) -> hir::HirId;
}

impl HirNode for hir::Expr<'_> {
    fn hir_id(&self) -> hir::HirId {
        self.hir_id
    }
}

impl HirNode for hir::Pat<'_> {
    fn hir_id(&self) -> hir::HirId {
        self.hir_id
    }
}

#[derive(Clone)]
pub(crate) struct MemCategorizationContext<'a, 'tcx> {
    pub(crate) typeck_results: &'a ty::TypeckResults<'tcx>,
    infcx: &'a InferCtxt<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    body_owner: LocalDefId,
    upvars: Option<&'tcx FxIndexMap<hir::HirId, hir::Upvar>>,
}

pub(crate) type McResult<T> = Result<T, ()>;

impl<'a, 'tcx> MemCategorizationContext<'a, 'tcx> {
    /// Creates a `MemCategorizationContext`.
    pub(crate) fn new(
        infcx: &'a InferCtxt<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        body_owner: LocalDefId,
        typeck_results: &'a ty::TypeckResults<'tcx>,
    ) -> MemCategorizationContext<'a, 'tcx> {
        MemCategorizationContext {
            typeck_results,
            infcx,
            param_env,
            body_owner,
            upvars: infcx.tcx.upvars_mentioned(body_owner),
        }
    }

    pub(crate) fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    pub(crate) fn type_is_copy_modulo_regions(&self, ty: Ty<'tcx>) -> bool {
        self.infcx.type_is_copy_modulo_regions(self.param_env, ty)
    }

    fn resolve_vars_if_possible<T>(&self, value: T) -> T
    where
        T: TypeFoldable<TyCtxt<'tcx>>,
    {
        self.infcx.resolve_vars_if_possible(value)
    }

    fn is_tainted_by_errors(&self) -> bool {
        self.infcx.tainted_by_errors().is_some()
    }

    fn resolve_type_vars_or_error(
        &self,
        id: hir::HirId,
        ty: Option<Ty<'tcx>>,
    ) -> McResult<Ty<'tcx>> {
        match ty {
            Some(ty) => {
                let ty = self.resolve_vars_if_possible(ty);
                if ty.references_error() || ty.is_ty_var() {
                    debug!("resolve_type_vars_or_error: error from {:?}", ty);
                    Err(())
                } else {
                    Ok(ty)
                }
            }
            // FIXME
            None if self.is_tainted_by_errors() => Err(()),
            None => {
                bug!(
                    "no type for node {} in mem_categorization",
                    self.tcx().hir().node_to_string(id)
                );
            }
        }
    }

    pub(crate) fn node_ty(&self, hir_id: hir::HirId) -> McResult<Ty<'tcx>> {
        self.resolve_type_vars_or_error(hir_id, self.typeck_results.node_type_opt(hir_id))
    }

    fn expr_ty(&self, expr: &hir::Expr<'_>) -> McResult<Ty<'tcx>> {
        self.resolve_type_vars_or_error(expr.hir_id, self.typeck_results.expr_ty_opt(expr))
    }

    pub(crate) fn expr_ty_adjusted(&self, expr: &hir::Expr<'_>) -> McResult<Ty<'tcx>> {
        self.resolve_type_vars_or_error(expr.hir_id, self.typeck_results.expr_ty_adjusted_opt(expr))
    }

    /// Returns the type of value that this pattern matches against.
    /// Some non-obvious cases:
    ///
    /// - a `ref x` binding matches against a value of type `T` and gives
    ///   `x` the type `&T`; we return `T`.
    /// - a pattern with implicit derefs (thanks to default binding
    ///   modes #42640) may look like `Some(x)` but in fact have
    ///   implicit deref patterns attached (e.g., it is really
    ///   `&Some(x)`). In that case, we return the "outermost" type
    ///   (e.g., `&Option<T>`).
    pub(crate) fn pat_ty_adjusted(&self, pat: &hir::Pat<'_>) -> McResult<Ty<'tcx>> {
        // Check for implicit `&` types wrapping the pattern; note
        // that these are never attached to binding patterns, so
        // actually this is somewhat "disjoint" from the code below
        // that aims to account for `ref x`.
        if let Some(vec) = self.typeck_results.pat_adjustments().get(pat.hir_id) {
            if let Some(first_ty) = vec.first() {
                debug!("pat_ty(pat={:?}) found adjusted ty `{:?}`", pat, first_ty);
                return Ok(*first_ty);
            }
        }

        self.pat_ty_unadjusted(pat)
    }

    /// Like `pat_ty`, but ignores implicit `&` patterns.
    #[instrument(level = "debug", skip(self), ret)]
    fn pat_ty_unadjusted(&self, pat: &hir::Pat<'_>) -> McResult<Ty<'tcx>> {
        let base_ty = self.node_ty(pat.hir_id)?;
        trace!(?base_ty);

        // This code detects whether we are looking at a `ref x`,
        // and if so, figures out what the type *being borrowed* is.
        match pat.kind {
            PatKind::Binding(..) => {
                let bm = *self
                    .typeck_results
                    .pat_binding_modes()
                    .get(pat.hir_id)
                    .expect("missing binding mode");

                if let ty::BindByReference(_) = bm {
                    // a bind-by-ref means that the base_ty will be the type of the ident itself,
                    // but what we want here is the type of the underlying value being borrowed.
                    // So peel off one-level, turning the &T into T.
                    match base_ty.builtin_deref(false) {
                        Some(t) => Ok(t.ty),
                        None => {
                            debug!("By-ref binding of non-derefable type");
                            Err(())
                        }
                    }
                } else {
                    Ok(base_ty)
                }
            }
            _ => Ok(base_ty),
        }
    }

    pub(crate) fn cat_expr(&self, expr: &hir::Expr<'_>) -> McResult<PlaceWithHirId<'tcx>> {
        // This recursion helper avoids going through *too many*
        // adjustments, since *only* non-overloaded deref recurses.
        fn helper<'a, 'tcx>(
            mc: &MemCategorizationContext<'a, 'tcx>,
            expr: &hir::Expr<'_>,
            adjustments: &[adjustment::Adjustment<'tcx>],
        ) -> McResult<PlaceWithHirId<'tcx>> {
            match adjustments.split_last() {
                None => mc.cat_expr_unadjusted(expr),
                Some((adjustment, previous)) => {
                    mc.cat_expr_adjusted_with(expr, || helper(mc, expr, previous), adjustment)
                }
            }
        }

        helper(self, expr, self.typeck_results.expr_adjustments(expr))
    }

    pub(crate) fn cat_expr_adjusted(
        &self,
        expr: &hir::Expr<'_>,
        previous: PlaceWithHirId<'tcx>,
        adjustment: &adjustment::Adjustment<'tcx>,
    ) -> McResult<PlaceWithHirId<'tcx>> {
        self.cat_expr_adjusted_with(expr, || Ok(previous), adjustment)
    }

    #[instrument(level = "debug", skip(self, previous))]
    fn cat_expr_adjusted_with<F>(
        &self,
        expr: &hir::Expr<'_>,
        previous: F,
        adjustment: &adjustment::Adjustment<'tcx>,
    ) -> McResult<PlaceWithHirId<'tcx>>
    where
        F: FnOnce() -> McResult<PlaceWithHirId<'tcx>>,
    {
        let target = self.resolve_vars_if_possible(adjustment.target);
        match adjustment.kind {
            adjustment::Adjust::Deref(overloaded) => {
                // Equivalent to *expr or something similar.
                let base = if let Some(deref) = overloaded {
                    let ref_ty = Ty::new_ref(self.tcx(), deref.region, target, deref.mutbl);
                    self.cat_rvalue(expr.hir_id, ref_ty)
                } else {
                    previous()?
                };
                self.cat_deref(expr, base)
            }

            adjustment::Adjust::NeverToAny
            | adjustment::Adjust::Pointer(_)
            | adjustment::Adjust::Borrow(_)
            | adjustment::Adjust::DynStar => {
                // Result is an rvalue.
                Ok(self.cat_rvalue(expr.hir_id, target))
            }
        }
    }

    #[instrument(level = "debug", skip(self), ret)]
    pub(crate) fn cat_expr_unadjusted(
        &self,
        expr: &hir::Expr<'_>,
    ) -> McResult<PlaceWithHirId<'tcx>> {
        let expr_ty = self.expr_ty(expr)?;
        match expr.kind {
            hir::ExprKind::Unary(hir::UnOp::Deref, e_base) => {
                if self.typeck_results.is_method_call(expr) {
                    self.cat_overloaded_place(expr, e_base)
                } else {
                    let base = self.cat_expr(e_base)?;
                    self.cat_deref(expr, base)
                }
            }

            hir::ExprKind::Field(base, _) => {
                let base = self.cat_expr(base)?;
                debug!(?base);

                let field_idx = self
                    .typeck_results
                    .field_indices()
                    .get(expr.hir_id)
                    .cloned()
                    .expect("Field index not found");

                Ok(self.cat_projection(
                    expr,
                    base,
                    expr_ty,
                    ProjectionKind::Field(field_idx, FIRST_VARIANT),
                ))
            }

            hir::ExprKind::Index(base, _, _) => {
                if self.typeck_results.is_method_call(expr) {
                    // If this is an index implemented by a method call, then it
                    // will include an implicit deref of the result.
                    // The call to index() returns a `&T` value, which
                    // is an rvalue. That is what we will be
                    // dereferencing.
                    self.cat_overloaded_place(expr, base)
                } else {
                    let base = self.cat_expr(base)?;
                    Ok(self.cat_projection(expr, base, expr_ty, ProjectionKind::Index))
                }
            }

            hir::ExprKind::Path(ref qpath) => {
                let res = self.typeck_results.qpath_res(qpath, expr.hir_id);
                self.cat_res(expr.hir_id, expr.span, expr_ty, res)
            }

            hir::ExprKind::Type(e, _) => self.cat_expr(e),

            hir::ExprKind::AddrOf(..)
            | hir::ExprKind::Call(..)
            | hir::ExprKind::Assign(..)
            | hir::ExprKind::AssignOp(..)
            | hir::ExprKind::Closure { .. }
            | hir::ExprKind::Ret(..)
            | hir::ExprKind::Become(..)
            | hir::ExprKind::Unary(..)
            | hir::ExprKind::Yield(..)
            | hir::ExprKind::MethodCall(..)
            | hir::ExprKind::Cast(..)
            | hir::ExprKind::DropTemps(..)
            | hir::ExprKind::Array(..)
            | hir::ExprKind::If(..)
            | hir::ExprKind::Tup(..)
            | hir::ExprKind::Binary(..)
            | hir::ExprKind::Block(..)
            | hir::ExprKind::Let(..)
            | hir::ExprKind::Loop(..)
            | hir::ExprKind::Match(..)
            | hir::ExprKind::Lit(..)
            | hir::ExprKind::ConstBlock(..)
            | hir::ExprKind::Break(..)
            | hir::ExprKind::Continue(..)
            | hir::ExprKind::Struct(..)
            | hir::ExprKind::Repeat(..)
            | hir::ExprKind::InlineAsm(..)
            | hir::ExprKind::OffsetOf(..)
            | hir::ExprKind::Err(_) => Ok(self.cat_rvalue(expr.hir_id, expr_ty)),
        }
    }

    #[instrument(level = "debug", skip(self, span), ret)]
    pub(crate) fn cat_res(
        &self,
        hir_id: hir::HirId,
        span: Span,
        expr_ty: Ty<'tcx>,
        res: Res,
    ) -> McResult<PlaceWithHirId<'tcx>> {
        match res {
            Res::Def(
                DefKind::Ctor(..)
                | DefKind::Const
                | DefKind::ConstParam
                | DefKind::AssocConst
                | DefKind::Fn
                | DefKind::AssocFn,
                _,
            )
            | Res::SelfCtor(..) => Ok(self.cat_rvalue(hir_id, expr_ty)),

            Res::Def(DefKind::Static { .. }, _) => {
                Ok(PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::StaticItem, Vec::new()))
            }

            Res::Local(var_id) => {
                if self.upvars.is_some_and(|upvars| upvars.contains_key(&var_id)) {
                    self.cat_upvar(hir_id, var_id)
                } else {
                    Ok(PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::Local(var_id), Vec::new()))
                }
            }

            def => span_bug!(span, "unexpected definition in memory categorization: {:?}", def),
        }
    }

    /// Categorize an upvar.
    ///
    /// Note: the actual upvar access contains invisible derefs of closure
    /// environment and upvar reference as appropriate. Only regionck cares
    /// about these dereferences, so we let it compute them as needed.
    #[instrument(level = "debug", skip(self), ret)]
    fn cat_upvar(&self, hir_id: hir::HirId, var_id: hir::HirId) -> McResult<PlaceWithHirId<'tcx>> {
        let closure_expr_def_id = self.body_owner;

        let upvar_id = ty::UpvarId {
            var_path: ty::UpvarPath { hir_id: var_id },
            closure_expr_id: closure_expr_def_id,
        };
        let var_ty = self.node_ty(var_id)?;

        Ok(PlaceWithHirId::new(hir_id, var_ty, PlaceBase::Upvar(upvar_id), Vec::new()))
    }

    #[instrument(level = "debug", skip(self), ret)]
    pub(crate) fn cat_rvalue(&self, hir_id: hir::HirId, expr_ty: Ty<'tcx>) -> PlaceWithHirId<'tcx> {
        PlaceWithHirId::new(hir_id, expr_ty, PlaceBase::Rvalue, Vec::new())
    }

    #[instrument(level = "debug", skip(self, node), ret)]
    pub(crate) fn cat_projection<N: HirNode>(
        &self,
        node: &N,
        base_place: PlaceWithHirId<'tcx>,
        ty: Ty<'tcx>,
        kind: ProjectionKind,
    ) -> PlaceWithHirId<'tcx> {
        let place_ty = base_place.place.ty();
        let mut projections = base_place.place.projections;

        let node_ty = self.typeck_results.node_type(node.hir_id());
        // Opaque types can't have field projections, but we can instead convert
        // the current place in-place (heh) to the hidden type, and then apply all
        // follow up projections on that.
        if node_ty != place_ty && matches!(place_ty.kind(), ty::Alias(ty::Opaque, ..)) {
            projections.push(Projection { kind: ProjectionKind::OpaqueCast, ty: node_ty });
        }
        projections.push(Projection { kind, ty });
        PlaceWithHirId::new(
            node.hir_id(),
            base_place.place.base_ty,
            base_place.place.base,
            projections,
        )
    }

    #[instrument(level = "debug", skip(self))]
    fn cat_overloaded_place(
        &self,
        expr: &hir::Expr<'_>,
        base: &hir::Expr<'_>,
    ) -> McResult<PlaceWithHirId<'tcx>> {
        // Reconstruct the output assuming it's a reference with the
        // same region and mutability as the receiver. This holds for
        // `Deref(Mut)::Deref(_mut)` and `Index(Mut)::index(_mut)`.
        let place_ty = self.expr_ty(expr)?;
        let base_ty = self.expr_ty_adjusted(base)?;

        let ty::Ref(region, _, mutbl) = *base_ty.kind() else {
            span_bug!(expr.span, "cat_overloaded_place: base is not a reference");
        };
        let ref_ty = Ty::new_ref(self.tcx(), region, place_ty, mutbl);

        let base = self.cat_rvalue(expr.hir_id, ref_ty);
        self.cat_deref(expr, base)
    }

    #[instrument(level = "debug", skip(self, node), ret)]
    fn cat_deref(
        &self,
        node: &impl HirNode,
        base_place: PlaceWithHirId<'tcx>,
    ) -> McResult<PlaceWithHirId<'tcx>> {
        let base_curr_ty = base_place.place.ty();
        let deref_ty = match base_curr_ty.builtin_deref(true) {
            Some(mt) => mt.ty,
            None => {
                debug!("explicit deref of non-derefable type: {:?}", base_curr_ty);
                return Err(());
            }
        };
        let mut projections = base_place.place.projections;
        projections.push(Projection { kind: ProjectionKind::Deref, ty: deref_ty });

        Ok(PlaceWithHirId::new(
            node.hir_id(),
            base_place.place.base_ty,
            base_place.place.base,
            projections,
        ))
    }

    pub(crate) fn cat_pattern<F>(
        &self,
        place: PlaceWithHirId<'tcx>,
        pat: &hir::Pat<'_>,
        mut op: F,
    ) -> McResult<()>
    where
        F: FnMut(&PlaceWithHirId<'tcx>, &hir::Pat<'_>),
    {
        self.cat_pattern_(place, pat, &mut op)
    }

    /// Returns the variant index for an ADT used within a Struct or TupleStruct pattern
    /// Here `pat_hir_id` is the HirId of the pattern itself.
    fn variant_index_for_adt(
        &self,
        qpath: &hir::QPath<'_>,
        pat_hir_id: hir::HirId,
        span: Span,
    ) -> McResult<VariantIdx> {
        let res = self.typeck_results.qpath_res(qpath, pat_hir_id);
        let ty = self.typeck_results.node_type(pat_hir_id);
        let ty::Adt(adt_def, _) = ty.kind() else {
            self.tcx()
                .dcx()
                .span_delayed_bug(span, "struct or tuple struct pattern not applied to an ADT");
            return Err(());
        };

        match res {
            Res::Def(DefKind::Variant, variant_id) => Ok(adt_def.variant_index_with_id(variant_id)),
            Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_id) => {
                Ok(adt_def.variant_index_with_ctor_id(variant_ctor_id))
            }
            Res::Def(DefKind::Ctor(CtorOf::Struct, ..), _)
            | Res::Def(DefKind::Struct | DefKind::Union | DefKind::TyAlias | DefKind::AssocTy, _)
            | Res::SelfCtor(..)
            | Res::SelfTyParam { .. }
            | Res::SelfTyAlias { .. } => {
                // Structs and Unions have only have one variant.
                Ok(FIRST_VARIANT)
            }
            _ => bug!("expected ADT path, found={:?}", res),
        }
    }

    /// Returns the total number of fields in an ADT variant used within a pattern.
    /// Here `pat_hir_id` is the HirId of the pattern itself.
    fn total_fields_in_adt_variant(
        &self,
        pat_hir_id: hir::HirId,
        variant_index: VariantIdx,
        span: Span,
    ) -> McResult<usize> {
        let ty = self.typeck_results.node_type(pat_hir_id);
        match ty.kind() {
            ty::Adt(adt_def, _) => Ok(adt_def.variant(variant_index).fields.len()),
            _ => {
                self.tcx()
                    .dcx()
                    .span_bug(span, "struct or tuple struct pattern not applied to an ADT");
            }
        }
    }

    /// Returns the total number of fields in a tuple used within a Tuple pattern.
    /// Here `pat_hir_id` is the HirId of the pattern itself.
    fn total_fields_in_tuple(&self, pat_hir_id: hir::HirId, span: Span) -> McResult<usize> {
        let ty = self.typeck_results.node_type(pat_hir_id);
        match ty.kind() {
            ty::Tuple(args) => Ok(args.len()),
            _ => {
                self.tcx().dcx().span_delayed_bug(span, "tuple pattern not applied to a tuple");
                Err(())
            }
        }
    }

    /// Here, `place` is the `PlaceWithHirId` being matched and pat is the pattern it
    /// is being matched against.
    ///
    /// In general, the way that this works is that we walk down the pattern,
    /// constructing a `PlaceWithHirId` that represents the path that will be taken
    /// to reach the value being matched.
    #[instrument(skip(self, op), ret, level = "debug")]
    fn cat_pattern_<F>(
        &self,
        mut place_with_id: PlaceWithHirId<'tcx>,
        pat: &hir::Pat<'_>,
        op: &mut F,
    ) -> McResult<()>
    where
        F: FnMut(&PlaceWithHirId<'tcx>, &hir::Pat<'_>),
    {
        // If (pattern) adjustments are active for this pattern, adjust the `PlaceWithHirId` correspondingly.
        // `PlaceWithHirId`s are constructed differently from patterns. For example, in
        //
        // ```
        // match foo {
        //     &&Some(x, ) => { ... },
        //     _ => { ... },
        // }
        // ```
        //
        // the pattern `&&Some(x,)` is represented as `Ref { Ref { TupleStruct }}`. To build the
        // corresponding `PlaceWithHirId` we start with the `PlaceWithHirId` for `foo`, and then, by traversing the
        // pattern, try to answer the question: given the address of `foo`, how is `x` reached?
        //
        // `&&Some(x,)` `place_foo`
        //  `&Some(x,)` `deref { place_foo}`
        //   `Some(x,)` `deref { deref { place_foo }}`
        //       `(x,)` `field0 { deref { deref { place_foo }}}` <- resulting place
        //
        // The above example has no adjustments. If the code were instead the (after adjustments,
        // equivalent) version
        //
        // ```
        // match foo {
        //     Some(x, ) => { ... },
        //     _ => { ... },
        // }
        // ```
        //
        // Then we see that to get the same result, we must start with
        // `deref { deref { place_foo }}` instead of `place_foo` since the pattern is now `Some(x,)`
        // and not `&&Some(x,)`, even though its assigned type is that of `&&Some(x,)`.
        for _ in 0..self.typeck_results.pat_adjustments().get(pat.hir_id).map_or(0, |v| v.len()) {
            debug!("applying adjustment to place_with_id={:?}", place_with_id);
            place_with_id = self.cat_deref(pat, place_with_id)?;
        }
        let place_with_id = place_with_id; // lose mutability
        debug!("applied adjustment derefs to get place_with_id={:?}", place_with_id);

        // Invoke the callback, but only now, after the `place_with_id` has adjusted.
        //
        // To see that this makes sense, consider `match &Some(3) { Some(x) => { ... }}`. In that
        // case, the initial `place_with_id` will be that for `&Some(3)` and the pattern is `Some(x)`. We
        // don't want to call `op` with these incompatible values. As written, what happens instead
        // is that `op` is called with the adjusted place (that for `*&Some(3)`) and the pattern
        // `Some(x)` (which matches). Recursing once more, `*&Some(3)` and the pattern `Some(x)`
        // result in the place `Downcast<Some>(*&Some(3)).0` associated to `x` and invoke `op` with
        // that (where the `ref` on `x` is implied).
        op(&place_with_id, pat);

        match pat.kind {
            PatKind::Tuple(subpats, dots_pos) => {
                // (p1, ..., pN)
                let total_fields = self.total_fields_in_tuple(pat.hir_id, pat.span)?;

                for (i, subpat) in subpats.iter().enumerate_and_adjust(total_fields, dots_pos) {
                    let subpat_ty = self.pat_ty_adjusted(subpat)?;
                    let projection_kind =
                        ProjectionKind::Field(FieldIdx::from_usize(i), FIRST_VARIANT);
                    let sub_place =
                        self.cat_projection(pat, place_with_id.clone(), subpat_ty, projection_kind);
                    self.cat_pattern_(sub_place, subpat, op)?;
                }
            }

            PatKind::TupleStruct(ref qpath, subpats, dots_pos) => {
                // S(p1, ..., pN)
                let variant_index = self.variant_index_for_adt(qpath, pat.hir_id, pat.span)?;
                let total_fields =
                    self.total_fields_in_adt_variant(pat.hir_id, variant_index, pat.span)?;

                for (i, subpat) in subpats.iter().enumerate_and_adjust(total_fields, dots_pos) {
                    let subpat_ty = self.pat_ty_adjusted(subpat)?;
                    let projection_kind =
                        ProjectionKind::Field(FieldIdx::from_usize(i), variant_index);
                    let sub_place =
                        self.cat_projection(pat, place_with_id.clone(), subpat_ty, projection_kind);
                    self.cat_pattern_(sub_place, subpat, op)?;
                }
            }

            PatKind::Struct(ref qpath, field_pats, _) => {
                // S { f1: p1, ..., fN: pN }

                let variant_index = self.variant_index_for_adt(qpath, pat.hir_id, pat.span)?;

                for fp in field_pats {
                    let field_ty = self.pat_ty_adjusted(fp.pat)?;
                    let field_index = self
                        .typeck_results
                        .field_indices()
                        .get(fp.hir_id)
                        .cloned()
                        .expect("no index for a field");

                    let field_place = self.cat_projection(
                        pat,
                        place_with_id.clone(),
                        field_ty,
                        ProjectionKind::Field(field_index, variant_index),
                    );
                    self.cat_pattern_(field_place, fp.pat, op)?;
                }
            }

            PatKind::Or(pats) => {
                for pat in pats {
                    self.cat_pattern_(place_with_id.clone(), pat, op)?;
                }
            }

            PatKind::Binding(.., Some(subpat)) => {
                self.cat_pattern_(place_with_id, subpat, op)?;
            }

            PatKind::Box(subpat) | PatKind::Ref(subpat, _) | PatKind::Deref(subpat) => {
                // box p1, &p1, &mut p1. we can ignore the mutability of
                // PatKind::Ref since that information is already contained
                // in the type.
                let subplace = self.cat_deref(pat, place_with_id)?;
                self.cat_pattern_(subplace, subpat, op)?;
            }

            PatKind::Slice(before, ref slice, after) => {
                let Some(element_ty) = place_with_id.place.ty().builtin_index() else {
                    debug!("explicit index of non-indexable type {:?}", place_with_id);
                    return Err(());
                };
                let elt_place = self.cat_projection(
                    pat,
                    place_with_id.clone(),
                    element_ty,
                    ProjectionKind::Index,
                );
                for before_pat in before {
                    self.cat_pattern_(elt_place.clone(), before_pat, op)?;
                }
                if let Some(slice_pat) = *slice {
                    let slice_pat_ty = self.pat_ty_adjusted(slice_pat)?;
                    let slice_place = self.cat_projection(
                        pat,
                        place_with_id,
                        slice_pat_ty,
                        ProjectionKind::Subslice,
                    );
                    self.cat_pattern_(slice_place, slice_pat, op)?;
                }
                for after_pat in after {
                    self.cat_pattern_(elt_place.clone(), after_pat, op)?;
                }
            }

            PatKind::Path(_)
            | PatKind::Binding(.., None)
            | PatKind::Lit(..)
            | PatKind::Range(..)
            | PatKind::Never
            | PatKind::Wild
            | PatKind::Err(_) => {
                // always ok
            }
        }

        Ok(())
    }
}