1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
use super::OverlapError;

use crate::ich::{self, StableHashingContext};
use crate::traits;
use crate::ty::fast_reject::{self, SimplifiedType};
use crate::ty::{self, TyCtxt, TypeFoldable};
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_hir::def_id::{DefId, DefIdMap};
use syntax::ast::Ident;

/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction. This implicitly checks for overlapping impls (i.e., impls
///   that overlap but where neither specializes the other -- an artifact of the
///   simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
///   parents of a given specializing impl, which is needed for extracting
///   default items amongst other things. In the simple "chain" rule, every impl
///   has at most one parent.
#[derive(RustcEncodable, RustcDecodable, HashStable)]
pub struct Graph {
    // All impls have a parent; the "root" impls have as their parent the `def_id`
    // of the trait.
    parent: DefIdMap<DefId>,

    // The "root" impls are found by looking up the trait's def_id.
    children: DefIdMap<Children>,
}

/// Children of a given impl, grouped into blanket/non-blanket varieties as is
/// done in `TraitDef`.
#[derive(Default, RustcEncodable, RustcDecodable)]
struct Children {
    // Impls of a trait (or specializations of a given impl). To allow for
    // quicker lookup, the impls are indexed by a simplified version of their
    // `Self` type: impls with a simplifiable `Self` are stored in
    // `nonblanket_impls` keyed by it, while all other impls are stored in
    // `blanket_impls`.
    //
    // A similar division is used within `TraitDef`, but the lists there collect
    // together *all* the impls for a trait, and are populated prior to building
    // the specialization graph.
    /// Impls of the trait.
    nonblanket_impls: FxHashMap<fast_reject::SimplifiedType, Vec<DefId>>,

    /// Blanket impls associated with the trait.
    blanket_impls: Vec<DefId>,
}

#[derive(Copy, Clone, Debug)]
pub enum FutureCompatOverlapErrorKind {
    Issue43355,
    Issue33140,
}

#[derive(Debug)]
pub struct FutureCompatOverlapError {
    pub error: OverlapError,
    pub kind: FutureCompatOverlapErrorKind,
}

/// The result of attempting to insert an impl into a group of children.
enum Inserted {
    /// The impl was inserted as a new child in this group of children.
    BecameNewSibling(Option<FutureCompatOverlapError>),

    /// The impl should replace existing impls [X1, ..], because the impl specializes X1, X2, etc.
    ReplaceChildren(Vec<DefId>),

    /// The impl is a specialization of an existing child.
    ShouldRecurseOn(DefId),
}

impl<'tcx> Children {
    /// Insert an impl into this set of children without comparing to any existing impls.
    fn insert_blindly(&mut self, tcx: TyCtxt<'tcx>, impl_def_id: DefId) {
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
        if let Some(st) = fast_reject::simplify_type(tcx, trait_ref.self_ty(), false) {
            debug!("insert_blindly: impl_def_id={:?} st={:?}", impl_def_id, st);
            self.nonblanket_impls.entry(st).or_default().push(impl_def_id)
        } else {
            debug!("insert_blindly: impl_def_id={:?} st=None", impl_def_id);
            self.blanket_impls.push(impl_def_id)
        }
    }

    /// Removes an impl from this set of children. Used when replacing
    /// an impl with a parent. The impl must be present in the list of
    /// children already.
    fn remove_existing(&mut self, tcx: TyCtxt<'tcx>, impl_def_id: DefId) {
        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
        let vec: &mut Vec<DefId>;
        if let Some(st) = fast_reject::simplify_type(tcx, trait_ref.self_ty(), false) {
            debug!("remove_existing: impl_def_id={:?} st={:?}", impl_def_id, st);
            vec = self.nonblanket_impls.get_mut(&st).unwrap();
        } else {
            debug!("remove_existing: impl_def_id={:?} st=None", impl_def_id);
            vec = &mut self.blanket_impls;
        }

        let index = vec.iter().position(|d| *d == impl_def_id).unwrap();
        vec.remove(index);
    }

    /// Attempt to insert an impl into this set of children, while comparing for
    /// specialization relationships.
    fn insert(
        &mut self,
        tcx: TyCtxt<'tcx>,
        impl_def_id: DefId,
        simplified_self: Option<SimplifiedType>,
    ) -> Result<Inserted, OverlapError> {
        let mut last_lint = None;
        let mut replace_children = Vec::new();

        debug!("insert(impl_def_id={:?}, simplified_self={:?})", impl_def_id, simplified_self,);

        let possible_siblings = match simplified_self {
            Some(st) => PotentialSiblings::Filtered(self.filtered(st)),
            None => PotentialSiblings::Unfiltered(self.iter()),
        };

        for possible_sibling in possible_siblings {
            debug!(
                "insert: impl_def_id={:?}, simplified_self={:?}, possible_sibling={:?}",
                impl_def_id, simplified_self, possible_sibling,
            );

            let overlap_error = |overlap: traits::coherence::OverlapResult<'_>| {
                // Found overlap, but no specialization; error out.
                let trait_ref = overlap.impl_header.trait_ref.unwrap();
                let self_ty = trait_ref.self_ty();
                OverlapError {
                    with_impl: possible_sibling,
                    trait_desc: trait_ref.print_only_trait_path().to_string(),
                    // Only report the `Self` type if it has at least
                    // some outer concrete shell; otherwise, it's
                    // not adding much information.
                    self_desc: if self_ty.has_concrete_skeleton() {
                        Some(self_ty.to_string())
                    } else {
                        None
                    },
                    intercrate_ambiguity_causes: overlap.intercrate_ambiguity_causes,
                    involves_placeholder: overlap.involves_placeholder,
                }
            };

            let (le, ge) = traits::overlapping_impls(
                tcx,
                possible_sibling,
                impl_def_id,
                traits::IntercrateMode::Issue43355,
                |overlap| {
                    if let Some(overlap_kind) =
                        tcx.impls_are_allowed_to_overlap(impl_def_id, possible_sibling)
                    {
                        match overlap_kind {
                            ty::ImplOverlapKind::Permitted => {}
                            ty::ImplOverlapKind::Issue33140 => {
                                last_lint = Some(FutureCompatOverlapError {
                                    error: overlap_error(overlap),
                                    kind: FutureCompatOverlapErrorKind::Issue33140,
                                });
                            }
                        }

                        return Ok((false, false));
                    }

                    let le = tcx.specializes((impl_def_id, possible_sibling));
                    let ge = tcx.specializes((possible_sibling, impl_def_id));

                    if le == ge { Err(overlap_error(overlap)) } else { Ok((le, ge)) }
                },
                || Ok((false, false)),
            )?;

            if le && !ge {
                debug!(
                    "descending as child of TraitRef {:?}",
                    tcx.impl_trait_ref(possible_sibling).unwrap()
                );

                // The impl specializes `possible_sibling`.
                return Ok(Inserted::ShouldRecurseOn(possible_sibling));
            } else if ge && !le {
                debug!(
                    "placing as parent of TraitRef {:?}",
                    tcx.impl_trait_ref(possible_sibling).unwrap()
                );

                replace_children.push(possible_sibling);
            } else {
                if let None = tcx.impls_are_allowed_to_overlap(impl_def_id, possible_sibling) {
                    // do future-compat checks for overlap. Have issue #33140
                    // errors overwrite issue #43355 errors when both are present.

                    traits::overlapping_impls(
                        tcx,
                        possible_sibling,
                        impl_def_id,
                        traits::IntercrateMode::Fixed,
                        |overlap| {
                            last_lint = Some(FutureCompatOverlapError {
                                error: overlap_error(overlap),
                                kind: FutureCompatOverlapErrorKind::Issue43355,
                            });
                        },
                        || (),
                    );
                }

                // no overlap (error bailed already via ?)
            }
        }

        if !replace_children.is_empty() {
            return Ok(Inserted::ReplaceChildren(replace_children));
        }

        // No overlap with any potential siblings, so add as a new sibling.
        debug!("placing as new sibling");
        self.insert_blindly(tcx, impl_def_id);
        Ok(Inserted::BecameNewSibling(last_lint))
    }

    fn iter(&mut self) -> impl Iterator<Item = DefId> + '_ {
        let nonblanket = self.nonblanket_impls.iter_mut().flat_map(|(_, v)| v.iter());
        self.blanket_impls.iter().chain(nonblanket).cloned()
    }

    fn filtered(&mut self, st: SimplifiedType) -> impl Iterator<Item = DefId> + '_ {
        let nonblanket = self.nonblanket_impls.entry(st).or_default().iter();
        self.blanket_impls.iter().chain(nonblanket).cloned()
    }
}

// A custom iterator used by Children::insert
enum PotentialSiblings<I, J>
where
    I: Iterator<Item = DefId>,
    J: Iterator<Item = DefId>,
{
    Unfiltered(I),
    Filtered(J),
}

impl<I, J> Iterator for PotentialSiblings<I, J>
where
    I: Iterator<Item = DefId>,
    J: Iterator<Item = DefId>,
{
    type Item = DefId;

    fn next(&mut self) -> Option<Self::Item> {
        match *self {
            PotentialSiblings::Unfiltered(ref mut iter) => iter.next(),
            PotentialSiblings::Filtered(ref mut iter) => iter.next(),
        }
    }
}

impl<'tcx> Graph {
    pub fn new() -> Graph {
        Graph { parent: Default::default(), children: Default::default() }
    }

    /// Insert a local impl into the specialization graph. If an existing impl
    /// conflicts with it (has overlap, but neither specializes the other),
    /// information about the area of overlap is returned in the `Err`.
    pub fn insert(
        &mut self,
        tcx: TyCtxt<'tcx>,
        impl_def_id: DefId,
    ) -> Result<Option<FutureCompatOverlapError>, OverlapError> {
        assert!(impl_def_id.is_local());

        let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
        let trait_def_id = trait_ref.def_id;

        debug!(
            "insert({:?}): inserting TraitRef {:?} into specialization graph",
            impl_def_id, trait_ref
        );

        // If the reference itself contains an earlier error (e.g., due to a
        // resolution failure), then we just insert the impl at the top level of
        // the graph and claim that there's no overlap (in order to suppress
        // bogus errors).
        if trait_ref.references_error() {
            debug!(
                "insert: inserting dummy node for erroneous TraitRef {:?}, \
                    impl_def_id={:?}, trait_def_id={:?}",
                trait_ref, impl_def_id, trait_def_id
            );

            self.parent.insert(impl_def_id, trait_def_id);
            self.children.entry(trait_def_id).or_default().insert_blindly(tcx, impl_def_id);
            return Ok(None);
        }

        let mut parent = trait_def_id;
        let mut last_lint = None;
        let simplified = fast_reject::simplify_type(tcx, trait_ref.self_ty(), false);

        // Descend the specialization tree, where `parent` is the current parent node.
        loop {
            use self::Inserted::*;

            let insert_result =
                self.children.entry(parent).or_default().insert(tcx, impl_def_id, simplified)?;

            match insert_result {
                BecameNewSibling(opt_lint) => {
                    last_lint = opt_lint;
                    break;
                }
                ReplaceChildren(grand_children_to_be) => {
                    // We currently have
                    //
                    //     P
                    //     |
                    //     G
                    //
                    // and we are inserting the impl N. We want to make it:
                    //
                    //     P
                    //     |
                    //     N
                    //     |
                    //     G

                    // Adjust P's list of children: remove G and then add N.
                    {
                        let siblings = self.children.get_mut(&parent).unwrap();
                        for &grand_child_to_be in &grand_children_to_be {
                            siblings.remove_existing(tcx, grand_child_to_be);
                        }
                        siblings.insert_blindly(tcx, impl_def_id);
                    }

                    // Set G's parent to N and N's parent to P.
                    for &grand_child_to_be in &grand_children_to_be {
                        self.parent.insert(grand_child_to_be, impl_def_id);
                    }
                    self.parent.insert(impl_def_id, parent);

                    // Add G as N's child.
                    for &grand_child_to_be in &grand_children_to_be {
                        self.children
                            .entry(impl_def_id)
                            .or_default()
                            .insert_blindly(tcx, grand_child_to_be);
                    }
                    break;
                }
                ShouldRecurseOn(new_parent) => {
                    parent = new_parent;
                }
            }
        }

        self.parent.insert(impl_def_id, parent);
        Ok(last_lint)
    }

    /// Insert cached metadata mapping from a child impl back to its parent.
    pub fn record_impl_from_cstore(&mut self, tcx: TyCtxt<'tcx>, parent: DefId, child: DefId) {
        if self.parent.insert(child, parent).is_some() {
            bug!(
                "When recording an impl from the crate store, information about its parent \
                  was already present."
            );
        }

        self.children.entry(parent).or_default().insert_blindly(tcx, child);
    }

    /// The parent of a given impl, which is the `DefId` of the trait when the
    /// impl is a "specialization root".
    pub fn parent(&self, child: DefId) -> DefId {
        *self.parent.get(&child).unwrap_or_else(|| panic!("Failed to get parent for {:?}", child))
    }
}

/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
#[derive(Debug, Copy, Clone)]
pub enum Node {
    Impl(DefId),
    Trait(DefId),
}

impl<'tcx> Node {
    pub fn is_from_trait(&self) -> bool {
        match *self {
            Node::Trait(..) => true,
            _ => false,
        }
    }

    /// Iterate over the items defined directly by the given (impl or trait) node.
    pub fn items(&self, tcx: TyCtxt<'tcx>) -> ty::AssocItemsIterator<'tcx> {
        tcx.associated_items(self.def_id())
    }

    /// Finds an associated item defined in this node.
    ///
    /// If this returns `None`, the item can potentially still be found in
    /// parents of this node.
    pub fn item(
        &self,
        tcx: TyCtxt<'tcx>,
        trait_item_name: Ident,
        trait_item_kind: ty::AssocKind,
        trait_def_id: DefId,
    ) -> Option<ty::AssocItem> {
        use crate::ty::AssocKind::*;

        tcx.associated_items(self.def_id()).find(move |impl_item| {
            match (trait_item_kind, impl_item.kind) {
                | (Const, Const)
                | (Method, Method)
                | (Type, Type)
                | (Type, OpaqueTy)  // assoc. types can be made opaque in impls
                => tcx.hygienic_eq(impl_item.ident, trait_item_name, trait_def_id),

                | (Const, _)
                | (Method, _)
                | (Type, _)
                | (OpaqueTy, _)
                => false,
            }
        })
    }

    pub fn def_id(&self) -> DefId {
        match *self {
            Node::Impl(did) => did,
            Node::Trait(did) => did,
        }
    }
}

#[derive(Copy, Clone)]
pub struct Ancestors<'tcx> {
    trait_def_id: DefId,
    specialization_graph: &'tcx Graph,
    current_source: Option<Node>,
}

impl Iterator for Ancestors<'_> {
    type Item = Node;
    fn next(&mut self) -> Option<Node> {
        let cur = self.current_source.take();
        if let Some(Node::Impl(cur_impl)) = cur {
            let parent = self.specialization_graph.parent(cur_impl);

            self.current_source = if parent == self.trait_def_id {
                Some(Node::Trait(parent))
            } else {
                Some(Node::Impl(parent))
            };
        }
        cur
    }
}

pub struct NodeItem<T> {
    pub node: Node,
    pub item: T,
}

impl<T> NodeItem<T> {
    pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> NodeItem<U> {
        NodeItem { node: self.node, item: f(self.item) }
    }
}

impl<'tcx> Ancestors<'tcx> {
    /// Finds the bottom-most (ie. most specialized) definition of an associated
    /// item.
    pub fn leaf_def(
        mut self,
        tcx: TyCtxt<'tcx>,
        trait_item_name: Ident,
        trait_item_kind: ty::AssocKind,
    ) -> Option<NodeItem<ty::AssocItem>> {
        let trait_def_id = self.trait_def_id;
        self.find_map(|node| {
            node.item(tcx, trait_item_name, trait_item_kind, trait_def_id)
                .map(|item| NodeItem { node, item })
        })
    }
}

/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
pub fn ancestors(
    tcx: TyCtxt<'tcx>,
    trait_def_id: DefId,
    start_from_impl: DefId,
) -> Ancestors<'tcx> {
    let specialization_graph = tcx.specialization_graph_of(trait_def_id);
    Ancestors {
        trait_def_id,
        specialization_graph,
        current_source: Some(Node::Impl(start_from_impl)),
    }
}

impl<'a> HashStable<StableHashingContext<'a>> for Children {
    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
        let Children { ref nonblanket_impls, ref blanket_impls } = *self;

        ich::hash_stable_trait_impls(hcx, hasher, blanket_impls, nonblanket_impls);
    }
}