1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
use crate::{Category, ExpInt, IEK_INF, IEK_NAN, IEK_ZERO};
use crate::{Float, FloatConvert, ParseError, Round, Status, StatusAnd};
use core::cmp::{self, Ordering};
use core::fmt::{self, Write};
use core::marker::PhantomData;
use core::mem;
use core::ops::Neg;
use smallvec::{smallvec, SmallVec};
#[must_use]
pub struct IeeeFloat<S> {
/// Absolute significand value (including the integer bit).
sig: [Limb; 1],
/// The signed unbiased exponent of the value.
exp: ExpInt,
/// What kind of floating point number this is.
category: Category,
/// Sign bit of the number.
sign: bool,
marker: PhantomData<S>,
}
/// Fundamental unit of big integer arithmetic, but also
/// large to store the largest significands by itself.
type Limb = u128;
const LIMB_BITS: usize = 128;
fn limbs_for_bits(bits: usize) -> usize {
(bits + LIMB_BITS - 1) / LIMB_BITS
}
/// Enum that represents what fraction of the LSB truncated bits of an fp number
/// represent.
///
/// This essentially combines the roles of guard and sticky bits.
#[must_use]
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
enum Loss {
// Example of truncated bits:
ExactlyZero, // 000000
LessThanHalf, // 0xxxxx x's not all zero
ExactlyHalf, // 100000
MoreThanHalf, // 1xxxxx x's not all zero
}
/// Represents floating point arithmetic semantics.
pub trait Semantics: Sized {
/// Total number of bits in the in-memory format.
const BITS: usize;
/// Number of bits in the significand. This includes the integer bit.
const PRECISION: usize;
/// The largest E such that 2<sup>E</sup> is representable; this matches the
/// definition of IEEE 754.
const MAX_EXP: ExpInt;
/// The smallest E such that 2<sup>E</sup> is a normalized number; this
/// matches the definition of IEEE 754.
const MIN_EXP: ExpInt = -Self::MAX_EXP + 1;
/// The significand bit that marks NaN as quiet.
const QNAN_BIT: usize = Self::PRECISION - 2;
/// The significand bitpattern to mark a NaN as quiet.
/// NOTE: for X87DoubleExtended we need to set two bits instead of 2.
const QNAN_SIGNIFICAND: Limb = 1 << Self::QNAN_BIT;
fn from_bits(bits: u128) -> IeeeFloat<Self> {
assert!(Self::BITS > Self::PRECISION);
let sign = bits & (1 << (Self::BITS - 1));
let exponent = (bits & !sign) >> (Self::PRECISION - 1);
let mut r = IeeeFloat {
sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
// Convert the exponent from its bias representation to a signed integer.
exp: (exponent as ExpInt) - Self::MAX_EXP,
category: Category::Zero,
sign: sign != 0,
marker: PhantomData,
};
if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
// Exponent, significand meaningless.
r.category = Category::Zero;
} else if r.exp == Self::MAX_EXP + 1 && r.sig == [0] {
// Exponent, significand meaningless.
r.category = Category::Infinity;
} else if r.exp == Self::MAX_EXP + 1 && r.sig != [0] {
// Sign, exponent, significand meaningless.
r.category = Category::NaN;
} else {
r.category = Category::Normal;
if r.exp == Self::MIN_EXP - 1 {
// Denormal.
r.exp = Self::MIN_EXP;
} else {
// Set integer bit.
sig::set_bit(&mut r.sig, Self::PRECISION - 1);
}
}
r
}
fn to_bits(x: IeeeFloat<Self>) -> u128 {
assert!(Self::BITS > Self::PRECISION);
// Split integer bit from significand.
let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
let mut significand = x.sig[0] & ((1 << (Self::PRECISION - 1)) - 1);
let exponent = match x.category {
Category::Normal => {
if x.exp == Self::MIN_EXP && !integer_bit {
// Denormal.
Self::MIN_EXP - 1
} else {
x.exp
}
}
Category::Zero => {
// FIXME(eddyb) Maybe we should guarantee an invariant instead?
significand = 0;
Self::MIN_EXP - 1
}
Category::Infinity => {
// FIXME(eddyb) Maybe we should guarantee an invariant instead?
significand = 0;
Self::MAX_EXP + 1
}
Category::NaN => Self::MAX_EXP + 1,
};
// Convert the exponent from a signed integer to its bias representation.
let exponent = (exponent + Self::MAX_EXP) as u128;
((x.sign as u128) << (Self::BITS - 1)) | (exponent << (Self::PRECISION - 1)) | significand
}
}
impl<S> Copy for IeeeFloat<S> {}
impl<S> Clone for IeeeFloat<S> {
fn clone(&self) -> Self {
*self
}
}
macro_rules! ieee_semantics {
($($name:ident = $sem:ident($bits:tt : $exp_bits:tt)),*) => {
$(pub struct $sem;)*
$(pub type $name = IeeeFloat<$sem>;)*
$(impl Semantics for $sem {
const BITS: usize = $bits;
const PRECISION: usize = ($bits - 1 - $exp_bits) + 1;
const MAX_EXP: ExpInt = (1 << ($exp_bits - 1)) - 1;
})*
}
}
ieee_semantics! {
Half = HalfS(16:5),
Single = SingleS(32:8),
Double = DoubleS(64:11),
Quad = QuadS(128:15)
}
pub struct X87DoubleExtendedS;
pub type X87DoubleExtended = IeeeFloat<X87DoubleExtendedS>;
impl Semantics for X87DoubleExtendedS {
const BITS: usize = 80;
const PRECISION: usize = 64;
const MAX_EXP: ExpInt = (1 << (15 - 1)) - 1;
/// For x87 extended precision, we want to make a NaN, not a
/// pseudo-NaN. Maybe we should expose the ability to make
/// pseudo-NaNs?
const QNAN_SIGNIFICAND: Limb = 0b11 << Self::QNAN_BIT;
/// Integer bit is explicit in this format. Intel hardware (387 and later)
/// does not support these bit patterns:
/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
/// exponent = 0, integer bit 1 ("pseudodenormal")
/// exponent != 0 nor all 1's, integer bit 0 ("unnormal")
/// At the moment, the first two are treated as NaNs, the second two as Normal.
fn from_bits(bits: u128) -> IeeeFloat<Self> {
let sign = bits & (1 << (Self::BITS - 1));
let exponent = (bits & !sign) >> Self::PRECISION;
let mut r = IeeeFloat {
sig: [bits & ((1 << (Self::PRECISION - 1)) - 1)],
// Convert the exponent from its bias representation to a signed integer.
exp: (exponent as ExpInt) - Self::MAX_EXP,
category: Category::Zero,
sign: sign != 0,
marker: PhantomData,
};
if r.exp == Self::MIN_EXP - 1 && r.sig == [0] {
// Exponent, significand meaningless.
r.category = Category::Zero;
} else if r.exp == Self::MAX_EXP + 1 && r.sig == [1 << (Self::PRECISION - 1)] {
// Exponent, significand meaningless.
r.category = Category::Infinity;
} else if r.exp == Self::MAX_EXP + 1 && r.sig != [1 << (Self::PRECISION - 1)] {
// Sign, exponent, significand meaningless.
r.category = Category::NaN;
} else {
r.category = Category::Normal;
if r.exp == Self::MIN_EXP - 1 {
// Denormal.
r.exp = Self::MIN_EXP;
}
}
r
}
fn to_bits(x: IeeeFloat<Self>) -> u128 {
// Get integer bit from significand.
let integer_bit = sig::get_bit(&x.sig, Self::PRECISION - 1);
let mut significand = x.sig[0] & ((1 << Self::PRECISION) - 1);
let exponent = match x.category {
Category::Normal => {
if x.exp == Self::MIN_EXP && !integer_bit {
// Denormal.
Self::MIN_EXP - 1
} else {
x.exp
}
}
Category::Zero => {
// FIXME(eddyb) Maybe we should guarantee an invariant instead?
significand = 0;
Self::MIN_EXP - 1
}
Category::Infinity => {
// FIXME(eddyb) Maybe we should guarantee an invariant instead?
significand = 1 << (Self::PRECISION - 1);
Self::MAX_EXP + 1
}
Category::NaN => Self::MAX_EXP + 1,
};
// Convert the exponent from a signed integer to its bias representation.
let exponent = (exponent + Self::MAX_EXP) as u128;
((x.sign as u128) << (Self::BITS - 1)) | (exponent << Self::PRECISION) | significand
}
}
float_common_impls!(IeeeFloat<S>);
impl<S: Semantics> PartialEq for IeeeFloat<S> {
fn eq(&self, rhs: &Self) -> bool {
self.partial_cmp(rhs) == Some(Ordering::Equal)
}
}
impl<S: Semantics> PartialOrd for IeeeFloat<S> {
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering> {
match (self.category, rhs.category) {
(Category::NaN, _) | (_, Category::NaN) => None,
(Category::Infinity, Category::Infinity) => Some((!self.sign).cmp(&(!rhs.sign))),
(Category::Zero, Category::Zero) => Some(Ordering::Equal),
(Category::Infinity, _) | (Category::Normal, Category::Zero) => {
Some((!self.sign).cmp(&self.sign))
}
(_, Category::Infinity) | (Category::Zero, Category::Normal) => {
Some(rhs.sign.cmp(&(!rhs.sign)))
}
(Category::Normal, Category::Normal) => {
// Two normal numbers. Do they have the same sign?
Some((!self.sign).cmp(&(!rhs.sign)).then_with(|| {
// Compare absolute values; invert result if negative.
let result = self.cmp_abs_normal(*rhs);
if self.sign { result.reverse() } else { result }
}))
}
}
}
}
impl<S> Neg for IeeeFloat<S> {
type Output = Self;
fn neg(mut self) -> Self {
self.sign = !self.sign;
self
}
}
/// Prints this value as a decimal string.
///
/// \param precision The maximum number of digits of
/// precision to output. If there are fewer digits available,
/// zero padding will not be used unless the value is
/// integral and small enough to be expressed in
/// precision digits. 0 means to use the natural
/// precision of the number.
/// \param width The maximum number of zeros to
/// consider inserting before falling back to scientific
/// notation. 0 means to always use scientific notation.
///
/// \param alternate Indicate whether to remove the trailing zero in
/// fraction part or not. Also setting this parameter to true forces
/// producing of output more similar to default printf behavior.
/// Specifically the lower e is used as exponent delimiter and exponent
/// always contains no less than two digits.
///
/// Number precision width Result
/// ------ --------- ----- ------
/// 1.01E+4 5 2 10100
/// 1.01E+4 4 2 1.01E+4
/// 1.01E+4 5 1 1.01E+4
/// 1.01E-2 5 2 0.0101
/// 1.01E-2 4 2 0.0101
/// 1.01E-2 4 1 1.01E-2
impl<S: Semantics> fmt::Display for IeeeFloat<S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let width = f.width().unwrap_or(3);
let alternate = f.alternate();
match self.category {
Category::Infinity => {
if self.sign {
return f.write_str("-Inf");
} else {
return f.write_str("+Inf");
}
}
Category::NaN => return f.write_str("NaN"),
Category::Zero => {
if self.sign {
f.write_char('-')?;
}
if width == 0 {
if alternate {
f.write_str("0.0")?;
if let Some(n) = f.precision() {
for _ in 1..n {
f.write_char('0')?;
}
}
f.write_str("e+00")?;
} else {
f.write_str("0.0E+0")?;
}
} else {
f.write_char('0')?;
}
return Ok(());
}
Category::Normal => {}
}
if self.sign {
f.write_char('-')?;
}
// We use enough digits so the number can be round-tripped back to an
// APFloat. The formula comes from "How to Print Floating-Point Numbers
// Accurately" by Steele and White.
// FIXME: Using a formula based purely on the precision is conservative;
// we can print fewer digits depending on the actual value being printed.
// precision = 2 + floor(S::PRECISION / lg_2(10))
let precision = f.precision().unwrap_or(2 + S::PRECISION * 59 / 196);
// Decompose the number into an APInt and an exponent.
let mut exp = self.exp - (S::PRECISION as ExpInt - 1);
let mut sig = vec![self.sig[0]];
// Ignore trailing binary zeros.
let trailing_zeros = sig[0].trailing_zeros();
let _: Loss = sig::shift_right(&mut sig, &mut exp, trailing_zeros as usize);
// Change the exponent from 2^e to 10^e.
if exp == 0 {
// Nothing to do.
} else if exp > 0 {
// Just shift left.
let shift = exp as usize;
sig.resize(limbs_for_bits(S::PRECISION + shift), 0);
sig::shift_left(&mut sig, &mut exp, shift);
} else {
// exp < 0
let mut texp = -exp as usize;
// We transform this using the identity:
// (N)(2^-e) == (N)(5^e)(10^-e)
// Multiply significand by 5^e.
// N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
let mut sig_scratch = vec![];
let mut p5 = vec![];
let mut p5_scratch = vec![];
while texp != 0 {
if p5.is_empty() {
p5.push(5);
} else {
p5_scratch.resize(p5.len() * 2, 0);
let _: Loss =
sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
while p5_scratch.last() == Some(&0) {
p5_scratch.pop();
}
mem::swap(&mut p5, &mut p5_scratch);
}
if texp & 1 != 0 {
sig_scratch.resize(sig.len() + p5.len(), 0);
let _: Loss = sig::mul(
&mut sig_scratch,
&mut 0,
&sig,
&p5,
(sig.len() + p5.len()) * LIMB_BITS,
);
while sig_scratch.last() == Some(&0) {
sig_scratch.pop();
}
mem::swap(&mut sig, &mut sig_scratch);
}
texp >>= 1;
}
}
// Fill the buffer.
let mut buffer = vec![];
// Ignore digits from the significand until it is no more
// precise than is required for the desired precision.
// 196/59 is a very slight overestimate of lg_2(10).
let required = (precision * 196 + 58) / 59;
let mut discard_digits = sig::omsb(&sig).saturating_sub(required) * 59 / 196;
let mut in_trail = true;
while !sig.is_empty() {
// Perform short division by 10 to extract the rightmost digit.
// rem <- sig % 10
// sig <- sig / 10
let mut rem = 0;
// Use 64-bit division and remainder, with 32-bit chunks from sig.
sig::each_chunk(&mut sig, 32, |chunk| {
let chunk = chunk as u32;
let combined = ((rem as u64) << 32) | (chunk as u64);
rem = (combined % 10) as u8;
(combined / 10) as u32 as Limb
});
// Reduce the significand to avoid wasting time dividing 0's.
while sig.last() == Some(&0) {
sig.pop();
}
let digit = rem;
// Ignore digits we don't need.
if discard_digits > 0 {
discard_digits -= 1;
exp += 1;
continue;
}
// Drop trailing zeros.
if in_trail && digit == 0 {
exp += 1;
} else {
in_trail = false;
buffer.push(b'0' + digit);
}
}
assert!(!buffer.is_empty(), "no characters in buffer!");
// Drop down to precision.
// FIXME: don't do more precise calculations above than are required.
if buffer.len() > precision {
// The most significant figures are the last ones in the buffer.
let mut first_sig = buffer.len() - precision;
// Round.
// FIXME: this probably shouldn't use 'round half up'.
// Rounding down is just a truncation, except we also want to drop
// trailing zeros from the new result.
if buffer[first_sig - 1] < b'5' {
while first_sig < buffer.len() && buffer[first_sig] == b'0' {
first_sig += 1;
}
} else {
// Rounding up requires a decimal add-with-carry. If we continue
// the carry, the newly-introduced zeros will just be truncated.
for x in &mut buffer[first_sig..] {
if *x == b'9' {
first_sig += 1;
} else {
*x += 1;
break;
}
}
}
exp += first_sig as ExpInt;
buffer.drain(..first_sig);
// If we carried through, we have exactly one digit of precision.
if buffer.is_empty() {
buffer.push(b'1');
}
}
let digits = buffer.len();
// Check whether we should use scientific notation.
let scientific = if width == 0 {
true
} else if exp >= 0 {
// 765e3 --> 765000
// ^^^
// But we shouldn't make the number look more precise than it is.
exp as usize > width || digits + exp as usize > precision
} else {
// Power of the most significant digit.
let msd = exp + (digits - 1) as ExpInt;
if msd >= 0 {
// 765e-2 == 7.65
false
} else {
// 765e-5 == 0.00765
// ^ ^^
-msd as usize > width
}
};
// Scientific formatting is pretty straightforward.
if scientific {
exp += digits as ExpInt - 1;
f.write_char(buffer[digits - 1] as char)?;
f.write_char('.')?;
let truncate_zero = !alternate;
if digits == 1 && truncate_zero {
f.write_char('0')?;
} else {
for &d in buffer[..digits - 1].iter().rev() {
f.write_char(d as char)?;
}
}
// Fill with zeros up to precision.
if !truncate_zero && precision > digits - 1 {
for _ in 0..=precision - digits {
f.write_char('0')?;
}
}
// For alternate we use lower 'e'.
f.write_char(if alternate { 'e' } else { 'E' })?;
// Exponent always at least two digits if we do not truncate zeros.
if truncate_zero {
write!(f, "{:+}", exp)?;
} else {
write!(f, "{:+03}", exp)?;
}
return Ok(());
}
// Non-scientific, positive exponents.
if exp >= 0 {
for &d in buffer.iter().rev() {
f.write_char(d as char)?;
}
for _ in 0..exp {
f.write_char('0')?;
}
return Ok(());
}
// Non-scientific, negative exponents.
let unit_place = -exp as usize;
if unit_place < digits {
for &d in buffer[unit_place..].iter().rev() {
f.write_char(d as char)?;
}
f.write_char('.')?;
for &d in buffer[..unit_place].iter().rev() {
f.write_char(d as char)?;
}
} else {
f.write_str("0.")?;
for _ in digits..unit_place {
f.write_char('0')?;
}
for &d in buffer.iter().rev() {
f.write_char(d as char)?;
}
}
Ok(())
}
}
impl<S: Semantics> fmt::Debug for IeeeFloat<S> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"{}({:?} | {}{:?} * 2^{})",
self,
self.category,
if self.sign { "-" } else { "+" },
self.sig,
self.exp
)
}
}
impl<S: Semantics> Float for IeeeFloat<S> {
const BITS: usize = S::BITS;
const PRECISION: usize = S::PRECISION;
const MAX_EXP: ExpInt = S::MAX_EXP;
const MIN_EXP: ExpInt = S::MIN_EXP;
const ZERO: Self = IeeeFloat {
sig: [0],
exp: S::MIN_EXP - 1,
category: Category::Zero,
sign: false,
marker: PhantomData,
};
const INFINITY: Self = IeeeFloat {
sig: [0],
exp: S::MAX_EXP + 1,
category: Category::Infinity,
sign: false,
marker: PhantomData,
};
// FIXME(eddyb) remove when qnan becomes const fn.
const NAN: Self = IeeeFloat {
sig: [S::QNAN_SIGNIFICAND],
exp: S::MAX_EXP + 1,
category: Category::NaN,
sign: false,
marker: PhantomData,
};
fn qnan(payload: Option<u128>) -> Self {
IeeeFloat {
sig: [S::QNAN_SIGNIFICAND
| payload.map_or(0, |payload| {
// Zero out the excess bits of the significand.
payload & ((1 << S::QNAN_BIT) - 1)
})],
exp: S::MAX_EXP + 1,
category: Category::NaN,
sign: false,
marker: PhantomData,
}
}
fn snan(payload: Option<u128>) -> Self {
let mut snan = Self::qnan(payload);
// We always have to clear the QNaN bit to make it an SNaN.
sig::clear_bit(&mut snan.sig, S::QNAN_BIT);
// If there are no bits set in the payload, we have to set
// *something* to make it a NaN instead of an infinity;
// conventionally, this is the next bit down from the QNaN bit.
if snan.sig[0] & !S::QNAN_SIGNIFICAND == 0 {
sig::set_bit(&mut snan.sig, S::QNAN_BIT - 1);
}
snan
}
fn largest() -> Self {
// We want (in interchange format):
// exponent = 1..10
// significand = 1..1
IeeeFloat {
sig: [(1 << S::PRECISION) - 1],
exp: S::MAX_EXP,
category: Category::Normal,
sign: false,
marker: PhantomData,
}
}
// We want (in interchange format):
// exponent = 0..0
// significand = 0..01
const SMALLEST: Self = IeeeFloat {
sig: [1],
exp: S::MIN_EXP,
category: Category::Normal,
sign: false,
marker: PhantomData,
};
fn smallest_normalized() -> Self {
// We want (in interchange format):
// exponent = 0..0
// significand = 10..0
IeeeFloat {
sig: [1 << (S::PRECISION - 1)],
exp: S::MIN_EXP,
category: Category::Normal,
sign: false,
marker: PhantomData,
}
}
fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
let status = match (self.category, rhs.category) {
(Category::Infinity, Category::Infinity) => {
// Differently signed infinities can only be validly
// subtracted.
if self.sign != rhs.sign {
self = Self::NAN;
Status::INVALID_OP
} else {
Status::OK
}
}
// Sign may depend on rounding mode; handled below.
(_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
Status::OK
}
(Category::Zero, _) | (_, Category::NaN | Category::Infinity) => {
self = rhs;
Status::OK
}
// This return code means it was not a simple case.
(Category::Normal, Category::Normal) => {
let loss = sig::add_or_sub(
&mut self.sig,
&mut self.exp,
&mut self.sign,
&mut [rhs.sig[0]],
rhs.exp,
rhs.sign,
);
let status;
self = unpack!(status=, self.normalize(round, loss));
// Can only be zero if we lost no fraction.
assert!(self.category != Category::Zero || loss == Loss::ExactlyZero);
status
}
};
// If two numbers add (exactly) to zero, IEEE 754 decrees it is a
// positive zero unless rounding to minus infinity, except that
// adding two like-signed zeroes gives that zero.
if self.category == Category::Zero
&& (rhs.category != Category::Zero || self.sign != rhs.sign)
{
self.sign = round == Round::TowardNegative;
}
status.and(self)
}
fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
self.sign ^= rhs.sign;
match (self.category, rhs.category) {
(Category::NaN, _) => {
self.sign = false;
Status::OK.and(self)
}
(_, Category::NaN) => {
self.sign = false;
self.category = Category::NaN;
self.sig = rhs.sig;
Status::OK.and(self)
}
(Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
Status::INVALID_OP.and(Self::NAN)
}
(_, Category::Infinity) | (Category::Infinity, _) => {
self.category = Category::Infinity;
Status::OK.and(self)
}
(Category::Zero, _) | (_, Category::Zero) => {
self.category = Category::Zero;
Status::OK.and(self)
}
(Category::Normal, Category::Normal) => {
self.exp += rhs.exp;
let mut wide_sig = [0; 2];
let loss =
sig::mul(&mut wide_sig, &mut self.exp, &self.sig, &rhs.sig, S::PRECISION);
self.sig = [wide_sig[0]];
let mut status;
self = unpack!(status=, self.normalize(round, loss));
if loss != Loss::ExactlyZero {
status |= Status::INEXACT;
}
status.and(self)
}
}
}
fn mul_add_r(mut self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
// If and only if all arguments are normal do we need to do an
// extended-precision calculation.
if !self.is_finite_non_zero() || !multiplicand.is_finite_non_zero() || !addend.is_finite() {
let mut status;
self = unpack!(status=, self.mul_r(multiplicand, round));
// FS can only be Status::OK or Status::INVALID_OP. There is no more work
// to do in the latter case. The IEEE-754R standard says it is
// implementation-defined in this case whether, if ADDEND is a
// quiet NaN, we raise invalid op; this implementation does so.
//
// If we need to do the addition we can do so with normal
// precision.
if status == Status::OK {
self = unpack!(status=, self.add_r(addend, round));
}
return status.and(self);
}
// Post-multiplication sign, before addition.
self.sign ^= multiplicand.sign;
// Allocate space for twice as many bits as the original significand, plus one
// extra bit for the addition to overflow into.
assert!(limbs_for_bits(S::PRECISION * 2 + 1) <= 2);
let mut wide_sig = sig::widening_mul(self.sig[0], multiplicand.sig[0]);
let mut loss = Loss::ExactlyZero;
let mut omsb = sig::omsb(&wide_sig);
self.exp += multiplicand.exp;
// Assume the operands involved in the multiplication are single-precision
// FP, and the two multiplicants are:
// lhs = a23 . a22 ... a0 * 2^e1
// rhs = b23 . b22 ... b0 * 2^e2
// the result of multiplication is:
// lhs = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
// Note that there are three significant bits at the left-hand side of the
// radix point: two for the multiplication, and an overflow bit for the
// addition (that will always be zero at this point). Move the radix point
// toward left by two bits, and adjust exponent accordingly.
self.exp += 2;
if addend.is_non_zero() {
// Normalize our MSB to one below the top bit to allow for overflow.
let ext_precision = 2 * S::PRECISION + 1;
if omsb != ext_precision - 1 {
assert!(ext_precision > omsb);
sig::shift_left(&mut wide_sig, &mut self.exp, (ext_precision - 1) - omsb);
}
// The intermediate result of the multiplication has "2 * S::PRECISION"
// significant bit; adjust the addend to be consistent with mul result.
let mut ext_addend_sig = [addend.sig[0], 0];
// Extend the addend significand to ext_precision - 1. This guarantees
// that the high bit of the significand is zero (same as wide_sig),
// so the addition will overflow (if it does overflow at all) into the top bit.
sig::shift_left(&mut ext_addend_sig, &mut 0, ext_precision - 1 - S::PRECISION);
loss = sig::add_or_sub(
&mut wide_sig,
&mut self.exp,
&mut self.sign,
&mut ext_addend_sig,
addend.exp + 1,
addend.sign,
);
omsb = sig::omsb(&wide_sig);
}
// Convert the result having "2 * S::PRECISION" significant-bits back to the one
// having "S::PRECISION" significant-bits. First, move the radix point from
// position "2*S::PRECISION - 1" to "S::PRECISION - 1". The exponent need to be
// adjusted by "2*S::PRECISION - 1" - "S::PRECISION - 1" = "S::PRECISION".
self.exp -= S::PRECISION as ExpInt + 1;
// In case MSB resides at the left-hand side of radix point, shift the
// mantissa right by some amount to make sure the MSB reside right before
// the radix point (i.e., "MSB . rest-significant-bits").
if omsb > S::PRECISION {
let bits = omsb - S::PRECISION;
loss = sig::shift_right(&mut wide_sig, &mut self.exp, bits).combine(loss);
}
self.sig[0] = wide_sig[0];
let mut status;
self = unpack!(status=, self.normalize(round, loss));
if loss != Loss::ExactlyZero {
status |= Status::INEXACT;
}
// If two numbers add (exactly) to zero, IEEE 754 decrees it is a
// positive zero unless rounding to minus infinity, except that
// adding two like-signed zeroes gives that zero.
if self.category == Category::Zero
&& !status.intersects(Status::UNDERFLOW)
&& self.sign != addend.sign
{
self.sign = round == Round::TowardNegative;
}
status.and(self)
}
fn div_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
self.sign ^= rhs.sign;
match (self.category, rhs.category) {
(Category::NaN, _) => {
self.sign = false;
Status::OK.and(self)
}
(_, Category::NaN) => {
self.category = Category::NaN;
self.sig = rhs.sig;
self.sign = false;
Status::OK.and(self)
}
(Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {
Status::INVALID_OP.and(Self::NAN)
}
(Category::Infinity | Category::Zero, _) => Status::OK.and(self),
(Category::Normal, Category::Infinity) => {
self.category = Category::Zero;
Status::OK.and(self)
}
(Category::Normal, Category::Zero) => {
self.category = Category::Infinity;
Status::DIV_BY_ZERO.and(self)
}
(Category::Normal, Category::Normal) => {
self.exp -= rhs.exp;
let dividend = self.sig[0];
let loss = sig::div(
&mut self.sig,
&mut self.exp,
&mut [dividend],
&mut [rhs.sig[0]],
S::PRECISION,
);
let mut status;
self = unpack!(status=, self.normalize(round, loss));
if loss != Loss::ExactlyZero {
status |= Status::INEXACT;
}
status.and(self)
}
}
}
fn c_fmod(mut self, rhs: Self) -> StatusAnd<Self> {
match (self.category, rhs.category) {
(Category::NaN, _)
| (Category::Zero, Category::Infinity | Category::Normal)
| (Category::Normal, Category::Infinity) => Status::OK.and(self),
(_, Category::NaN) => {
self.sign = false;
self.category = Category::NaN;
self.sig = rhs.sig;
Status::OK.and(self)
}
(Category::Infinity, _) | (_, Category::Zero) => Status::INVALID_OP.and(Self::NAN),
(Category::Normal, Category::Normal) => {
while self.is_finite_non_zero()
&& rhs.is_finite_non_zero()
&& self.cmp_abs_normal(rhs) != Ordering::Less
{
let mut v = rhs.scalbn(self.ilogb() - rhs.ilogb());
if self.cmp_abs_normal(v) == Ordering::Less {
v = v.scalbn(-1);
}
v.sign = self.sign;
let status;
self = unpack!(status=, self - v);
assert_eq!(status, Status::OK);
}
Status::OK.and(self)
}
}
}
fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
// If the exponent is large enough, we know that this value is already
// integral, and the arithmetic below would potentially cause it to saturate
// to +/-Inf. Bail out early instead.
if self.is_finite_non_zero() && self.exp + 1 >= S::PRECISION as ExpInt {
return Status::OK.and(self);
}
// The algorithm here is quite simple: we add 2^(p-1), where p is the
// precision of our format, and then subtract it back off again. The choice
// of rounding modes for the addition/subtraction determines the rounding mode
// for our integral rounding as well.
// NOTE: When the input value is negative, we do subtraction followed by
// addition instead.
assert!(S::PRECISION <= 128);
let mut status;
let magic_const = unpack!(status=, Self::from_u128(1 << (S::PRECISION - 1)));
let magic_const = magic_const.copy_sign(self);
if status != Status::OK {
return status.and(self);
}
let mut r = self;
r = unpack!(status=, r.add_r(magic_const, round));
if status != Status::OK && status != Status::INEXACT {
return status.and(self);
}
// Restore the input sign to handle 0.0/-0.0 cases correctly.
r.sub_r(magic_const, round).map(|r| r.copy_sign(self))
}
fn next_up(mut self) -> StatusAnd<Self> {
// Compute nextUp(x), handling each float category separately.
match self.category {
Category::Infinity => {
if self.sign {
// nextUp(-inf) = -largest
Status::OK.and(-Self::largest())
} else {
// nextUp(+inf) = +inf
Status::OK.and(self)
}
}
Category::NaN => {
// IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
// IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
// change the payload.
if self.is_signaling() {
// For consistency, propagate the sign of the sNaN to the qNaN.
Status::INVALID_OP.and(Self::NAN.copy_sign(self))
} else {
Status::OK.and(self)
}
}
Category::Zero => {
// nextUp(pm 0) = +smallest
Status::OK.and(Self::SMALLEST)
}
Category::Normal => {
// nextUp(-smallest) = -0
if self.is_smallest() && self.sign {
return Status::OK.and(-Self::ZERO);
}
// nextUp(largest) == INFINITY
if self.is_largest() && !self.sign {
return Status::OK.and(Self::INFINITY);
}
// Excluding the integral bit. This allows us to test for binade boundaries.
let sig_mask = (1 << (S::PRECISION - 1)) - 1;
// nextUp(normal) == normal + inc.
if self.sign {
// If we are negative, we need to decrement the significand.
// We only cross a binade boundary that requires adjusting the exponent
// if:
// 1. exponent != S::MIN_EXP. This implies we are not in the
// smallest binade or are dealing with denormals.
// 2. Our significand excluding the integral bit is all zeros.
let crossing_binade_boundary =
self.exp != S::MIN_EXP && self.sig[0] & sig_mask == 0;
// Decrement the significand.
//
// We always do this since:
// 1. If we are dealing with a non-binade decrement, by definition we
// just decrement the significand.
// 2. If we are dealing with a normal -> normal binade decrement, since
// we have an explicit integral bit the fact that all bits but the
// integral bit are zero implies that subtracting one will yield a
// significand with 0 integral bit and 1 in all other spots. Thus we
// must just adjust the exponent and set the integral bit to 1.
// 3. If we are dealing with a normal -> denormal binade decrement,
// since we set the integral bit to 0 when we represent denormals, we
// just decrement the significand.
sig::decrement(&mut self.sig);
if crossing_binade_boundary {
// Our result is a normal number. Do the following:
// 1. Set the integral bit to 1.
// 2. Decrement the exponent.
sig::set_bit(&mut self.sig, S::PRECISION - 1);
self.exp -= 1;
}
} else {
// If we are positive, we need to increment the significand.
// We only cross a binade boundary that requires adjusting the exponent if
// the input is not a denormal and all of said input's significand bits
// are set. If all of said conditions are true: clear the significand, set
// the integral bit to 1, and increment the exponent. If we have a
// denormal always increment since moving denormals and the numbers in the
// smallest normal binade have the same exponent in our representation.
let crossing_binade_boundary =
!self.is_denormal() && self.sig[0] & sig_mask == sig_mask;
if crossing_binade_boundary {
self.sig = [0];
sig::set_bit(&mut self.sig, S::PRECISION - 1);
assert_ne!(
self.exp,
S::MAX_EXP,
"We can not increment an exponent beyond the MAX_EXP \
allowed by the given floating point semantics."
);
self.exp += 1;
} else {
sig::increment(&mut self.sig);
}
}
Status::OK.and(self)
}
}
}
fn from_bits(input: u128) -> Self {
// Dispatch to semantics.
S::from_bits(input)
}
fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
IeeeFloat {
sig: [input],
exp: S::PRECISION as ExpInt - 1,
category: Category::Normal,
sign: false,
marker: PhantomData,
}
.normalize(round, Loss::ExactlyZero)
}
fn from_str_r(mut s: &str, mut round: Round) -> Result<StatusAnd<Self>, ParseError> {
if s.is_empty() {
return Err(ParseError("Invalid string length"));
}
// Handle special cases.
match s {
"inf" | "INFINITY" => return Ok(Status::OK.and(Self::INFINITY)),
"-inf" | "-INFINITY" => return Ok(Status::OK.and(-Self::INFINITY)),
"nan" | "NaN" => return Ok(Status::OK.and(Self::NAN)),
"-nan" | "-NaN" => return Ok(Status::OK.and(-Self::NAN)),
_ => {}
}
// Handle a leading minus sign.
let minus = s.starts_with('-');
if minus || s.starts_with('+') {
s = &s[1..];
if s.is_empty() {
return Err(ParseError("String has no digits"));
}
}
// Adjust the rounding mode for the absolute value below.
if minus {
round = -round;
}
let r = if s.starts_with("0x") || s.starts_with("0X") {
s = &s[2..];
if s.is_empty() {
return Err(ParseError("Invalid string"));
}
Self::from_hexadecimal_string(s, round)?
} else {
Self::from_decimal_string(s, round)?
};
Ok(r.map(|r| if minus { -r } else { r }))
}
fn to_bits(self) -> u128 {
// Dispatch to semantics.
S::to_bits(self)
}
fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
// The result of trying to convert a number too large.
let overflow = if self.sign {
// Negative numbers cannot be represented as unsigned.
0
} else {
// Largest unsigned integer of the given width.
!0 >> (128 - width)
};
*is_exact = false;
match self.category {
Category::NaN => Status::INVALID_OP.and(0),
Category::Infinity => Status::INVALID_OP.and(overflow),
Category::Zero => {
// Negative zero can't be represented as an int.
*is_exact = !self.sign;
Status::OK.and(0)
}
Category::Normal => {
let mut r = 0;
// Step 1: place our absolute value, with any fraction truncated, in
// the destination.
let truncated_bits = if self.exp < 0 {
// Our absolute value is less than one; truncate everything.
// For exponent -1 the integer bit represents .5, look at that.
// For smaller exponents leftmost truncated bit is 0.
S::PRECISION - 1 + (-self.exp) as usize
} else {
// We want the most significant (exponent + 1) bits; the rest are
// truncated.
let bits = self.exp as usize + 1;
// Hopelessly large in magnitude?
if bits > width {
return Status::INVALID_OP.and(overflow);
}
if bits < S::PRECISION {
// We truncate (S::PRECISION - bits) bits.
r = self.sig[0] >> (S::PRECISION - bits);
S::PRECISION - bits
} else {
// We want at least as many bits as are available.
r = self.sig[0] << (bits - S::PRECISION);
0
}
};
// Step 2: work out any lost fraction, and increment the absolute
// value if we would round away from zero.
let mut loss = Loss::ExactlyZero;
if truncated_bits > 0 {
loss = Loss::through_truncation(&self.sig, truncated_bits);
if loss != Loss::ExactlyZero
&& self.round_away_from_zero(round, loss, truncated_bits)
{
r = r.wrapping_add(1);
if r == 0 {
return Status::INVALID_OP.and(overflow); // Overflow.
}
}
}
// Step 3: check if we fit in the destination.
if r > overflow {
return Status::INVALID_OP.and(overflow);
}
if loss == Loss::ExactlyZero {
*is_exact = true;
Status::OK.and(r)
} else {
Status::INEXACT.and(r)
}
}
}
}
fn cmp_abs_normal(self, rhs: Self) -> Ordering {
assert!(self.is_finite_non_zero());
assert!(rhs.is_finite_non_zero());
// If exponents are equal, do an unsigned comparison of the significands.
self.exp.cmp(&rhs.exp).then_with(|| sig::cmp(&self.sig, &rhs.sig))
}
fn bitwise_eq(self, rhs: Self) -> bool {
if self.category != rhs.category || self.sign != rhs.sign {
return false;
}
if self.category == Category::Zero || self.category == Category::Infinity {
return true;
}
if self.is_finite_non_zero() && self.exp != rhs.exp {
return false;
}
self.sig == rhs.sig
}
fn is_negative(self) -> bool {
self.sign
}
fn is_denormal(self) -> bool {
self.is_finite_non_zero()
&& self.exp == S::MIN_EXP
&& !sig::get_bit(&self.sig, S::PRECISION - 1)
}
fn is_signaling(self) -> bool {
// IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
// first bit of the trailing significand being 0.
self.is_nan() && !sig::get_bit(&self.sig, S::QNAN_BIT)
}
fn category(self) -> Category {
self.category
}
fn get_exact_inverse(self) -> Option<Self> {
// Special floats and denormals have no exact inverse.
if !self.is_finite_non_zero() {
return None;
}
// Check that the number is a power of two by making sure that only the
// integer bit is set in the significand.
if self.sig != [1 << (S::PRECISION - 1)] {
return None;
}
// Get the inverse.
let mut reciprocal = Self::from_u128(1).value;
let status;
reciprocal = unpack!(status=, reciprocal / self);
if status != Status::OK {
return None;
}
// Avoid multiplication with a denormal, it is not safe on all platforms and
// may be slower than a normal division.
if reciprocal.is_denormal() {
return None;
}
assert!(reciprocal.is_finite_non_zero());
assert_eq!(reciprocal.sig, [1 << (S::PRECISION - 1)]);
Some(reciprocal)
}
fn ilogb(mut self) -> ExpInt {
if self.is_nan() {
return IEK_NAN;
}
if self.is_zero() {
return IEK_ZERO;
}
if self.is_infinite() {
return IEK_INF;
}
if !self.is_denormal() {
return self.exp;
}
let sig_bits = (S::PRECISION - 1) as ExpInt;
self.exp += sig_bits;
self = self.normalize(Round::NearestTiesToEven, Loss::ExactlyZero).value;
self.exp - sig_bits
}
fn scalbn_r(mut self, exp: ExpInt, round: Round) -> Self {
// If exp is wildly out-of-scale, simply adding it to self.exp will
// overflow; clamp it to a safe range before adding, but ensure that the range
// is large enough that the clamp does not change the result. The range we
// need to support is the difference between the largest possible exponent and
// the normalized exponent of half the smallest denormal.
let sig_bits = (S::PRECISION - 1) as i32;
let max_change = S::MAX_EXP as i32 - (S::MIN_EXP as i32 - sig_bits) + 1;
// Clamp to one past the range ends to let normalize handle overflow.
let exp_change = cmp::min(cmp::max(exp as i32, -max_change - 1), max_change);
self.exp = self.exp.saturating_add(exp_change as ExpInt);
self = self.normalize(round, Loss::ExactlyZero).value;
if self.is_nan() {
sig::set_bit(&mut self.sig, S::QNAN_BIT);
}
self
}
fn frexp_r(mut self, exp: &mut ExpInt, round: Round) -> Self {
*exp = self.ilogb();
// Quiet signalling nans.
if *exp == IEK_NAN {
sig::set_bit(&mut self.sig, S::QNAN_BIT);
return self;
}
if *exp == IEK_INF {
return self;
}
// 1 is added because frexp is defined to return a normalized fraction in
// +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
if *exp == IEK_ZERO {
*exp = 0;
} else {
*exp += 1;
}
self.scalbn_r(-*exp, round)
}
}
impl<S: Semantics, T: Semantics> FloatConvert<IeeeFloat<T>> for IeeeFloat<S> {
fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<IeeeFloat<T>> {
let mut r = IeeeFloat {
sig: self.sig,
exp: self.exp,
category: self.category,
sign: self.sign,
marker: PhantomData,
};
// x86 has some unusual NaNs which cannot be represented in any other
// format; note them here.
fn is_x87_double_extended<S: Semantics>() -> bool {
S::QNAN_SIGNIFICAND == X87DoubleExtendedS::QNAN_SIGNIFICAND
}
let x87_special_nan = is_x87_double_extended::<S>()
&& !is_x87_double_extended::<T>()
&& r.category == Category::NaN
&& (r.sig[0] & S::QNAN_SIGNIFICAND) != S::QNAN_SIGNIFICAND;
// If this is a truncation of a denormal number, and the target semantics
// has larger exponent range than the source semantics (this can happen
// when truncating from PowerPC double-double to double format), the
// right shift could lose result mantissa bits. Adjust exponent instead
// of performing excessive shift.
let mut shift = T::PRECISION as ExpInt - S::PRECISION as ExpInt;
if shift < 0 && r.is_finite_non_zero() {
let mut exp_change = sig::omsb(&r.sig) as ExpInt - S::PRECISION as ExpInt;
if r.exp + exp_change < T::MIN_EXP {
exp_change = T::MIN_EXP - r.exp;
}
if exp_change < shift {
exp_change = shift;
}
if exp_change < 0 {
shift -= exp_change;
r.exp += exp_change;
}
}
// If this is a truncation, perform the shift.
let loss = if shift < 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
sig::shift_right(&mut r.sig, &mut 0, -shift as usize)
} else {
Loss::ExactlyZero
};
// If this is an extension, perform the shift.
if shift > 0 && (r.is_finite_non_zero() || r.category == Category::NaN) {
sig::shift_left(&mut r.sig, &mut 0, shift as usize);
}
let status;
if r.is_finite_non_zero() {
r = unpack!(status=, r.normalize(round, loss));
*loses_info = status != Status::OK;
} else if r.category == Category::NaN {
*loses_info = loss != Loss::ExactlyZero || x87_special_nan;
// For x87 extended precision, we want to make a NaN, not a special NaN if
// the input wasn't special either.
if !x87_special_nan && is_x87_double_extended::<T>() {
sig::set_bit(&mut r.sig, T::PRECISION - 1);
}
// Convert of sNaN creates qNaN and raises an exception (invalid op).
// This also guarantees that a sNaN does not become Inf on a truncation
// that loses all payload bits.
if self.is_signaling() {
// Quiet signaling NaN.
sig::set_bit(&mut r.sig, T::QNAN_BIT);
status = Status::INVALID_OP;
} else {
status = Status::OK;
}
} else {
*loses_info = false;
status = Status::OK;
}
status.and(r)
}
}
impl<S: Semantics> IeeeFloat<S> {
/// Handle positive overflow. We either return infinity or
/// the largest finite number. For negative overflow,
/// negate the `round` argument before calling.
fn overflow_result(round: Round) -> StatusAnd<Self> {
match round {
// Infinity?
Round::NearestTiesToEven | Round::NearestTiesToAway | Round::TowardPositive => {
(Status::OVERFLOW | Status::INEXACT).and(Self::INFINITY)
}
// Otherwise we become the largest finite number.
Round::TowardNegative | Round::TowardZero => Status::INEXACT.and(Self::largest()),
}
}
/// Returns `true` if, when truncating the current number, with `bit` the
/// new LSB, with the given lost fraction and rounding mode, the result
/// would need to be rounded away from zero (i.e., by increasing the
/// signficand). This routine must work for `Category::Zero` of both signs, and
/// `Category::Normal` numbers.
fn round_away_from_zero(&self, round: Round, loss: Loss, bit: usize) -> bool {
// NaNs and infinities should not have lost fractions.
assert!(self.is_finite_non_zero() || self.is_zero());
// Current callers never pass this so we don't handle it.
assert_ne!(loss, Loss::ExactlyZero);
match round {
Round::NearestTiesToAway => loss == Loss::ExactlyHalf || loss == Loss::MoreThanHalf,
Round::NearestTiesToEven => {
if loss == Loss::MoreThanHalf {
return true;
}
// Our zeros don't have a significand to test.
if loss == Loss::ExactlyHalf && self.category != Category::Zero {
return sig::get_bit(&self.sig, bit);
}
false
}
Round::TowardZero => false,
Round::TowardPositive => !self.sign,
Round::TowardNegative => self.sign,
}
}
fn normalize(mut self, round: Round, mut loss: Loss) -> StatusAnd<Self> {
if !self.is_finite_non_zero() {
return Status::OK.and(self);
}
// Before rounding normalize the exponent of Category::Normal numbers.
let mut omsb = sig::omsb(&self.sig);
if omsb > 0 {
// OMSB is numbered from 1. We want to place it in the integer
// bit numbered PRECISION if possible, with a compensating change in
// the exponent.
let mut final_exp = self.exp.saturating_add(omsb as ExpInt - S::PRECISION as ExpInt);
// If the resulting exponent is too high, overflow according to
// the rounding mode.
if final_exp > S::MAX_EXP {
let round = if self.sign { -round } else { round };
return Self::overflow_result(round).map(|r| r.copy_sign(self));
}
// Subnormal numbers have exponent MIN_EXP, and their MSB
// is forced based on that.
if final_exp < S::MIN_EXP {
final_exp = S::MIN_EXP;
}
// Shifting left is easy as we don't lose precision.
if final_exp < self.exp {
assert_eq!(loss, Loss::ExactlyZero);
let exp_change = (self.exp - final_exp) as usize;
sig::shift_left(&mut self.sig, &mut self.exp, exp_change);
return Status::OK.and(self);
}
// Shift right and capture any new lost fraction.
if final_exp > self.exp {
let exp_change = (final_exp - self.exp) as usize;
loss = sig::shift_right(&mut self.sig, &mut self.exp, exp_change).combine(loss);
// Keep OMSB up-to-date.
omsb = omsb.saturating_sub(exp_change);
}
}
// Now round the number according to round given the lost
// fraction.
// As specified in IEEE 754, since we do not trap we do not report
// underflow for exact results.
if loss == Loss::ExactlyZero {
// Canonicalize zeros.
if omsb == 0 {
self.category = Category::Zero;
}
return Status::OK.and(self);
}
// Increment the significand if we're rounding away from zero.
if self.round_away_from_zero(round, loss, 0) {
if omsb == 0 {
self.exp = S::MIN_EXP;
}
// We should never overflow.
assert_eq!(sig::increment(&mut self.sig), 0);
omsb = sig::omsb(&self.sig);
// Did the significand increment overflow?
if omsb == S::PRECISION + 1 {
// Renormalize by incrementing the exponent and shifting our
// significand right one. However if we already have the
// maximum exponent we overflow to infinity.
if self.exp == S::MAX_EXP {
self.category = Category::Infinity;
return (Status::OVERFLOW | Status::INEXACT).and(self);
}
let _: Loss = sig::shift_right(&mut self.sig, &mut self.exp, 1);
return Status::INEXACT.and(self);
}
}
// The normal case - we were and are not denormal, and any
// significand increment above didn't overflow.
if omsb == S::PRECISION {
return Status::INEXACT.and(self);
}
// We have a non-zero denormal.
assert!(omsb < S::PRECISION);
// Canonicalize zeros.
if omsb == 0 {
self.category = Category::Zero;
}
// The Category::Zero case is a denormal that underflowed to zero.
(Status::UNDERFLOW | Status::INEXACT).and(self)
}
fn from_hexadecimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
let mut r = IeeeFloat {
sig: [0],
exp: 0,
category: Category::Normal,
sign: false,
marker: PhantomData,
};
let mut any_digits = false;
let mut has_exp = false;
let mut bit_pos = LIMB_BITS as isize;
let mut loss = None;
// Without leading or trailing zeros, irrespective of the dot.
let mut first_sig_digit = None;
let mut dot = s.len();
for (p, c) in s.char_indices() {
// Skip leading zeros and any (hexa)decimal point.
if c == '.' {
if dot != s.len() {
return Err(ParseError("String contains multiple dots"));
}
dot = p;
} else if let Some(hex_value) = c.to_digit(16) {
any_digits = true;
if first_sig_digit.is_none() {
if hex_value == 0 {
continue;
}
first_sig_digit = Some(p);
}
// Store the number while we have space.
bit_pos -= 4;
if bit_pos >= 0 {
r.sig[0] |= (hex_value as Limb) << bit_pos;
// If zero or one-half (the hexadecimal digit 8) are followed
// by non-zero, they're a little more than zero or one-half.
} else if let Some(ref mut loss) = loss {
if hex_value != 0 {
if *loss == Loss::ExactlyZero {
*loss = Loss::LessThanHalf;
}
if *loss == Loss::ExactlyHalf {
*loss = Loss::MoreThanHalf;
}
}
} else {
loss = Some(match hex_value {
0 => Loss::ExactlyZero,
1..=7 => Loss::LessThanHalf,
8 => Loss::ExactlyHalf,
9..=15 => Loss::MoreThanHalf,
_ => unreachable!(),
});
}
} else if c == 'p' || c == 'P' {
if !any_digits {
return Err(ParseError("Significand has no digits"));
}
if dot == s.len() {
dot = p;
}
let mut chars = s[p + 1..].chars().peekable();
// Adjust for the given exponent.
let exp_minus = chars.peek() == Some(&'-');
if exp_minus || chars.peek() == Some(&'+') {
chars.next();
}
for c in chars {
if let Some(value) = c.to_digit(10) {
has_exp = true;
r.exp = r.exp.saturating_mul(10).saturating_add(value as ExpInt);
} else {
return Err(ParseError("Invalid character in exponent"));
}
}
if !has_exp {
return Err(ParseError("Exponent has no digits"));
}
if exp_minus {
r.exp = -r.exp;
}
break;
} else {
return Err(ParseError("Invalid character in significand"));
}
}
if !any_digits {
return Err(ParseError("Significand has no digits"));
}
// Hex floats require an exponent but not a hexadecimal point.
if !has_exp {
return Err(ParseError("Hex strings require an exponent"));
}
// Ignore the exponent if we are zero.
let first_sig_digit = match first_sig_digit {
Some(p) => p,
None => return Ok(Status::OK.and(Self::ZERO)),
};
// Calculate the exponent adjustment implicit in the number of
// significant digits and adjust for writing the significand starting
// at the most significant nibble.
let exp_adjustment = if dot > first_sig_digit {
ExpInt::try_from(dot - first_sig_digit).unwrap()
} else {
-ExpInt::try_from(first_sig_digit - dot - 1).unwrap()
};
let exp_adjustment = exp_adjustment
.saturating_mul(4)
.saturating_sub(1)
.saturating_add(S::PRECISION as ExpInt)
.saturating_sub(LIMB_BITS as ExpInt);
r.exp = r.exp.saturating_add(exp_adjustment);
Ok(r.normalize(round, loss.unwrap_or(Loss::ExactlyZero)))
}
fn from_decimal_string(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
// Given a normal decimal floating point number of the form
//
// dddd.dddd[eE][+-]ddd
//
// where the decimal point and exponent are optional, fill out the
// variables below. Exponent is appropriate if the significand is
// treated as an integer, and normalized_exp if the significand
// is taken to have the decimal point after a single leading
// non-zero digit.
//
// If the value is zero, first_sig_digit is None.
let mut any_digits = false;
let mut dec_exp = 0i32;
// Without leading or trailing zeros, irrespective of the dot.
let mut first_sig_digit = None;
let mut last_sig_digit = 0;
let mut dot = s.len();
for (p, c) in s.char_indices() {
if c == '.' {
if dot != s.len() {
return Err(ParseError("String contains multiple dots"));
}
dot = p;
} else if let Some(dec_value) = c.to_digit(10) {
any_digits = true;
if dec_value != 0 {
if first_sig_digit.is_none() {
first_sig_digit = Some(p);
}
last_sig_digit = p;
}
} else if c == 'e' || c == 'E' {
if !any_digits {
return Err(ParseError("Significand has no digits"));
}
if dot == s.len() {
dot = p;
}
let mut chars = s[p + 1..].chars().peekable();
// Adjust for the given exponent.
let exp_minus = chars.peek() == Some(&'-');
if exp_minus || chars.peek() == Some(&'+') {
chars.next();
}
any_digits = false;
for c in chars {
if let Some(value) = c.to_digit(10) {
any_digits = true;
dec_exp = dec_exp.saturating_mul(10).saturating_add(value as i32);
} else {
return Err(ParseError("Invalid character in exponent"));
}
}
if !any_digits {
return Err(ParseError("Exponent has no digits"));
}
if exp_minus {
dec_exp = -dec_exp;
}
break;
} else {
return Err(ParseError("Invalid character in significand"));
}
}
if !any_digits {
return Err(ParseError("Significand has no digits"));
}
// Test if we have a zero number allowing for non-zero exponents.
let first_sig_digit = match first_sig_digit {
Some(p) => p,
None => return Ok(Status::OK.and(Self::ZERO)),
};
// Adjust the exponents for any decimal point.
if dot > last_sig_digit {
dec_exp = dec_exp.saturating_add((dot - last_sig_digit - 1) as i32);
} else {
dec_exp = dec_exp.saturating_sub((last_sig_digit - dot) as i32);
}
let significand_digits = last_sig_digit - first_sig_digit + 1
- (dot > first_sig_digit && dot < last_sig_digit) as usize;
let normalized_exp = dec_exp.saturating_add(significand_digits as i32 - 1);
// Handle the cases where exponents are obviously too large or too
// small. Writing L for log 10 / log 2, a number d.ddddd*10^dec_exp
// definitely overflows if
//
// (dec_exp - 1) * L >= MAX_EXP
//
// and definitely underflows to zero where
//
// (dec_exp + 1) * L <= MIN_EXP - PRECISION
//
// With integer arithmetic the tightest bounds for L are
//
// 93/28 < L < 196/59 [ numerator <= 256 ]
// 42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
// Check for MAX_EXP.
if normalized_exp.saturating_sub(1).saturating_mul(42039) >= 12655 * S::MAX_EXP as i32 {
// Overflow and round.
return Ok(Self::overflow_result(round));
}
// Check for MIN_EXP.
if normalized_exp.saturating_add(1).saturating_mul(28738)
<= 8651 * (S::MIN_EXP as i32 - S::PRECISION as i32)
{
// Underflow to zero and round.
let r =
if round == Round::TowardPositive { IeeeFloat::SMALLEST } else { IeeeFloat::ZERO };
return Ok((Status::UNDERFLOW | Status::INEXACT).and(r));
}
// A tight upper bound on number of bits required to hold an
// N-digit decimal integer is N * 196 / 59. Allocate enough space
// to hold the full significand, and an extra limb required by
// tcMultiplyPart.
let max_limbs = limbs_for_bits(1 + 196 * significand_digits / 59);
let mut dec_sig: SmallVec<[Limb; 1]> = SmallVec::with_capacity(max_limbs);
// Convert to binary efficiently - we do almost all multiplication
// in a Limb. When this would overflow do we do a single
// bignum multiplication, and then revert again to multiplication
// in a Limb.
let mut chars = s[first_sig_digit..=last_sig_digit].chars();
loop {
let mut val = 0;
let mut multiplier = 1;
loop {
let dec_value = match chars.next() {
Some('.') => continue,
Some(c) => c.to_digit(10).unwrap(),
None => break,
};
multiplier *= 10;
val = val * 10 + dec_value as Limb;
// The maximum number that can be multiplied by ten with any
// digit added without overflowing a Limb.
if multiplier > (!0 - 9) / 10 {
break;
}
}
// If we've consumed no digits, we're done.
if multiplier == 1 {
break;
}
// Multiply out the current limb.
let mut carry = val;
for x in &mut dec_sig {
let [low, mut high] = sig::widening_mul(*x, multiplier);
// Now add carry.
let (low, overflow) = low.overflowing_add(carry);
high += overflow as Limb;
*x = low;
carry = high;
}
// If we had carry, we need another limb (likely but not guaranteed).
if carry > 0 {
dec_sig.push(carry);
}
}
// Calculate pow(5, abs(dec_exp)) into `pow5_full`.
// The *_calc Vec's are reused scratch space, as an optimization.
let (pow5_full, mut pow5_calc, mut sig_calc, mut sig_scratch_calc) = {
let mut power = dec_exp.abs() as usize;
const FIRST_EIGHT_POWERS: [Limb; 8] = [1, 5, 25, 125, 625, 3125, 15625, 78125];
let mut p5_scratch = smallvec![];
let mut p5: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[4]];
let mut r_scratch = smallvec![];
let mut r: SmallVec<[Limb; 1]> = smallvec![FIRST_EIGHT_POWERS[power & 7]];
power >>= 3;
while power > 0 {
// Calculate pow(5,pow(2,n+3)).
p5_scratch.resize(p5.len() * 2, 0);
let _: Loss = sig::mul(&mut p5_scratch, &mut 0, &p5, &p5, p5.len() * 2 * LIMB_BITS);
while p5_scratch.last() == Some(&0) {
p5_scratch.pop();
}
mem::swap(&mut p5, &mut p5_scratch);
if power & 1 != 0 {
r_scratch.resize(r.len() + p5.len(), 0);
let _: Loss =
sig::mul(&mut r_scratch, &mut 0, &r, &p5, (r.len() + p5.len()) * LIMB_BITS);
while r_scratch.last() == Some(&0) {
r_scratch.pop();
}
mem::swap(&mut r, &mut r_scratch);
}
power >>= 1;
}
(r, r_scratch, p5, p5_scratch)
};
// Attempt dec_sig * 10^dec_exp with increasing precision.
let mut attempt = 0;
loop {
let calc_precision = (LIMB_BITS << attempt) - 1;
attempt += 1;
let calc_normal_from_limbs = |sig: &mut SmallVec<[Limb; 1]>,
limbs: &[Limb]|
-> StatusAnd<ExpInt> {
sig.resize(limbs_for_bits(calc_precision), 0);
let (mut loss, mut exp) = sig::from_limbs(sig, limbs, calc_precision);
// Before rounding normalize the exponent of Category::Normal numbers.
let mut omsb = sig::omsb(sig);
assert_ne!(omsb, 0);
// OMSB is numbered from 1. We want to place it in the integer
// bit numbered PRECISION if possible, with a compensating change in
// the exponent.
let final_exp = exp.saturating_add(omsb as ExpInt - calc_precision as ExpInt);
// Shifting left is easy as we don't lose precision.
if final_exp < exp {
assert_eq!(loss, Loss::ExactlyZero);
let exp_change = (exp - final_exp) as usize;
sig::shift_left(sig, &mut exp, exp_change);
return Status::OK.and(exp);
}
// Shift right and capture any new lost fraction.
if final_exp > exp {
let exp_change = (final_exp - exp) as usize;
loss = sig::shift_right(sig, &mut exp, exp_change).combine(loss);
// Keep OMSB up-to-date.
omsb = omsb.saturating_sub(exp_change);
}
assert_eq!(omsb, calc_precision);
// Now round the number according to round given the lost
// fraction.
// As specified in IEEE 754, since we do not trap we do not report
// underflow for exact results.
if loss == Loss::ExactlyZero {
return Status::OK.and(exp);
}
// Increment the significand if we're rounding away from zero.
if loss == Loss::MoreThanHalf || loss == Loss::ExactlyHalf && sig::get_bit(sig, 0) {
// We should never overflow.
assert_eq!(sig::increment(sig), 0);
omsb = sig::omsb(sig);
// Did the significand increment overflow?
if omsb == calc_precision + 1 {
let _: Loss = sig::shift_right(sig, &mut exp, 1);
return Status::INEXACT.and(exp);
}
}
// The normal case - we were and are not denormal, and any
// significand increment above didn't overflow.
Status::INEXACT.and(exp)
};
let status;
let mut exp = unpack!(status=,
calc_normal_from_limbs(&mut sig_calc, &dec_sig));
let pow5_status;
let pow5_exp = unpack!(pow5_status=,
calc_normal_from_limbs(&mut pow5_calc, &pow5_full));
// Add dec_exp, as 10^n = 5^n * 2^n.
exp += dec_exp as ExpInt;
let mut used_bits = S::PRECISION;
let mut truncated_bits = calc_precision - used_bits;
let half_ulp_err1 = (status != Status::OK) as Limb;
let (calc_loss, half_ulp_err2);
if dec_exp >= 0 {
exp += pow5_exp;
sig_scratch_calc.resize(sig_calc.len() + pow5_calc.len(), 0);
calc_loss = sig::mul(
&mut sig_scratch_calc,
&mut exp,
&sig_calc,
&pow5_calc,
calc_precision,
);
mem::swap(&mut sig_calc, &mut sig_scratch_calc);
half_ulp_err2 = (pow5_status != Status::OK) as Limb;
} else {
exp -= pow5_exp;
sig_scratch_calc.resize(sig_calc.len(), 0);
calc_loss = sig::div(
&mut sig_scratch_calc,
&mut exp,
&mut sig_calc,
&mut pow5_calc,
calc_precision,
);
mem::swap(&mut sig_calc, &mut sig_scratch_calc);
// Denormal numbers have less precision.
if exp < S::MIN_EXP {
truncated_bits += (S::MIN_EXP - exp) as usize;
used_bits = calc_precision.saturating_sub(truncated_bits);
}
// Extra half-ulp lost in reciprocal of exponent.
half_ulp_err2 =
2 * (pow5_status != Status::OK || calc_loss != Loss::ExactlyZero) as Limb;
}
// Both sig::mul and sig::div return the
// result with the integer bit set.
assert!(sig::get_bit(&sig_calc, calc_precision - 1));
// The error from the true value, in half-ulps, on multiplying two
// floating point numbers, which differ from the value they
// approximate by at most half_ulp_err1 and half_ulp_err2 half-ulps, is strictly less
// than the returned value.
//
// See "How to Read Floating Point Numbers Accurately" by William D Clinger.
assert!(half_ulp_err1 < 2 || half_ulp_err2 < 2 || (half_ulp_err1 + half_ulp_err2 < 8));
let inexact = (calc_loss != Loss::ExactlyZero) as Limb;
let half_ulp_err = if half_ulp_err1 + half_ulp_err2 == 0 {
inexact * 2 // <= inexact half-ulps.
} else {
inexact + 2 * (half_ulp_err1 + half_ulp_err2)
};
let ulps_from_boundary = {
let bits = calc_precision - used_bits - 1;
let i = bits / LIMB_BITS;
let limb = sig_calc[i] & (!0 >> (LIMB_BITS - 1 - bits % LIMB_BITS));
let boundary = match round {
Round::NearestTiesToEven | Round::NearestTiesToAway => 1 << (bits % LIMB_BITS),
_ => 0,
};
if i == 0 {
let delta = limb.wrapping_sub(boundary);
cmp::min(delta, delta.wrapping_neg())
} else if limb == boundary {
if !sig::is_all_zeros(&sig_calc[1..i]) {
!0 // A lot.
} else {
sig_calc[0]
}
} else if limb == boundary.wrapping_sub(1) {
if sig_calc[1..i].iter().any(|&x| x.wrapping_neg() != 1) {
!0 // A lot.
} else {
sig_calc[0].wrapping_neg()
}
} else {
!0 // A lot.
}
};
// Are we guaranteed to round correctly if we truncate?
if ulps_from_boundary.saturating_mul(2) >= half_ulp_err {
let mut r = IeeeFloat {
sig: [0],
exp,
category: Category::Normal,
sign: false,
marker: PhantomData,
};
sig::extract(&mut r.sig, &sig_calc, used_bits, calc_precision - used_bits);
// If we extracted less bits above we must adjust our exponent
// to compensate for the implicit right shift.
r.exp += (S::PRECISION - used_bits) as ExpInt;
let loss = Loss::through_truncation(&sig_calc, truncated_bits);
return Ok(r.normalize(round, loss));
}
}
}
}
impl Loss {
/// Combine the effect of two lost fractions.
fn combine(self, less_significant: Loss) -> Loss {
let mut more_significant = self;
if less_significant != Loss::ExactlyZero {
if more_significant == Loss::ExactlyZero {
more_significant = Loss::LessThanHalf;
} else if more_significant == Loss::ExactlyHalf {
more_significant = Loss::MoreThanHalf;
}
}
more_significant
}
/// Returns the fraction lost were a bignum truncated losing the least
/// significant `bits` bits.
fn through_truncation(limbs: &[Limb], bits: usize) -> Loss {
if bits == 0 {
return Loss::ExactlyZero;
}
let half_bit = bits - 1;
let half_limb = half_bit / LIMB_BITS;
let (half_limb, rest) = if half_limb < limbs.len() {
(limbs[half_limb], &limbs[..half_limb])
} else {
(0, limbs)
};
let half = 1 << (half_bit % LIMB_BITS);
let has_half = half_limb & half != 0;
let has_rest = half_limb & (half - 1) != 0 || !sig::is_all_zeros(rest);
match (has_half, has_rest) {
(false, false) => Loss::ExactlyZero,
(false, true) => Loss::LessThanHalf,
(true, false) => Loss::ExactlyHalf,
(true, true) => Loss::MoreThanHalf,
}
}
}
/// Implementation details of IeeeFloat significands, such as big integer arithmetic.
/// As a rule of thumb, no functions in this module should dynamically allocate.
mod sig {
use super::{limbs_for_bits, ExpInt, Limb, Loss, LIMB_BITS};
use core::cmp::Ordering;
use core::iter;
use core::mem;
pub(super) fn is_all_zeros(limbs: &[Limb]) -> bool {
limbs.iter().all(|&l| l == 0)
}
/// One, not zero, based LSB. That is, returns 0 for a zeroed significand.
pub(super) fn olsb(limbs: &[Limb]) -> usize {
limbs
.iter()
.enumerate()
.find(|(_, &limb)| limb != 0)
.map_or(0, |(i, limb)| i * LIMB_BITS + limb.trailing_zeros() as usize + 1)
}
/// One, not zero, based MSB. That is, returns 0 for a zeroed significand.
pub(super) fn omsb(limbs: &[Limb]) -> usize {
limbs
.iter()
.enumerate()
.rfind(|(_, &limb)| limb != 0)
.map_or(0, |(i, limb)| (i + 1) * LIMB_BITS - limb.leading_zeros() as usize)
}
/// Comparison (unsigned) of two significands.
pub(super) fn cmp(a: &[Limb], b: &[Limb]) -> Ordering {
assert_eq!(a.len(), b.len());
for (a, b) in a.iter().zip(b).rev() {
match a.cmp(b) {
Ordering::Equal => {}
o => return o,
}
}
Ordering::Equal
}
/// Extracts the given bit.
pub(super) fn get_bit(limbs: &[Limb], bit: usize) -> bool {
limbs[bit / LIMB_BITS] & (1 << (bit % LIMB_BITS)) != 0
}
/// Sets the given bit.
pub(super) fn set_bit(limbs: &mut [Limb], bit: usize) {
limbs[bit / LIMB_BITS] |= 1 << (bit % LIMB_BITS);
}
/// Clear the given bit.
pub(super) fn clear_bit(limbs: &mut [Limb], bit: usize) {
limbs[bit / LIMB_BITS] &= !(1 << (bit % LIMB_BITS));
}
/// Shifts `dst` left `bits` bits, subtract `bits` from its exponent.
pub(super) fn shift_left(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) {
if bits > 0 {
// Our exponent should not underflow.
*exp = exp.checked_sub(bits as ExpInt).unwrap();
// Jump is the inter-limb jump; shift is the intra-limb shift.
let jump = bits / LIMB_BITS;
let shift = bits % LIMB_BITS;
for i in (0..dst.len()).rev() {
let mut limb;
if i < jump {
limb = 0;
} else {
// dst[i] comes from the two limbs src[i - jump] and, if we have
// an intra-limb shift, src[i - jump - 1].
limb = dst[i - jump];
if shift > 0 {
limb <<= shift;
if i > jump {
limb |= dst[i - jump - 1] >> (LIMB_BITS - shift);
}
}
}
dst[i] = limb;
}
}
}
/// Shifts `dst` right `bits` bits noting lost fraction.
pub(super) fn shift_right(dst: &mut [Limb], exp: &mut ExpInt, bits: usize) -> Loss {
let loss = Loss::through_truncation(dst, bits);
if bits > 0 {
// Our exponent should not overflow.
*exp = exp.checked_add(bits as ExpInt).unwrap();
// Jump is the inter-limb jump; shift is the intra-limb shift.
let jump = bits / LIMB_BITS;
let shift = bits % LIMB_BITS;
// Perform the shift. This leaves the most significant `bits` bits
// of the result at zero.
for i in 0..dst.len() {
let mut limb;
if i + jump >= dst.len() {
limb = 0;
} else {
limb = dst[i + jump];
if shift > 0 {
limb >>= shift;
if i + jump + 1 < dst.len() {
limb |= dst[i + jump + 1] << (LIMB_BITS - shift);
}
}
}
dst[i] = limb;
}
}
loss
}
/// Copies the bit vector of width `src_bits` from `src`, starting at bit SRC_LSB,
/// to `dst`, such that the bit SRC_LSB becomes the least significant bit of `dst`.
/// All high bits above `src_bits` in `dst` are zero-filled.
pub(super) fn extract(dst: &mut [Limb], src: &[Limb], src_bits: usize, src_lsb: usize) {
if src_bits == 0 {
return;
}
let dst_limbs = limbs_for_bits(src_bits);
assert!(dst_limbs <= dst.len());
let src = &src[src_lsb / LIMB_BITS..];
dst[..dst_limbs].copy_from_slice(&src[..dst_limbs]);
let shift = src_lsb % LIMB_BITS;
let _: Loss = shift_right(&mut dst[..dst_limbs], &mut 0, shift);
// We now have (dst_limbs * LIMB_BITS - shift) bits from `src`
// in `dst`. If this is less that src_bits, append the rest, else
// clear the high bits.
let n = dst_limbs * LIMB_BITS - shift;
if n < src_bits {
let mask = (1 << (src_bits - n)) - 1;
dst[dst_limbs - 1] |= (src[dst_limbs] & mask) << (n % LIMB_BITS);
} else if n > src_bits && src_bits % LIMB_BITS > 0 {
dst[dst_limbs - 1] &= (1 << (src_bits % LIMB_BITS)) - 1;
}
// Clear high limbs.
for x in &mut dst[dst_limbs..] {
*x = 0;
}
}
/// We want the most significant PRECISION bits of `src`. There may not
/// be that many; extract what we can.
pub(super) fn from_limbs(dst: &mut [Limb], src: &[Limb], precision: usize) -> (Loss, ExpInt) {
let omsb = omsb(src);
if precision <= omsb {
extract(dst, src, precision, omsb - precision);
(Loss::through_truncation(src, omsb - precision), omsb as ExpInt - 1)
} else {
extract(dst, src, omsb, 0);
(Loss::ExactlyZero, precision as ExpInt - 1)
}
}
/// For every consecutive chunk of `bits` bits from `limbs`,
/// going from most significant to the least significant bits,
/// call `f` to transform those bits and store the result back.
pub(super) fn each_chunk<F: FnMut(Limb) -> Limb>(limbs: &mut [Limb], bits: usize, mut f: F) {
assert_eq!(LIMB_BITS % bits, 0);
for limb in limbs.iter_mut().rev() {
let mut r = 0;
for i in (0..LIMB_BITS / bits).rev() {
r |= f((*limb >> (i * bits)) & ((1 << bits) - 1)) << (i * bits);
}
*limb = r;
}
}
/// Increment in-place, return the carry flag.
pub(super) fn increment(dst: &mut [Limb]) -> Limb {
for x in dst {
*x = x.wrapping_add(1);
if *x != 0 {
return 0;
}
}
1
}
/// Decrement in-place, return the borrow flag.
pub(super) fn decrement(dst: &mut [Limb]) -> Limb {
for x in dst {
*x = x.wrapping_sub(1);
if *x != !0 {
return 0;
}
}
1
}
/// `a += b + c` where `c` is zero or one. Returns the carry flag.
pub(super) fn add(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
assert!(c <= 1);
for (a, &b) in iter::zip(a, b) {
let (r, overflow) = a.overflowing_add(b);
let (r, overflow2) = r.overflowing_add(c);
*a = r;
c = (overflow | overflow2) as Limb;
}
c
}
/// `a -= b + c` where `c` is zero or one. Returns the borrow flag.
pub(super) fn sub(a: &mut [Limb], b: &[Limb], mut c: Limb) -> Limb {
assert!(c <= 1);
for (a, &b) in iter::zip(a, b) {
let (r, overflow) = a.overflowing_sub(b);
let (r, overflow2) = r.overflowing_sub(c);
*a = r;
c = (overflow | overflow2) as Limb;
}
c
}
/// `a += b` or `a -= b`. Does not preserve `b`.
pub(super) fn add_or_sub(
a_sig: &mut [Limb],
a_exp: &mut ExpInt,
a_sign: &mut bool,
b_sig: &mut [Limb],
b_exp: ExpInt,
b_sign: bool,
) -> Loss {
// Are we bigger exponent-wise than the RHS?
let bits = *a_exp - b_exp;
// Determine if the operation on the absolute values is effectively
// an addition or subtraction.
// Subtraction is more subtle than one might naively expect.
if *a_sign ^ b_sign {
let (reverse, loss);
if bits == 0 {
reverse = cmp(a_sig, b_sig) == Ordering::Less;
loss = Loss::ExactlyZero;
} else if bits > 0 {
loss = shift_right(b_sig, &mut 0, (bits - 1) as usize);
shift_left(a_sig, a_exp, 1);
reverse = false;
} else {
loss = shift_right(a_sig, a_exp, (-bits - 1) as usize);
shift_left(b_sig, &mut 0, 1);
reverse = true;
}
let borrow = (loss != Loss::ExactlyZero) as Limb;
if reverse {
// The code above is intended to ensure that no borrow is necessary.
assert_eq!(sub(b_sig, a_sig, borrow), 0);
a_sig.copy_from_slice(b_sig);
*a_sign = !*a_sign;
} else {
// The code above is intended to ensure that no borrow is necessary.
assert_eq!(sub(a_sig, b_sig, borrow), 0);
}
// Invert the lost fraction - it was on the RHS and subtracted.
match loss {
Loss::LessThanHalf => Loss::MoreThanHalf,
Loss::MoreThanHalf => Loss::LessThanHalf,
_ => loss,
}
} else {
let loss = if bits > 0 {
shift_right(b_sig, &mut 0, bits as usize)
} else {
shift_right(a_sig, a_exp, -bits as usize)
};
// We have a guard bit; generating a carry cannot happen.
assert_eq!(add(a_sig, b_sig, 0), 0);
loss
}
}
/// `[low, high] = a * b`.
///
/// This cannot overflow, because
///
/// `(n - 1) * (n - 1) + 2 * (n - 1) == (n - 1) * (n + 1)`
///
/// which is less than n<sup>2</sup>.
pub(super) fn widening_mul(a: Limb, b: Limb) -> [Limb; 2] {
let mut wide = [0, 0];
if a == 0 || b == 0 {
return wide;
}
const HALF_BITS: usize = LIMB_BITS / 2;
let select = |limb, i| (limb >> (i * HALF_BITS)) & ((1 << HALF_BITS) - 1);
for i in 0..2 {
for j in 0..2 {
let mut x = [select(a, i) * select(b, j), 0];
shift_left(&mut x, &mut 0, (i + j) * HALF_BITS);
assert_eq!(add(&mut wide, &x, 0), 0);
}
}
wide
}
/// `dst = a * b` (for normal `a` and `b`). Returns the lost fraction.
pub(super) fn mul<'a>(
dst: &mut [Limb],
exp: &mut ExpInt,
mut a: &'a [Limb],
mut b: &'a [Limb],
precision: usize,
) -> Loss {
// Put the narrower number on the `a` for less loops below.
if a.len() > b.len() {
mem::swap(&mut a, &mut b);
}
for x in &mut dst[..b.len()] {
*x = 0;
}
for i in 0..a.len() {
let mut carry = 0;
for j in 0..b.len() {
let [low, mut high] = widening_mul(a[i], b[j]);
// Now add carry.
let (low, overflow) = low.overflowing_add(carry);
high += overflow as Limb;
// And now `dst[i + j]`, and store the new low part there.
let (low, overflow) = low.overflowing_add(dst[i + j]);
high += overflow as Limb;
dst[i + j] = low;
carry = high;
}
dst[i + b.len()] = carry;
}
// Assume the operands involved in the multiplication are single-precision
// FP, and the two multiplicants are:
// a = a23 . a22 ... a0 * 2^e1
// b = b23 . b22 ... b0 * 2^e2
// the result of multiplication is:
// dst = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
// Note that there are three significant bits at the left-hand side of the
// radix point: two for the multiplication, and an overflow bit for the
// addition (that will always be zero at this point). Move the radix point
// toward left by two bits, and adjust exponent accordingly.
*exp += 2;
// Convert the result having "2 * precision" significant-bits back to the one
// having "precision" significant-bits. First, move the radix point from
// poision "2*precision - 1" to "precision - 1". The exponent need to be
// adjusted by "2*precision - 1" - "precision - 1" = "precision".
*exp -= precision as ExpInt + 1;
// In case MSB resides at the left-hand side of radix point, shift the
// mantissa right by some amount to make sure the MSB reside right before
// the radix point (i.e., "MSB . rest-significant-bits").
//
// Note that the result is not normalized when "omsb < precision". So, the
// caller needs to call IeeeFloat::normalize() if normalized value is
// expected.
let omsb = omsb(dst);
if omsb <= precision { Loss::ExactlyZero } else { shift_right(dst, exp, omsb - precision) }
}
/// `quotient = dividend / divisor`. Returns the lost fraction.
/// Does not preserve `dividend` or `divisor`.
pub(super) fn div(
quotient: &mut [Limb],
exp: &mut ExpInt,
dividend: &mut [Limb],
divisor: &mut [Limb],
precision: usize,
) -> Loss {
// Normalize the divisor.
let bits = precision - omsb(divisor);
shift_left(divisor, &mut 0, bits);
*exp += bits as ExpInt;
// Normalize the dividend.
let bits = precision - omsb(dividend);
shift_left(dividend, exp, bits);
// Division by 1.
let olsb_divisor = olsb(divisor);
if olsb_divisor == precision {
quotient.copy_from_slice(dividend);
return Loss::ExactlyZero;
}
// Ensure the dividend >= divisor initially for the loop below.
// Incidentally, this means that the division loop below is
// guaranteed to set the integer bit to one.
if cmp(dividend, divisor) == Ordering::Less {
shift_left(dividend, exp, 1);
assert_ne!(cmp(dividend, divisor), Ordering::Less)
}
// Helper for figuring out the lost fraction.
let lost_fraction = |dividend: &[Limb], divisor: &[Limb]| match cmp(dividend, divisor) {
Ordering::Greater => Loss::MoreThanHalf,
Ordering::Equal => Loss::ExactlyHalf,
Ordering::Less => {
if is_all_zeros(dividend) {
Loss::ExactlyZero
} else {
Loss::LessThanHalf
}
}
};
// Try to perform a (much faster) short division for small divisors.
let divisor_bits = precision - (olsb_divisor - 1);
macro_rules! try_short_div {
($W:ty, $H:ty, $half:expr) => {
if divisor_bits * 2 <= $half {
// Extract the small divisor.
let _: Loss = shift_right(divisor, &mut 0, olsb_divisor - 1);
let divisor = divisor[0] as $H as $W;
// Shift the dividend to produce a quotient with the unit bit set.
let top_limb = *dividend.last().unwrap();
let mut rem = (top_limb >> (LIMB_BITS - (divisor_bits - 1))) as $H;
shift_left(dividend, &mut 0, divisor_bits - 1);
// Apply short division in place on $H (of $half bits) chunks.
each_chunk(dividend, $half, |chunk| {
let chunk = chunk as $H;
let combined = ((rem as $W) << $half) | (chunk as $W);
rem = (combined % divisor) as $H;
(combined / divisor) as $H as Limb
});
quotient.copy_from_slice(dividend);
return lost_fraction(&[(rem as Limb) << 1], &[divisor as Limb]);
}
};
}
try_short_div!(u32, u16, 16);
try_short_div!(u64, u32, 32);
try_short_div!(u128, u64, 64);
// Zero the quotient before setting bits in it.
for x in &mut quotient[..limbs_for_bits(precision)] {
*x = 0;
}
// Long division.
for bit in (0..precision).rev() {
if cmp(dividend, divisor) != Ordering::Less {
sub(dividend, divisor, 0);
set_bit(quotient, bit);
}
shift_left(dividend, &mut 0, 1);
}
lost_fraction(dividend, divisor)
}
}